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Abstract— This work deals with the analysis and the design
of robust minimum-time control laws for nonlinear discrete-
time systems with possibly non robustly controllable target
sets. Given a Lipschitz nonlinear transition map with bounded
control inputs, in the paper we show that the reachability
properties of the target set can be used to assess the existence
of a robust positively controllable set which includes the target
in its interior. This result is exploited to formulate a minimum-
time control scheme with enhanced robustness properties able
to ensure the ultimate boundedness of the state-trajectories in
presence of bounded uncertainties even in the case in which
the target set is not robustly positively controllable.

I. INTRODUCTION

The Minimum-time control problem consists in steering
the state of a dynamic system from an initial state x0 ∈ R

n

to a given compact set Ξ ⊂ R
n (the so-called “target” set)

in minimum time and in the presence of possible constraints
(typically on the input variables).

The solution of the minimum-time problem is well-known
in the case of linear systems with compact target sets
(see [1], [2], [3], [4], [5], the survey paper [6] and the
references therein), while further investigations are needed
both to characterize the stability properties of nominal
minimum-time control laws in a nonlinear setting and to
design minimum-time controllers robust with respect to un-
modelled nonlinearities and unknown external disturbances
(see [7] and [8], [9] for some robust formulations based
on dynamic programming and invariant-set theory for linear
systems). Indeed, since the mathematical models available
for the control design are often uncertain and the system
may be affected by exogenous not measurable perturbations
as well, in practice the synthesis of the control scheme is
carried out with incomplete informations.

As for the linear case, it can be proven that if the target
set is robustly positively controllable (i.e., the target set can
be made robustly positively invariant by some control law
verifying the input constraints (see [10]), then the nonlinear
minimum-time control ensures the uniform boundedness of
the closed-loop trajectories for a suitable set of initial states
(see [11], [12], [6] as far as the linear case is concerned).
Furthermore, we show that the ultimate boundedness prop-
erty can be preserved even if the target set is not one-step
robustly positively controllable, by suitably modifying the
nominal minimum-time feedback law.

At the best of the authors’ knowledge, the problem of guar-
anteeing the boundedness of the trajectories by minimum-
time control with non controllable terminal sets has not
yet been addressed in the current literature. By exploiting
some ideas originally conceived by the authors in [13] in the
context of Nonlinear Model Predictive Control (NMPC), in
the present paper, a different design procedure is proposed to
possibly address the typical conservatism of the conventional
minimum-time methodologies.

In the NMPC framework, the terminal constraint is intro-
duced with the aim of providing robust stability guarantees
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(see e.g. [14], [15], [16], [17] and [18] among the vast
literature on the subject) and hence it is usually chosen as
an arbitrary robust positively controllable set [19], [20], [21].
The inclusion of such a supplementary terminal condition
introduces some conservatism and raises the additional issue
of the recursive feasibility with respect to the new constraint
(see [13], [22]). Conversely, in the minimum-time control
setting, reaching the terminal set represents it by itself the
objective of the control design. If the specified target set is
not control-invariant, then, to achieve closed-loop robustness,
the minimum-time control law is usually computed by im-
posing a different terminal constraint, chosen as an invariant
subset of the nominal target set. In this case, the finite-
time reachability of the target set, as well as the ultimate
boundedness of the trajectories, can be guaranteed by set-
theoretic arguments (see [5]). Nonetheless, the contraction
of the target set represents a conservative provision for
achieving the robust trajectory boundedness and the finite-
time reach of the target in absence of uncertainties. In
particular, the robust stability properties of the modified
minimum-time problem with a restricted terminal region are
achieved at the cost of a smaller feasible region, that is, a
smaller capture basin.

Conversely, the minimum-time control scheme proposed in
this paper allows to retain the original target set without re-
strictions. Moreover, when the target is robustly controllable,
the devised methods guarantees the same robust performance
(minimum reach-time and maximal admissible uncertainty
for trajectory boundedness) of standard approaches.

II. BASIC NOTATIONS, DEFINITIONS AND SPECIFIC

TECHNICAL RESULTS

In the following, the notation that will be used throughout
the paper is introduced, together with the basic assumptions
and the technical results that will be needed to state the main
results. It is worth noting that, due to space limitations, all the
proofs are omitted and the reader is referred to the Technical
Report [23] for the details.

A. Notations

LetR,R≥0,Z, andZ≥0 denote the real, the non-negative
real, the integer, and the non-negative integer sets of num-
bers, respectively. The Euclidean norm is denoted as | · |.
Given a signal s, let s[t1,t2] be a sequence defined from
time t1 to time t2. In order to simplify the notation, when
it is inferrable from the context, the subscript of the se-
quence is omitted. The set of discrete-time sequences of
s taking values in some subset Υ ⊂ R

n is denoted by
MΥ. Moreover let us define ||s|| , supk≥0{|sk|} and

||s[t1,t2]|| , supt1≤k≤t2
{|sk|}, where sk denotes the value

that the sequence s takes on in correspondence with the
index k. Given a compact set A ⊆ R

n, let ∂A denote
the boundary of A. Given a vector x ∈ R

n, d(x,A) ,
inf {|ξ−x| , ξ∈A} is the point-to-set distance from x∈Rn to

A, while Φ(x,A),{−d(x, ∂A) if x∈A, d(x, ∂A) if x/∈A }
denotes the signed distance function. Given two sets A⊆Rn,
B ⊆ R

n, dist(A,B) , inf {d(ζ, A), ζ∈B} is the minimal
set-to-set distance. The difference between two given sets
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A ⊆ R
n and B ⊆ R

n, with B ⊆ A, is denoted as A\B ,
{x : x ∈A, x/∈B}. Given two sets A ⊆ R

n, B ⊆ R
n, then

the Pontryagin difference set C is defined as C=A ∽B,
{x∈ R

n : x+ξ∈A, ∀ξ∈ B}, while the Minkowski sum set

is defined as S=A⊕B, {x∈Rn : x=ξ+η, ξ∈A, η∈B}.
Given a vector η ∈ R

n and a positive scalar ρ ∈ R>0, the
closed ball centered in η and of radius ρ is denoted as
Bn(η, ρ) , {ξ∈Rn : |ξ−η|≤ρ}. The shorthand Bn(ρ) is
used when the ball is centered in the origin. A function
α : R≥0→R≥0 belongs to class K if it is continuous, zero at
zero, and strictly increasing. A function γ(·) : R≥0 → R≥0
belongs to class K (K-function) if it is continuous, zero at
zero, and strictly increasing.

B. Basic Assumptions and Definitions

Consider the nonlinear discrete-time dynamic system

xt+1 = f̂(xt, ut) + dt , t ∈ Z>0, x0 = x̄ (1)

where xt ∈ R
n denotes the state vector, ut the control vector,

subject to the constraint

ut ∈ U ⊂ R
m, (2)

with U compact, and dt ∈ D ⊂ R
n, with D compact, a

bounded additive transition uncertainty vector.

In stating and proving the preliminary technical lemmas,
and with the aim of simplifying the derivation of the main

results, let the function f̂(x, u) : Rn × U → R
n verify the

following assumption.

Assumption 1 (Lipschitz): The function f̂(x, u) is Lips-
chitz (L.) continuous w.r.t. x ∈ R

n, uniformly in u ∈ U ,
with L. constant L

f̂x
∈ R≥0, that is, for all x ∈ R

n and

x
′ ∈ R

n

|f̂(x, u)− f̂(x
′

, u)| ≤ L
f̂x
|x− x

′

|, ∀u ∈ U.

�
Moreover, to prove some results we also make use of the
following assumption.

Assumption 2 (Local Uniform Continuity w.r.t. u): For

any x ∈ R
n the function f̂(x, u) is uniformly continuous

w.r.t. u ∈ U . That is, for any u ∈ U and any u
′ ∈ U

|f̂(x, u)− f̂(x, u
′

)| ≤ ηu(|u− u
′

|), ∀x ∈ R
n.

where ηu(·) is a K-function. �

Definition 2.1 (Controllability set to Ξ): Given a map

f̂(x, u) : Rn × U → R
n, with U ⊂ R

m compact, and a set
Ξ ⊂ R

n, the (one-step) controllability set to Ξ, (C1(Ξ)) is
given by

C1(Ξ) ,
{

x0 ∈ R
n|∃ux0 ∈ U : f̂(x0, ux0) ∈ Ξ

}

. (3)

�

Definition 2.2 (Predecessor set of Ξ): Given the map
ĝ(x) : R

n → R
n and a set Ξ ⊂ R

n, the (one-step)
predecessor of Ξ, (P1(Ξ)) is given by

P1(Ξ) , {x0 ∈ R
n|ĝ(x0) ∈ Ξ} . (4)

�

Definition 2.3 (i-steps Controllability Set to Ξ): Given a

map f̂(x, u) : Rn × U → R
n, with U ⊂ R

m compact, and

a set Ξ ⊂ R
n, the i-steps controllability set to Ξ, (Ci(Ξ)) is

given by

Ci(Ξ) ,
{

x0 ∈ R
n|∃u(x0) ∈ U i : x̂(i, x,u(x0)) ∈ Ξ

}

.
(5)

that is, Ci(Ξ) is the set of initial states x0 ∈ R
n which can

be driven into Ξ by exactly i feasible control actions. �

Definition 2.4 (i-steps Predecessor of Ξ): Given the map
ĝ(x) : Rn → R

n and a set Ξ ⊂ R
n, the i-steps predecessor

of Ξ, (Pi(Ξ)) is given by

Pi(Ξ) ,
{

x0 ∈ R
n|ĝi(x0) ∈ Ξ

}

. (6)

where ĝi denotes the i-times composition of the map ĝ with
itself. �

Definition 2.5 (i-steps Capture Basin to Ξ): Given a map

f̂(x, u) : Rn × U → R
n, with U ⊂ R

m compact, and a set
Ξ ⊂ R

n, the i-steps capture basin to Ξ, (Capti(Ξ)) is given
by

Capti(Ξ) ,
i
⋃

j=1

Ci(Ξ). (7)

that is, Capti(Ξ) is the set of initial states x0 ∈ R
n such

that Ξ is reached in at most i steps (i.e., ∃ux0 ∈ U j :
x̂(j, x0,ux0) ∈ Ξ for at least one j ∈ [1, . . . , i − 1], before
possibly leaving Ξ. �

Moreover, the following property holds for controllability
sets.

Proposition 2.1: Given two sets Ξ1 ⊂ R
n and Ξ2 ⊂ R

n,
then C1(Ξ1 ∪ Ξ2) = C1(Ξ1) ∪ C1(Ξ2). �

Definition 2.6 (RC, d1-RC): • A compact set Ξ⊂R
n

is Robustly Controllable (RC) under the map f̂(x, u),
with u ∈ U , if Ξ ⊆ C1 (int(Ξ)).

• A compact set Ξ⊂Rn is Robustly Controllable in one-
step w.r.t. additive perturbations d∈Bn(d1) (d1-RC) if
(Ξ∽Bn (d1)) is not empty and Ξ⊆C1(Ξ∽Bn (d1)).

�

Definition 2.7 (RPI): A compact set Ξ ⊂ R
n is Robust

Positively Invariant (RPI) under the map ĝ(x), if Ξ ⊆
P1 (int(Ξ)). �

Definition 2.8 (quasi-RPI): A compact set Ξ ⊂ R
n is

quasi-Robust Positively Invariant (RPI) under the map ĝ(x)

with maximum return-time N , if Ξ ⊆
N
⋃

i=1

Pi (int(Ξ))

for some finite N ∈ Z>0; that is, for any x0 ∈
N
⋃

i=1

Pi (int(Ξ)) , ∃i ∈ {1, . . . , N} : ĝi(x0) ∈ int(Ξ). �

C. Main Technical Results

In the present subsection, some intermediate and one main
results concerning the properties of robustly controllable
sets under Lipschitz maps are given. These results are used
extensively in the proof of the main contribution of the
present work stated in Section IV. In stating and deriving
the following lemmas, let the nominal system’s transition

map f̂ verify the Lipschitz Assumption 1.

Lemma 2.1 (Technical): Given two compact sets Ξ1 ⊂
R

n, Ξ2 ⊂ R
n and a positive scalar d ∈ R>0, if the following

three conditions hold together: i) Ξ1 ⊆ C1(Ξ2), ii) Ξ2 ⊂ Ξ1
and iii) dist(Rn\Ξ1,Ξ2) ≥ d, then Ξ1 is d-RC. �
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Lemma 2.2 (Technical): Given a compact set Ξ ⊂ R
n,

assume that C1(Ξ) is non-empty. Then, for any arbitrary η ∈
R≥0 it holds that:

∀x ∈ Ξ⊕ Bn
(

L−1

f̂x
η
)

, ∃ux ∈ U : f̂(x, ux) ∈ Ξ⊕ Bn(η).

(8)
�

Lemma 2.3 (Technical): Given a compact set Ξ ⊂ R
n

and positive scalar ρ ∈ R>0, if Ξ is ρ-RC, then C1(Ξ) is
(L−1

f̂x
ρ)-RC. �

The next result establishes the invariant properties of the
N -steps controllability set CN (Ξ) of a given ρ-RC set Ξ.
Moreover, an inner (conservative) approximation of CN(Ξ),
containing Ξ in its interior, is provided.

Lemma 2.4 (Technical): Given a compact set Ξ ⊂ R
n, a

finite integer N ∈ Z>0 and a positive scalar ρ ∈ R>0, if Ξ
is ρ-RC, then1

i) CN(Ξ) is (L−N

f̂x
ρ)-RC.

ii) CN (Ξ) ⊇ Ξ⊕ Bn





1− L−N

f̂x

L
f̂x
− 1

ρ





�

The following important result, that will play a key role
in characterizing the robust stability properties of nonlinear
minimum-time control laws, can now be stated.

Theorem 2.1 (N -steps Reachability Implication): Given

a compact set Ξ ⊂ R
n and map f̂(x, u) verifying

Assumption 1 and subject to (2), if the following inclusion
holds for a finite integer N ∈ Z>0 and for a positive scalar
ρN∈R>0:

Ξ⊆CaptN (Ξ)∽Bn(ρN ), (9)

(i.e., Ξ is reachable in at most N steps from a set containing

Ξ in its interior under the nominal map f̂(x, u)), then the
set

CaptN (Ξ, dN ) , CN(Ξ)∪
(

N−2
⋃

i=1

[

Ci+1(Ξ)⊕ B
(

L−1

f̂x
ηi

)]

)

∪
(

C1(Ξ)⊕ B
(

L−1

f̂x
η0

))

(10)

is dN -RC, with ηi positive scalars depending on dN accord-
ing to the recursion

dN ,
L
f̂x
− 1

LN

f̂x
− 1

ρN , η0 = ρN − dN , (11)

and

ηi = L−1

f̂x
ηi−1 − dN , ∀i ∈ {1, . . .N − 2}.

�

The reader can refer to Figure 1 for a schematization of
the sets involved in the statement Theorem 2.1.

Remark 2.1: Note that, if the target set Ξ is not ρ-RC,
then the region (CaptN (Ξ)\CN (Ξ) ) may not be empty. In
this case, for any initial condition in (CaptN (Ξ)\CN (Ξ) ),
the state cannot be driven to Ξ in exact N steps, but Ξ

1The very special case L
f̂x

= 1 can be trivially addressed by a few

suitable modifications of the results of the paper and is omitted for the sake
of clarity.

Ξ

C1(Ξ)

C2(Ξ)

Ci(Ξ)

CN (Ξ)

∂ CaptN (Ξ)

∂ CaptN (Ξ, dN )

Fig. 1. Scheme of the sets involved in the statement and proof of
Theorem 2.1. CaptN (Ξ) denotes the N -steps capture basin of Ξ, while

CaptN (Ξ, dN ) is an extension of the nominal capture basin (see (10))
that can be proven to be robust positively controllable. That is, there
exists a control law, compliant with the input constraints, that renders

CaptN (Ξ, dN ) RPI.

can be reached for some i with i < N from the capture
basin. Therefore, condition (9) (reachability in at most N
steps) is less restrictive than requiring the exact N -steps
controllability of Ξ. �

III. PROBLEM STATEMENT

The minimum-time control problem for discrete-time sys-
tems not affected by uncertainties has the following well
known formulation: given an initial state x0 ∈ R

n and
a target set Ξ ⊂ R

n, find a sequence of control actions
u ∈ MU which minimizes the time TMT (x0|Ξ) such
that x̂(x0, TMT ,u) ∈ Ξ. In the following, we will denote
as T o

MT (x0|Ξ) the minimum (optimal) reach time. The
above formulation is commonly referred to as the open-
loop approach to the minimum-time problem, that is, an
optimal control sequence is determined on the basis of the
specific given initial state, relying on a nominal model of
the controlled system. In the linear framework, it is well-
known that the minimum-time problem admits a feedback
solution, that is, it is possible to determine a control function
u = κMT (x|Ξ) such that TMT (·|Ξ) is minimized for any
possible initial state. We point out the minimum-time control
law κMT (·|Ξ) is not, in general, unique. Therefore, for the
sake of the present discussion, the notation κMT (x|Ξ) will
denote an arbitrary selection among the possible minimum-
time control actions for the state x.

Of course, in nominal conditions, open-loop and feedback
formulations are equivalent in the sense that a feedback
solution is optimal if and only if for any initial states
x0 the control sequence u produced by the control u =
κMT (x,Ξ) along the systems’trajectory is optimal in the
open-loop sense. On the other hand, the feedback approach
allows also to embed in the design of the controller some a
priori information on the disturbances/uncertainties, yielding
to minimum-time control laws with enhanced robustness
properties (see [5]). However, for a generic nonlinear system,
it is very difficult to obtain an explicit minimum-time control
function, even in the nominal case. Moreover, in practice, the
search for a minimum-time open-loop sequence is performed
over a compact set of sequences of finite length, assuming a
specified upper bound N ∈ Z>0.

A viable solution to alleviate the lack of robustness of
open-loop approaches consists in solving repeated finite-time
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optimizations problem along the system trajectory, using the
current state measurement as initial condition. In the sequel,
we will devise sufficient conditions (related, in particular, to
the controllability and reachability properties of the target
set) under which the RH approach guarantees the recursive
feasibility of the optimization (that is, the robust postive
invariance or the quasi-invariance of the feasible region) and
the boundedness of the closed-loop state trajectories.

Problem 3.1 (Nominal Minimum-Time Control (open-loop)):
Given a compact admissible set U ⊂ R

m for the input of
the system (1), a compact target set Ξ ⊂ R

n, a finite integer

N ∈ Z>0 and the nominal state-transition map f̂(x, u) of
the system, at each time t ∈ Z≥0 determine a sequence
u
o
[t,t+N−1] = {uo

t , u
o
t+1, . . . , u

o
t+N−1}, in correspondence

of the current state measurement xt, such that:

u
o
[t,t+N−1] = argmin

u[t,t+N−1]∈Υ(xt|Ξ)

{

TMT (xt,u[t,t+N−1]|Ξ, N)
}

,

where Υ(xt|Ξ) is the set of feasible control sequences for
the current state xt:

Υ(xt|Ξ) ,
{

w[t,t+N−1] ∈ UN |

∃τ ∈ {1, . . . , N} : x̂(τ, xt,w[t,t+τ−1]) ∈ Ξ
}

,

and

TMT (xt,u[t,t+N−1]|Ξ, N)

, min
{

τ ∈ {1, . . . , N} : x̂(τ, xt,u[t,t+τ−1]) ∈ Ξ
}

, (12)

Finally, apply to the plant the first element of uo
[t,t+N−1] by

setting ut = uo
t . �

This problem can be solved, in the discrete-time frame-
work, by checking the feasibility of the target set constraint
in (12). The feasibility check approach consists in embedding
Problem 3.1 into a family of input-constrained minimum-
distance problems as follows:

Jo
MD(xt|Ξ, τ) = min

u[t,t+τ−1]∈Uτ
Φ
(

x̂(τ, xt,u[t,t+τ−1]),Ξ
)

.

(13)
parametrized by the integer τ ∈ Z>0. For a given τ , the
minimizer is a fixed-length sequence ut,t+τ−1 belonging to
the compact set U τ .

The feasible region for the original problem 3.1 is the
basin of capture CaptN (Ξ), which verifies

CaptN (Ξ)

= {xt ∈ R
n ∃ τ ∈ {1, . . . , N} : Jo

MD(xt,Ξ, τ ) ≤ 0} .
Then, assuming that xt ∈ CaptN (Ξ), at each time t ≥ 0
the optimal time T o

MT (xt|Ξ) is determined as the minimum
among τ ∈ {1, . . . , N} for which problem (13) yields to

Jo
MD(xt|Ξ, τ) ≤ 0, (14)

that is

T o
MT (xt|Ξ) = min {τ ∈ {1, . . . , N} : Jo

MD(xt|Ξ, τ) ≤ 0}
Once the minimum-time T o

MT (xt|Ξ) has been determined,
we can take as a solution any control sequence which may
steer the state to Ξ in T o

MT (xt|Ξ) steps. A simple choice is

u
o
[t,t+T o

MT
(xt|Ξ)−1]

= arg min

u[t,t+To
MT

(xt|Ξ)−1]∈UTo
MT

(xt|Ξ)

Φ
(

x̂(T o
MT (xt|Ξ), xt,u[t,t+T o

MT
(xt|Ξ)−1]),Ξ

)

(15)

It is important to determine those conditions under which,
starting from x0 ∈ CaptN (Ξ), the trajectories remain in
the feasible set, in order to guarantee the solvability of the
optimization for any time t > 0.

IV. RECURSIVE FEASIBILITY UNDER THE NONLINEAR

MINIMUM-TIME CONTROL WITH A ROBUST POSITIVELY

CONTROLLABLE TARGET SET

In case the target set Ξ is robust positively controllable
(i.e., there exists an admissible control law which renders
Ξ RPI), then the N−steps capture basin CaptN (Ξ) coin-
cides with the N -steps controllability set of Ξ. Moreover
CaptN (Ξ) is RPI under the minimum-time control, as for-
mally stated by the following theorem.

Theorem 4.1 (Ξ ρ-RC → CaptN (Ξ) RPI): Given a
ρ−RC compact target set Ξ ⊂ R

n, then the Nominal
nonlinear Minimum-Time Control κMT (xt) guarantees the
boundedness of the closed-loop trajectories within the set
CaptN (Ξ), for any initial condition x0 ∈ CaptN (Ξ) and
for any admissible uncertainty realization d ∈ MBn(dN ),

with dN = L−N

f̂x
ρN .

Moreover, the closed-loop trajectories starting at time
t = 0 from any point x(0) = x0 ∈ CaptN (Ξ) are ultimately
bounded in the compact set

ΥN (Ξ, dN ) , Ξ⊕ B
(

LN

f̂x
− 1

L
f̂x
− 1

dN

)

⊆ CaptN (Ξ), (16)

which is reached in finite time, for any possible re-
alization of the uncertainties (d ∈ MBn(dN )), that
is, x(t, x0,u[0,t−1],d[0,t−1]) ∈ ΥN(Ξ, ||d[0,t−1]||) ⊆
ΥN (Ξ, dN ), ∀x0 ∈ CaptN (Ξ), ∀t ≥ N , ∀d[0,t−1] :
||d[0,t−1]|| ≤ dN . �

Now, our analysis is extended to the case in which
Ξ is not one step robust positively controllable. In this
regard, the result of Theorem 2.1, obtained by set-invariance
theoretic analysis, implies the existence of a (possibly non
unique) control law which renders the set CaptN (Ξ, dN )
a dN -RPI set, with dN defined in (11). However, in the
presence of uncertainties, the set CaptN(Ξ, dN ) is such that

CaptN (Ξ, dN ) ⊃ CaptN (Ξ). Recalling that the feasible
region for Problem 3.1 is as small as CaptN (Ξ), in the set

CaptN (Ξ, dN )\CaptN (Ξ) the finite-time RH problem does
not admit a solution (i.e., the feasibility check (14) fails).
Therefore, we seek for a backup control law to be applied
in CaptN (Ξ, dN ) when the minimum-time problem is not
solvable, but capable to keep the trajectories bounded in the
extended N -steps capture basin CaptN (Ξ, dN ). Notably, by
Theorem 2.1 we have established the existence of a control
law, compliant with the input constraints, capable to achieve
this task. We are now on the way to show how such a robust
control law can be obtained.

V. ROBUST NONLINEAR MINIMUM-TIME CONTROL

LAWS WITH NON-ROBUST POSITIVELY CONTROLLABLE

TARGET SETS

In the following, we are going to describe a modified
minimum-time control scheme, which is referred to as Ro-
bustified Nonlinear Minimum-Time Control (RNMT), that
guarantees the quasi-invariance of the feasible region, despite
bounded uncertainties and with mild assumptions on the
target set Ξ. The RNMT control, computed online according
to Procedure 5.1 below, consists in a control scheme that
switches between the regular minimum-time control and a

1713



backup control action when unfeasibility occurs during tran-
sient; hence, in nominal conditions, the RNMT corresponds
to the convential open-loop minimum-time control, being the
feasible region invariant in this case. Conversley, in perturbed
conditions, the backup control action is taken from a buffer in
which a time-optimal control sequence had been saved after
the most recent feasible optimization. The key point of this
procedure is that feasbility is recovered before buffer overrun
occurs. As long as the system’s state enters the feasible
region, an optimal solution is computed and the buffer is
reinitialized with a new sequence, that will be used to cope
with future unfeasibility occurrences.

The above RNMT scheme is formalized in the following
procedure which shows the actions to be performed by the
controller.

Procedure 5.1 (RNMT): Let the controller be equipped
with two buffers: i) ub ∈ R

m×N , used to store a sequence
of N control actions; ii) T b ∈ Z, that stores the discrete-
time instant in which the sequence stored in u

b had been
computed. Moreover, let us denote as ← a data assignment
operation. Given the buffer (memory array) u

b, let ub(i)
represent the i-th element of the array, with i ∈ {1, . . . , N}.

Initialization

1 Assuming that, at time instant t = 0, the initial condition
verifies x0 ∈ CaptN (Ξ), solve the nominal minimum-
time Problem 3.1 obtaining an optimal control sequence
u
o
0,N−1;

2 store u
b ← u

o
0,N−1;

3 store T b ← 0;
4 apply uo = ub(1) to the plant.

On-line Control Computation

1 for t ∈ Z>0 :
2 given xt, perform the feasibility test (14) for τ ∈
{1, . . . , N};

3 if exists at least one τ for which Jo
MD(xt|Ξ, τ) ≤ 0,

then :
4 compute u

o
t,t+N−1 with (15) ;

5 overwrite the buffer ub ← u
o
t,t+N−1;

6 set T b ← t;
7 end if;
8 apply ut = ub(t− T b + 1) to the plant;
9 end for;

�

The following theorem formally states the recursive fea-
sibility property (that is, the quasi-invariance of the feasible
region) of the RNMT scheme for bounded additive uncer-
tainties.

Theorem 5.1 (Quasi-invariance of the feasible set):
Given a compact target set Ξ ⊂ R

n (possibly not robustly
controllable) such that Ξ ⊆ CaptN (Ξ) ∽Bn(ρN ), then,
for any initial condition x0 ∈ CaptN (Ξ), the RNMT
control ut = κRNMT (t, xt) guarantees that the closed-loop

system’s trajectory is ultimately contained in CaptN (Ξ, dN )
for any admissible uncertainty realization d ∈ MBn(dN ),

with dN given by (11). Moreover, the compact set
ΥN (Ξ, dN ) ⊆ CaptN (Ξ) (defined in (17) below) is reached
in finite-time from x0 and is quasi-RPI in closed-loop, for
any possible realization of the uncertainties. �

ΥN(Ξ, dN ) , Ξ⊕Bn



 max
j∈{1,...,N}







Lj

f̂x
− 1

L
f̂x
− 1

dN









 (17)

Notice that the ultimate confinement property in
CaptN (Ξ, dN ), together with the quasi-robust positive in-

variance of the compact set ΥN (Ξ, dN ), they by themselves
do not imply the ultimate boundedness of the trajectories,
since CaptN(Ξ, dN ) can be unbounded. The boundedness

in a compact subset of CaptN (Ξ, dN ) can be proven by
invoking the further Assumption 2 and by exploiting the the
presence of input contraints.

Corollary 5.1 (Ultimate boundedness): If the nominal

transition function of the system, f̂ , verifies, in
addition to Assumptions of Theorem 5.1, the further
Assumption 2, (d ∈ MBn(dN )), then the closed-loop

trajectories under the RNMT control are ultimately
bounded in a compact set ΛN(Ξ, dN , u) (defined in
(18) below) for any initial condition x0 ∈ CaptN (Ξ),
that is: x(t, x0,u[0,t−1],d[0,t−1]) ∈ ΛN (Ξ, dN , u),
∀x0 ∈ CaptN (Ξ, dN ), ∀t ≥ N , ∀d[0,t−1] : ||d[0,t−1]|| ≤ dN .

�

ΛN (Ξ, dN , u) , CaptN (Ξ) ∩

ΥN (Ξ, dN , u)⊕ Bn



 max
j∈{1,...,N}







Lj

f̂x
− 1

L
f̂x
− 1

(

ηu(u)+dN
)









.

(18)

VI. SIMULATION RESULTS

To show the effectiveness of the method, we apply the
robustified nonlinear minimum-time control to the following
discrete-time open-loop unstable system:






x(1)t+1
= x(1)t

[

1.1 + 0.4 sign(x(1)t)ut

]

+(x(2)
2
t
+ 2)−1ut + d(1)t

x(2)t+1
= 0.94 x(2)t

− x(2)t
ut + d(2)t

, t ∈ Z≥0.

(19)
subjected to the input constraint |ut| < 2. The subscripts (i),
i ∈ {1, 2} in (19) denote the i-th component of xt ∈ R

2,
while dt ∈ R

2 is a bounded exogenous disturbance. First,
we prove that the nominal transition function of the system
is Lipschitz continuous with respect to the state variables.

It can be easily shown that the nonlinear transition func-

tion f̂(x, u) : R
2 × [−R,R] → R

2, with f̂(x, u) =
(

f̂(1)(x(1), x(2), u), f̂(2)(x(2), u)
)

given by

f̂(1)(x(1), u) = x(1)

[

1.1 + 0.4 sign(x(1))u
]

+(x(2)
2 + 2)−1u,

f̂(2)(x(2), u) = 0.94 x(2) − x(2) u,
(20)

is Lipschitz continuous in x, uniformly for u ∈ [−2, 2].
Figure 2 shows some sample closed-loop trajectories in

nominal conditions (i.e., dt = 0, ∀t ∈ Z≥0) for N = 5 and
with target set

Ξ1 =
{

x ∈ R
2 : x⊤

[

10 0
0 10

]

x ≤ 1
}

.

The RNMT strategy, in the nominal case, steers the state
into the target set in minimum-time. Being Ξ1 robustly
controllable, then the inclusion Ξ1 ⊂ Capt1(Ξ1) holds;
therefore, Theorem 4.1 can be used to assert the robust
positive invariance of the feasible region.

To complete the analysis, nominal trajectories obtained
with a non robust positively controllable target Ξ2, given
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Fig. 2. Sample closed-loop trajectories under th RMNT control in nominal
conditions

by

Ξ2 =
{

x∈R2 :
(

x−
[

0
1.1

])⊤ [ 10 0
0 10

] (

x−
[

0
1.1

])

≤1
}

are shown in Figure 3, for N = 20.
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Fig. 3. Sample closed-loop trajectories under the RMNT control in nominal
conditions, with a non robustly controllable target set Ξ2. From the initial
point x0 = (−1.22, 0.6) ∈ Ξ2 the state cannot be kept inside Ξ2 with
the available control input. The trajectories asymptotically reach a triangle-
shaped limit-cycle condition which temporarily leaves the target set

The trajectories departing from all the considered initial-
ization points asymptotically reach a triangle-shaped limit-
cycle condition, that temporarily exits from the target set.

Even in this case, the RNMT can face exogenous pertur-
bations, as shown in Figure 4 , where a bounded disturbance
(||dt|| ≤

√
2, ∀t ∈ {0, . . . , 100}) has been simulated.

Notably, the quasi-invariance of the feasibile region has
been guaranteed and the closed-loop trajectoris have been
maintined in a neighbourhood of the limit-cycle reached in
nominal conditin.
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