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Abstract— This paper proposes a novel switched second order
sliding mode (S-SOSM) control strategy in a partial information
setting, i.e., when only the sliding variable is accessible for
measurements. The S-SOSM setting can deal with systems
characterised by different levels of uncertainties associated
with different regions of the state space and to accommodate
different control objectives in the different regions by switching
among appropriate SOSM controllers. The proposed approach
stems from an ad hoc extension of a SOSM control algorithm
which was introduced to cope with state-dependent uncertain-
ties, and it is shown to ensure global finite-time convergence to
the origin of the closed-loop system trajectory.

I. INTRODUCTION AND MOTIVATION

In practical applications it is quite common to deal with
dynamical systems with different degrees of uncertainty
and/or different control objectives which are associated with
different regions of the state space. Uncertainties can be
linked to the system states because of state-dependent dis-
turbances or different levels of confidence in the system
model in different operating conditions. Furthermore, it is
customary to have different control objectives according
to the different regions of the state space visited by the
closed-loop system. A typical example is the necessity of
ensuring faster transients to quickly move towards the desired
equilibrium point, while requiring finer tracking capabilities
when close to the equilibrium itself. Devising switched
algorithms has been recognised as an efficient way to achieve
performance enhancement, as in general the benefits come
with a quite limited increase in the controller complexity,
and with easier tuning principles with respect to genuine
adaptive solutions, see e.g., [1], [2], [3]. Specifically, in [1]
a state-feedback MPC algorithm for nonlinear systems has
been proposed, where the state space was partitioned into
different regions and the weighting matrices employed in
the quadratic cost function were tuned in a different way
in each region. The approach in [2], instead, was aimed at
designing a switching supervisory unit to control nonlinear
uncertain systems. Such a supervisor was employed to select
the current controller among a set of pre-specified ones
so as to ensure robust stability in the face of unknown
disturbances. Finally, in [3] MIMO variable structure control
systems were dealt with, proposing to employ a supervisor
which selects a sliding mode controller among a family of
possible ones with the aim of ensuring stability in presence of
large plant uncertainties and of enabling improved transient
performance.
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Within this rationale, this paper proposes an extension
of the results given in [4], where a formulation of second
order sliding mode (SOSM) controllers was first presented.
The idea is that of tuning a different SOSM control law
for each region of the state space, adapting its parame-
ters to the uncertainty levels and to the possibly different
control objectives. Specifically, in this work the switched
SOSM control problem is formulated and discussed in a
partial information case, where only the sliding variable
is accessible. the proposed S-SOSM control algorithm is
inspired by the work in [5], where a SOSM algorithm to
deal with state-dependent uncertainties and to ensure a global
convergence of the closed-loop trajectories to the origin was
provided. Specifically, we devise an ad-hoc modification of
the algorithm in [5] conferring a suitable switched nature to
the control law.

The stability and convergence properties of the resulting
controller are analysed, proving finite-time convergence to
the origin of the closed-loop trajectory.

II. PRELIMINARIES

For what follows, it is worth recalling the structure and the
basic features of the suboptimal SOSM controller (see e.g.,
[6], [7]). For simplicity, we consider the so-called auxiliary
system, which has the form

ż1 = z2 (1)
ż2 = f(z(t)) + g(z(t))v(t),

where z(t) = [z1(t) z2(t)]
T ∈ R2 is the system state,

z1(t) is the sliding variable, v(t) is the control signal
and f(z(t)) and g(z(t)) are uncertain, sufficiently smooth
functions, satisfying all the conditions ensuring existence and
uniqueness of the solution [8], together with the following
bounds

0 < G1 ≤ g(z(t)) ≤ G2, |f(z(t))| ≤ F. (2)

The SOSM control problem is formulated as follows: given
system (1), where g(z(t)) and f(z(t)) satisfy (2), design the
control signal v(t) so as to steer both z1(t) and z2(t) to
zero in finite time. Under the assumption of being capable
of detecting the extremal values zMax of the signal z1(t),
The suboptimal SOSM controller, see e.g., [6], solves the
problem using the auxiliary control law

v(t) = −αV sign
(
z1(t)− βzMax

)
, β =

1

2
(3)

α =

{
α∗ if [z1(t)− βzMax][zMax − z1(t)] > 0
1 else,

where V is the control gain, α is the so–called modulation
factor, and zMax is a piecewise constant function represent-
ing the value of the last singular point of z1(t) (i.e., the
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most recent value z1M such that z2(tM ) = 0). The closed-
loop system trajectory converges onto the sliding manifold
z1 = z2 = 0 in finite time provided that the control
parameters α∗ and V are chosen so as to satisfy the following
constraints

α∗ ∈ (0, 1] ∩

(
0,

3G1

G2

)
(4)

V > max

{
F

α∗G1
,

4F

3G1 − α∗G2

}
.

The control law (3) is such that the trajectories on the (z1, z2)
plane are confined within limit parabolic arcs including the
origin, and the absolute values of the coordinates of the
trajectory intersections with the z1 and z2 axes decrease
in time. Namely, as shown in [6], under conditions (4),
one has |z1| ≤ |zMax| and |z2| ≤

√
|zMax| and the

convergence of zMax to zero takes place in finite time. As a
consequence, the origin of the state space, i.e., z1 = z2 = 0,
is reached in finite time since z1 and z2 are both bounded
by max(|zMax|,

√
|zMax|). This, in turn, implies that the

control objective is attained.

Fig. 1. Example of closed-loop trajectories induced by the SOSM algorithm
in [5].

For what follows, it is interesting to remark that if the
constant bounds on the system uncertainty f(z(t)) defined
in (2) are assumed to hold only within a compact set con-
tained in the state space R2, then the convergence properties
which can be proved assume a local, or, better, a regional
validity (see [5]). Thus, if one assumes instead that f(z(t)) is
a class K function of z (see e.g., [9]), i.e., the uncertainty is
state-dependent, then to achieve global convergence to zero
of the system state it is necessary to devise an appropriate
initialization phase, which ensures that the first extremal
value is reached in finite time. To do this, in [5] it was shown
that, assuming that a state-dependent bound of the form

|f(z(t))| ≤ F (z), (5)

with F (z) being a known K function of z, holds, a control
law of the type

v(t) = −
(
F (z) + κ2

)
sign(z1(t)− z1(t0)), (6)

with κ > 0, globally ensures that the first extremal point
is reached in a finite time at t = tM1

. Further, for all
t > tM1 , in order to ensure that between two successive

extremal points a constant control amplitude can be chosen
so that it can counteract the uncertain terms (which do not
have a priori known constant upper bounds), one needs to
employ a control strategy which makes use of a variable
commutation point. This means that, instead of using β = 1

2
in (3), a variable value of β is employed, the value of which
is updated at all successive extremal points. The rationale
behind this choice is that the commutation instant (and thus
β) is chosen based on the fact that the state norm has
exceeded a predefined upper-bound, so as to ensure that the
control signal amplitude, tuned according to such a threshold
on the uncertainty level, has enough authority to counteract
it.

An example of the closed-loop trajectory achieved using
the algorithm in [5] is shown in Figure 1. As can be
seen, starting from a generic extremal point z1Mj

, the state
trajectory evolves along a parabolic arc until the sliding
variables reaches the value βjz1Mj

, which determines the
switching of the control gain sign. The value of βj is updated
at all subsequent extremal points in view of the current
update on the bound on f(z(t)). It is worth pointing out
that the control strategy in [5] is such that, once the sliding
variables is equal to βjz1Mj

, it is ensured that its time
derivative has not exceeded the value η√z1Mj

, where η is a
positive constant (see Figure 1). As a result, the closed-loop
trajectory evolves within invariant sets of the type (see the
rectangle in Figure 1)

Ij ≡ {(z1, z2) ∈ R2 : |z1| ≤ z1Mj
, |z2| ≤ η

√
z1Mj
}. (7)

The existence of such invariant sets, which define upper
bounds on z1(t) and z2(t), is in fact the key to provide
constant bounds for f(z(t)) in each invariant set. An ad hoc
extension of the algorithm will be devised in what follows
to deal with the non-compactness of the state space regions.
The core idea of the S-SOSM approach is that of tuning a

Fig. 2. An example of the state-space partitioning used in the proposed
S-SOSM approach.

dedicated SOSM controller for each region of the state space,
which is determined by different uncertainty levels and/or by
possibly different control objectives.

In what follows, we will work under the following as-
sumptions.
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State-space partitioning
We assume that the state space Z of system (1) is partitioned
into k regions, which are in fact stripes, Si, i = 1, . . . , k,
all containing the origin, such that ∪iSi = Z and with
Si+1 ⊂ Si. Further, we define as switching surfaces Wi =
∂Si+1, i = 1, . . . , k − 1 (see Figure 2). Finally, we assume
that in each region Zi = Si ∩Si+1, i = 1, . . . , k− 1, and in
Zk ≡ Sk, we may define different upper and lower bounds
for the uncertainties, which will be specified in the following.
Note that only one of these regions, namely the innermost
one Zk, contains the origin (see again Figure 2). Specifically,
it is assumed that the regions Si, i = 2, . . . , k are defined as
follows

Si := {(z1, z2) : |z1| ≤ z1,i, |z2| ∈ (−∞,+∞)} . (8)

Uncertainty description
We consider the following bounds on the uncertain terms.
Case 1: Outermost Region Z1

In the outermost region Z1, the following bounds are given

0 < G1,1 ≤ g(z(t)) ≤ G2,1
(9)

|f(z(t)| ≤ F1(z),

where F1(z) is a known class K function of its argument.
Case 2: Regions Zi, i = 2, . . . , k
In the inner regions Zi, i = 2, . . . , k, the uncertainties are
described as

0 < G1,i(z) ≤ g(z(t)) ≤ G2,i(z) (10)
|f(z(t)| ≤ Fi(z),

where

G1,i(z) = G1,i(z) +G1,i

G2,i(z) = G2,i(z) +G2,i (11)
Fi(z) = Fi(z),

where G1i(·), G2i(·) and Fi(·) are known class K functions
and G1,i, G2,i are known positive constants. Further, as in
view of the proposed control algorithm it will be possible
to bound the state of the system in the considered regions
(see Equation (7)), a constant upper bound on the uncertain
terms is assumed to be known, and ∀ i = 2, · · · , k, we can
write

0 < G1i ≤ g(z(t)) ≤ G2i (12)

|f(z(t))| ≤ F i.

III. THE S-SOSM CONTROL ALGORITHM

This section is devoted to present the S-SOSM control
algorithm in a partial information setting, i.e., assuming
that only the sliding variable is available for measurement.
This assumption leads to a state space partitioning that (see
Equation (8)) gives rise to regions Si which are not limited
anymore in the direction of z2, as it was the case in [4]
where rectangular regions were considered, thus losing the
compactness property. Hence, in order to prove that the
closed-loop trajectories still enjoy the convergence properties
which have been shown to hold in the full information

case treated in [4], one needs to devise a SOSM algorithm
that forces such trajectories to evolve again across a finite
sequence of invariant sets which contain the origin and shrink
in size as time evolves, thereby causing the state to converge
to the origin in finite time.

To achieve this goal, the S-SOSM algorithm used within
each region Si will be based on an appropriate extension of
the algorithm proposed in [5]. In our case, besides employing
a variable β to adapt the controller parameters to the state-
dependent uncertainty in the function f(z), we have also to
cope with different uncertainty levels in the function g(z)
and to properly manage the intersections between the state
trajectory and the switching surfaces Wi. These needs will
lead to an ad hoc modification of the control law.

In particular, in the situation considered herein one needs
to generate a sequence of compact regions that become
positively invariant sets for the closed-loop trajectories and
that are contained in the stripe-like regions Si characterising
the considered setting (see Equation (8)). To ensure that these
invariant sets are all strictly contained in each other, thus
contractive as we move to the origin, it will be needed to
devise an adaptation rule also for the parameter η of the
algorithm in [5] that defines the invariant sets induced by the
controller (see Equation (7)). Furthermore, the intersection
of the state trajectory with the switching surface Wi must
affect the update of the sequence of extremal points z1Mj

,
which will thus contain also non-canonical extremal points,
i.e., extremal points with z2(tMj

) 6= 0. These non-canonical
extremal points will be given by the intersections of the state
trajectory with the boundaries of the regions Si, and need
to be taken into account in order to ensure that a correct
sequence of invariant sets is formed as the state evolves
towards the origin.

Specifically, in [5] the sequence of such extremal points
{z1Mj

} was shown to be contractive. Hence, for fixed η, one
has that η√z1Mj+1

< η
√
z1Mj

. In our case, though, as we
need to consider as extremal points also the abscissas of the
intersections with the switching surfaces, it is necessary to
act on η so as to ensure that

|z2Mj+1
| < ηj+1

√
z1Mj+1

< ηj
√
z1Mj

, (13)

which implies that the next invariant set of the type given in
(7) with the adapted value of η is such that Ij+1 ⊂ Ij and
that the sequence of the upper bounds for z2(t) is properly
updated. Condition (13) must hold for both positive and
negative amplitudes of the controller gain; hence, the state
trajectories in both cases must be analysed.

Following a worst-case approach for the uncertainties, and
assuming negative values of the gain v(t) = −VMj

and, say,
z(t) ∈ Zi, i = 2, . . . , k and tMj

< t ≤ tMj+1
, it yields

z1(t) = z1(tMj
)−

z2(t)
2 − z2(tMj )

2

2(F i + G2,iVMj
)
, (14)

where z2(tMj
) = 0 if z1(tMj

) was a canonical extremal
point, whereas z2(tMj

) 6= 0 if z1(tMj
) = z1,i+1, i.e.,

if z1(tMj ) is a non-canonical extremal point due to an
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intersection with the switching surface Wi+1 (see Equation
(8)). Hence, from (14) one has

|z2Mj+1
|=
√
−2(F i + G2,iVMj

)
[
z1Mj+1

− z1Mj

]
+|z2(tMj

)|.
(15)

With a similar reasoning, for the case v(t) = VMj and, again,
z(t) ∈ Zi, i = 2, . . . , k and tMj < t ≤ tMj+1 , it holds that

|z2Mj+1
|=
√
−2(F i − G1,iVMj

)
[
z1Mj+1

− z1Mj

]
+|z2(tMj )|.

(16)

Fig. 3. Example of the closed-loop trajectories and of the update rules for
the S-SOSM algorithm when (20) holds in Case 1.1.

We are now ready to introduce the proposed switched
SOSM algorithm.

Algorithm 3.1: (Partial Information S-SOSM)
Consider system (1), with the state space partitioned as in
(8). Assume also that, for z ∈ Z1, g(z(t)) and f(z(t)) satisfy
constraints (9), whereas for each z ∈ Zi, i = 2, . . . , k,
g(z(t)) and f(z(t)) satisfy constraints (12).

If z ∈ Z1, over the time interval to the first extremal point,
i.e., for 0 ≤ t ≤ tM1

, define the control signal as

v(t) = − 1

G1,1

[
F1(z(t)) + ν

]
sign (z1(0)), t = 0 (17)

v(t) = − 1

G1,1

[
F1(z(t)) + ν

]
sign

(
z1(t)− z1(0)

)
, t ∈ (0, tM1

]

with ν > 0.
Over the time interval tM1

< t ≤ tM2
such that z(t) ∈

Zi, i = 1, . . . , k, adopt the control law

v(t) = −VM1 sign
(
z1(t)− β1z1M1

)
, (18)

with

VM1
=

π

G1,1

[
F1 +

1

3
η2
]
, π > 1 (19)

β1 = max

{
1

2
, 1− η2

2
[
F1 +G2,1VM1

]} .
Over the generic time interval tMj

< t ≤ tMj+1
, j > 1, if

sign
(
z1(t)− βjz1Mj

)
> 0 (20)

update the extremal point z1Mj+1
and set the value of the

parameter ηj+1 as follows:

• Case 1.1:
If the sliding variable reaches its upper bound βjz1Mj

while the state trajectory is within the open region Zi

(see Figure 3), i.e., if

z1(t) ∈ Zi \Wi and z1(t) = βjz1Mj
, (21)

let (see again Figure 3)

z1Mj+1
= βjz1Mj

, ηj+1 = ηj . (22)

(a)

(b)

Fig. 4. Example of the closed-loop trajectories and of the update rules for
the S-SOSM algorithm when (20) holds in Case 2.1a) (a) and Case 2.1b)
(b).

• Case 2.1:
If a switch occurs due to the intersection between the
state trajectory and the switching surface Wi+1, i.e., if

z1(t) ∩Wi+1 6= ∅ and z1(t) ≤ βjz1Mj
, (23)

two different situations may happen. Namely, if
– Case 2.1a) (see Figure 4(a))

z(t) ∩Wi+1 = {z1,i+1, z2} with z2 < ηj
√
z1Mj

,

(24)

let (see again Figure 4(a))

z1Mj+1
= z1,i+1,

ηj+1 such that (25)
|z2Mj+1

| < ηj+1
√
z1Mj+1

< ηj
√
z1Mj

,
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where |z2Mj+1
| is as in (15). On the other hand, if

– Case 2.1b) (see Figure 4(b))

z(t) ∩Wi+1 = {z1,i+1, z2} with z2 = ηj
√
z1Mj

,

(26)

let (see again Figure 4(b))

z1Mj+1
= z1,i+1, ηj+1 = ηj . (27)

Fig. 5. Example of the closed-loop trajectories and of the update rules for
the S-SOSM algorithm when (28) holds in Case 1.2.

If

sign
(
z1(t)− βjz1Mj

)
< 0 (28)

update the extremal point z1Mj+1
and set the value of the

parameter ηj+1 as follows:

• Case 1.2:
If the state trajectory is such that a canonical extremal
point is encountered while within an open region Zi

(see Figure 5), i.e., if

z1(t) ∈ Zi \Wi and z2(tMj+1
) = 0, (29)

let (see again Figure 5)

z1Mj+1
= z1(tMj+1

), ηj+1 = ηj . (30)

If a switch occurs due to the intersection between the
state trajectory and the switching surface Wi+1, i.e., if

z1(t) ∩Wi+1 6= ∅ and z2(t) ≤ 0, (31)

two different situations may happen. Namely, if
– Case 2.2a) (see Figure 6(a))

z(t) ∩Wi+1 = {z1,i+1, z2} with z2 < 0, (32)

let (see again Figure 6(a))

z1Mj+1
= z1,i+1,

ηj+1 such that (33)
|z2Mj+1

| < ηj+1
√
z1Mj+1

< ηj
√
z1Mj

,

where |z2Mj+1
| is as in (16). On the other hand, if

– Case 2.2b) (see Figure 6(b))

z(t) ∩Wi+1 = {z1,i+1, z2} with z2 = 0, (34)

(a)

(b)

Fig. 6. Example of the closed-loop trajectories and of the update rules
for the PM S-SOSM algorithm when (28) holds in Case 2.2a) (a) and Case
2.2b) (b).

let (see again Figure 6(b))

z1Mj+1
= z1,i+1, ηj+1 = ηj . (35)

Further, choose the control gain as

VMj+1 =
π

G1,i+1

[
F i +

1

3
η2j+1

]
, π > 1

(36)

βj+1 = max

{
1

2
, 1−

η2j+1

2
[
F i +G2,i+1VMj+1

]} ,
where F i = F i(|z1(tMj

)|, ηj
√
|z1(tMj

)|) is an upper bound
on the function Fi(z) computed at any time instant {tMj

}
in which the sequence of extremal points (canonical and non
canonical) {z1Mj

} is updated (see also (7) and (12)).
Remark 3.1: Note that, with respect to the full mea-

surement case where the core control law was based on
the suboptimal SOSM approach, in this case we rely on
the SOSM algorithm in [5], which in a sense is itself
an extension of the suboptimal control law. However, the
parameters which are now adapted have changed. In fact, we
have a variable βj (whereas in the full measurement case the
value β = 1/2 was used), while we do not have anymore
a variable α∗. In both cases, instead, there is an adaptation
of the controller gain VMj

. Note, however, that also in the
case considered herein the resulting closed-loop trajectories,
which still are parabolas, have a varying curvature, now due
to the variability of βj . It is topic of future research the
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investigation of the possible advantages that may derive from
another modification of the control law in [5] to encompass
a new adaptation parameter in the definition of the control
gain VMj

in the first of (36) which plays the role of α∗

in the suboptimal SOSM control law. Of course, to do this
while ensuring that the convergence properties are not lost,
the expression of VMj

in the first of (36) must be properly
adjusted.

Remark 3.2: In the case where a negative amplitude of
the controller gain is used, thus when (20) holds, in Cases
2.1a) and 2.1b) the closed-loop trajectories have a different
behaviour with respect to the active invariant set. Specifically,
in Case 2.1a) (see also Figure 6(a)) when the switch occurs
the trajectory is already within the new (inner) invariant set
belonging to the region Sj (see Equation (8)), denoted by
Ii+1,j . In Case 2.1b), instead, when the switch occurs the
trajectory is outside the invariant set Ii+1,j , which will be
entered after the switch has occurred causing the use of a
controller gain with positive amplitude.

Remark 3.3: It is worth mentioning that Case 2.2b), both
for negative and positive gain amplitudes, represents the
situation in which the trajectory intersects the switching
surfaces at either the lower corner of the current invariant
set or along the z1 axis (see Figures 4(b) and 6(a)). The fact
that the value of ηj+1 is kept equal to ηj when the switch
occurs is due to the fact that in this case the first and third
terms of inequalities (15) and (16) are equal and thus the
inequalities themselves are not meaningful. The contraction
of the extremal point zMj

is enough in these cases to ensure
that the next invariant set which is created is a strict subset
of the preceding one.

IV. STABILITY AND CONVERGENCE ANALYSIS

The proof of global finite-time convergence to the origin
of the closed-loop trajectories follows the same conceptual
development used in the full measurement case, see [4], [10].
We recall that the idea of the proof was the following. First
of all, one shows that all the inner regions, which in the
full measurement case are compact sets, contain a positively
invariant set. This implies that, once such a set is entered,
the state trajectory evolves within the region to which it
belongs for all future times. Further, it is established that,
independently of the region in which the initial condition is
and of the specific point of the switching surface at which
the switching occurs, the closed-loop trajectory does enter
the next invariant set, so that it progressively moves towards
the innermost region which contains the origin, and this
happens in finite time. Further, in whichever region the initial
condition is, the S-SOSM controller is shown to guarantee
that the boundary of the adjacent inner region is reached
in finite time, so that a switch actually occurs. Once these
results were proved, the last step showed that, once the
closed-loop trajectory entered the innermost region, the state
is actually steered to the origin in finite time by the associated
control law.

As such, the following facts can be proved.
Lemma 4.1: Consider the state space partitioning given

in Assumption 1.b) and the regions defined in (8). Assume

that the bounds (9) and (12) hold. Then, all the regions
Si, i = 1, . . . , k of the state space Z of system (1),
controlled with the S-SOSM Algorithm 3.1 contain a finite
number of positive invariant sets of the type (7). For any
admissible initial condition z(0) ∈ Z , such invariant sets
are progressively visited by the closed-loop trajectory z(t),
and the innermost invariant set IN,k associated with the
innermost region Sk is reached in finite time.
Based on the previous lemma, we can state the main result
of this work.

Proposition 4.1: Consider the state space partitioning
given in Assumption 1.b) and the regions defined in (8).
Assume that the bounds (9) and (12) hold. Then, the origin
of the state space Z of system (1) controlled with the S-
SOSM Algorithm 3.1 is globally finite-time attractive, i.e.,
for any admissible initial condition z(0) ∈ Z , the closed-
loop trajectory z(t) is such that (z1(t), z2(t)) → {0, 0} in
finite time.

V. CONCLUDING REMARKS

This paper presented a new SOSM algorithm which em-
ploys a switching rule based on which it is possible to
adapt the controller parameters according to different levels
of uncertainty and/or to different performance objectives
associated with different regions of the state space. The
proposed approach has been developed assuming that only
the sliding variable can be accessed for measurements, and
the origin of the closed-loop system was shown to be globally
finite-time attractive.
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