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Abstract— This paper addresses cooperative estimation of 3D
target motion for visual sensor networks. In one of our previous
works, we already presented a cooperative estimation algorithm
called networked visual motion observers. In this paper, we
first clarify averaging accuracy attained by the networked
estimation mechanism. Then, we analyze convergence speed of
the estimates and clarify a relation of the speed to the graph
structures. Moreover, we also reveal a tracking performance of
the estimates to target objects motion and derive a connection
between the tracking performance and a visual feedback gain in
the algorithm. Finally the effectiveness of the present estimation
algorithm is demonstrated through experiments.

I. INTRODUCTION

In this paper, we address estimation of 3D target object

motion for visual sensor networks, which is a network

consisting of spatially distributed smart cameras with com-

munication and computation capability [1], [2]. The visual

sensor networks include applications such as environmental

monitoring, surveillance, target tracking and entertainment.

A lot of research works have been devoted to combining

systems and control theory with vision [3]–[6] and we

here focus on estimation of 3D rigid body motion as in

[5], [6]. In visual sensor networks, it is expected that not

only an estimate is produced but also the vision cameras

cooperate with each other, which brings us new theoretical

challenges. The advantages of the cooperation is (i) to

improve estimation accuracy by integrating rich information,

(ii) to gain tolerance against obstruction, misdetection and

sensor failures and (iii) to eliminate blind areas by fusing

images from a variety of viewpoints. In addition, to build

scalable networks, it is required to achieve cooperation in

a distributed fashion. To tackle such problems, cooperative

control schemes as in [7]–[9] provide useful methodologies.

Cooperative estimation for sensor networks has been

studied (e.g. [9], [10]), whose main objective is averaging

the sensed data or local estimates in order to improve the

estimation accuracy. However, most of the algorithms are

not applicable to our problem since the object’s pose takes

values in a non-Euclidean space. Meanwhile, [11] presents a

distributed estimation algorithm for visual sensor networks.

However, they assume that the target’s orientation is obtained
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a priori and do not mention estimation from vision data.

In order to present an algorithm achieving estimation and

averaging simultaneously, the authors [12] presented a co-

operative estimation algorithm consisting of not only visual

feedbacks but also mutual feedbacks from neighboring vision

cameras based on the passivity-based visual motion observer

[5], [6] and pose synchronization law [8]. In this paper,

the resulting cooperative estimation mechanism is called a

networked visual motion observers.

In this paper, we extend the result of [12] in several

aspects. Especially, we give analysis on the networked visual

motion observer in terms of averaging accuracy, convergence

speed and tracking performance. After introducing the visual

motion observer presented in [5], we present the networked

visual motion observer originally given in [12]. We next

formally define the notion of averaging accuracy and reveal

the accuracy attained by the present mechanism, whose

partial solution is already presented in [12] and we provide its

generalized version. We then prove that the time to achieve

the averaging accuracy is upper bounded by a function of

the communication graph and feedback gains. The result

clarifies that the convergence time becomes short if: (i) the

maximal eigenvalue of the graph Laplacian [7] is close to

the second smallest one called algebraic connectivity and

(ii) the visual feedback gain is large. Then, we also tackle

the tracking of the estimates to the average for moving target

objects. The result therein gives us an insight that the tracking

performance improves as the visual feedback gain increases.

We finally show the effectiveness of the algorithm through

experiments on a testbed of visual sensor networks.

In this paper, we use the following notations. The readers

are recommended to refer to [3] for more details on the

terminologies. We use the notation eξ̂abθab ∈ R3×3 to

represent the rotation matrix of a frame Σb relative to a frame

Σa, which is orthogonal with unit determinant and hence

an element of the Lie group SO(3). ξab ∈ R3 specifies

the rotation axis and θab ∈ R is the rotation angle. For

simplicity we use ξθab to denote ξabθab. The notation ‘∧’

is the operator such that âb = a × b for the vector cross-

product ×. The vector space of all 3 × 3 skew-symmetric

matrices is denoted so(3). The notation ‘∨’ denotes the

inverse operator to ‘∧’. We use gab =

[

eξ̂θab pab

0 1

]

as

the homogeneous representation of gab = (pab, e
ξ̂θab) ∈

SE(3) := R3 × SO(3) describing the configuration of Σb

relative to Σa.
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Fig. 1. Visual Sensor Networks

II. PRELIMINARIES

Throughout this paper, we consider the situation where n
vision cameras i ∈ V := {1, · · · , n} see a group of target

objects oi, i ∈ V (Fig. 1). Each vision camera i captures the

object oi on its image plane.

A. Rigid Body Motion

Let the coordinate frames Σw, Σi and Σoi
represent the

world frame, the i-th vision camera frame, and the frame

of the object oi, respectively. Then, the pose of vision

camera i and object oi relative to Σw are denoted by gwi =

(pwi, e
ξ̂θwi) ∈ SE(3) and gwoi

= (pwoi
, eξ̂θwoi ) ∈ SE(3).

The pose of Σoi
relative to Σi is represented by gioi

=

(pioi
, eξ̂θioi ) ∈ SE(3), which is given by gioi

= g−1
wi gwoi

.

We next define the body velocity of the object Σoi

relative to the world frame Σw as V b
woi

= (vwoi
, ωwoi

) =
(g−1

woi
ġwoi

)∨ ∈ R6, where vwoi
and ωwoi

represent the linear

and the angular velocity of the origin of Σoi
relative to Σw,

respectively [3]. Similarly, vision camera i’s body velocity

relative to Σw will be denoted as V b
wi = (vwi, ωwi) =

(g−1
wi ġwi)

∨. Then, the motion of the relative pose gioi
is

represented by

ġioi
= −V̂ b

wigioi
+ gioi

V̂ b
woi

. (1)

Equation (1) is a standard formula for the relation among

the body velocities of three coordinate frames [3].

B. Visual Measurement

In this subsection, we define the visual measurement of

vision camera i which is available for estimation of target

object motion. Throughout this paper, we use the pinhole

camera model with a perspective projection [3].

We assume that target object oi has m feature points

and vision camera i can extract them from the 2D visual

data by using some techniques. The position vectors of the

target object oi’s l-th feature point relative to Σoi
and Σi

are denoted by poil ∈ R3 and pil ∈ R3 respectively. Using

a transformation of the coordinates, we have pil = gioi
poil,

where poil and pil should be regarded, with a slight abuse

of notation, as [pT
oil

1]T and [pT
il 1]T .

Let the m feature points of the object oi on the image

plane coordinate, denoted by fi := [fT
i1 · · · fT

im]T ∈ R2m,

be the measurement of the camera i. It is well known [3]

that the perspective projection of the l-th feature point onto

the image plane gives us the image data fil ∈ R2 as

fil = λi

[

xil/zil yil/zil

]T
, pil = [xil yil zil]

T (2)

where λi is a focal length of camera i.

C. Visual Motion Observer

In this subsection, we consider the problem that a vision

camera i estimates the target object motion gioi
from the

visual measurement fi. For this purpose, we introduce the

visual motion observer presented in [5].

We first prepare a model of the actual relative rigid body

motion (1) as

˙̄gioi
= −ḡioi

V̂ b
wi + ḡioi

ûei. (3)

where ḡioi
= (p̄ioi

, e
ˆ̄ξθ̄ioi ) ∈ SE(3) is the estimate of the

actual relative pose gioi
. The input uei = (vuei, ωuei) is

to be determined to drive the estimated values ḡioi
to the

actual value gioi
. Once the estimate ḡioi

is determined, the

estimated measurement f̄i is also computed by (2).

We next define the estimation error between the estimated

value ḡioi
and the actual relative rigid body motion gioi

as

gei = (pei, e
ξ̂θei) := ḡ−1

ioi
gioi

. Using the notations

ER(g) := [pT eT
R(eξ̂θ)]T , g = (p, eξ̂θ),

eR(eξ̂θ) := sk(eξ̂θ)∨, sk(eξ̂θ) :=
1

2
(eξ̂θ − e−ξ̂θ),

the vector representation of the estimation error is defined

by eei := ER(gei).
If we define the visual measurement error as fei :=

fi(gioi
)−f̄i(ḡioi

), then the relation between the actual vision

data and the estimated one can be approximately given by

fei = Ji(ḡioi
)eei [5], where Ji(ḡioi

) : SE(3) → R2m×6

is the well-known image Jacobian. Now, if m ≥ 4, the

estimation error vector eei is reconstructed from visual

measurement fi and ḡioi
as

eei = J†
i (ḡioi

)fei, (4)

where † denotes the pseudo-inverse.

Based on the fact that the estimation error system

ġei = −ûeigei + geiV̂
b
woi

(5)

is passive from uei to −eei if V b
woi

= 0, the input

uei = −ke(−eei) = keeei, ke > 0 (6)

is presented in [5]. The total estimation mechanism (3), (4)

and (6) is called visual motion observer [6].

It is also shown in [5] from the passivity-based control

theory that in case of V b
woi

= 0 the equilibrium point eei =
0 for the closed-loop system (5) and (6) is asymptotically

stable, which implies that the visual motion observer leads

the estimate ḡioi
to the actual relative pose for a static object.

Moreover, the tracking performance of the estimate to the

target object motion gioi
is analyzed in the framework of

the L2-gain analysis.
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III. NETWORKED VISUAL MOTION OBSERVERS

In the subsequent sections, we consider the group of vision

cameras V together with the group of the target objects

{oi}i∈V as in Fig. 1. We assume that the vision cameras can

communicate with each other and some information of the

neighboring cameras is available for updating its estimate

ḡioi
. The communication network is modeled by a graph

G = (V, E), E ⊂ V ×V as in [7]. In addition, we define the

neighbor set Ni := {j ∈ V| (j, i) ∈ E}.

Assumption 1: The communication graph G is fixed, bal-

anced and strongly connected.

A. Averages on SO(3) and SE(3)

The objective of this paper is to achieve averaging for

static objects, which means the estimates ḡwoi
:= gwiḡioi

become close to an average of (gwoi
)i∈V , while preserving

the tracking nature of the visual motion observer for moving

target objects. The problem is motivated by estimation of

a single object motion under uncertain measurements and

estimation of multiple objects motion behaving as a group.

However, in terms of the latter scenario, more thorough

investigations, e.g. on segmentation of objects in the image

and allocation of targets to each camera, are necessary.

Let us introduce an average g∗ of {gwoj
}j∈V as

g∗ = (p∗, eξ̂θ∗

) := arg min
g∈SE(3)

∑

i∈V

ψ(g−1gwoi
), (7)

ψ(g) :=
1

2
‖I4 − g‖2

F =
1

2
‖p‖2 + φ(eξ̂θ), g = (p, eξ̂θ)

φ(eξ̂θ) :=
1

2
‖I3 − eξ̂θ‖2

F = tr(I3 − eξ̂θ),

where ‖M‖F is the Frobenius norm of matrix M . We also

use the notation g∗i = (p∗i , e
ξ̂θ∗

i ) := g−1
wi g

∗. The position av-

erage p∗ is equal to the arithmetic mean p∗ = 1
n

∑

j∈V pwoj

of {pwoj
}j∈V and the orientation average eξ̂θ∗

is a so-called

Euclidean mean [13] of {eξ̂θwoj }j∈V . It is known [13] that

the Euclidean mean eξ̂θ∗

is given by

eξ̂θ∗

(t) = Proj(S(t)), S(t) :=
1

n

∑

j∈V

eξ̂θwoj (t). (8)

Here, Proj(M) gives the orthogonal projection of M onto

SO(3), which is given by UMV T
M for the matrix M with

singular value decomposition M = UMΣMV T
M .

B. Networked Visual Motion Observers

In this subsection, we introduce a cooperative estimation

algorithm under the assumption that each vision camera is

static V b
wi = 0 and knows relative pose gij = g−1

wi gwj with

respect to the neighbors j ∈ Ni.

Each vision camera i first gains the estimates ḡjoj
from

j ∈ Ni as messages. Then, by multiplying known gij from

left, each vision camera i gets ḡioj
:= gij ḡjoj

for all j ∈ Ni.

Let us now define the update procedure of the estimate

ḡioi
as (3) with V b

wi = 0 and

uei = keeei + ks

∑

j∈Ni

ER(ḡ−1
ioi
ḡioj

), (9)

RRBM
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g
fi
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b
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Fig. 2. Cooperative Estimation Algorithm

where ke > 0, ks > 0. Note that eei is reconstructed from (4)

and ḡioj
is obtained through communication as stated above.

Thus, the procedure (9) is implementable from the visual

measurement (2). The block diagram of the total system

associated with vision camera i is illustrated in Fig. 2.

The present algorithm (9) consists of the visual feedback

keeei and the mutual feedback ks

∑

j∈Ni
ER(ḡ−1

ioi
ḡioj

). As

depicted in Fig. 2, without the second term, the update

rule (9) is the same as that of the visual motion observer

(6). The form of the mutual feedback is inspired by the

pose synchronization law [8] of a group of rigid bodies and

indeed, without the first term keeei, the update rule (9) is

essentially equal to the law in [8]. In other words, the visual

motion observers are networked by the mutual feedback term

in the total estimation mechanism (3), (4) and (9). We thus

call the mechanism networked visual motion observers.

IV. AVERAGING ACCURACY AND CONVERGENCE SPEED

In this section, we investigate estimation accuracy of the

average g∗i for the the networked visual motion observers

and convergence speed under the following assumption.

Assumption 2: (i) The target objects are static, i.e.

V b
woi

= 0 ∀i ∈ V . (ii) There exists a pair (i, j) ∈ V×V such

that eξ̂θwoi 6= eξ̂θwoj . (iii) e−ξ̂θ∗

i eξ̂θioi > 0 for all i ∈ V .

In terms of the item (iii), we have

φ(e−ξ̂θ∗

i eξ̂θioi ) ≤ φm := max
i,j∈V

φ(e−ξ̂θwoi eξ̂θwoj ) ∀i ∈ V (10)

as long as e−ξ̂θwoi eξ̂θwoj > 0 ∀i, j ∈ V , though we omit

its proof. (10) implies that if φm is smaller than 2, then

φ(e−ξ̂θ∗

i eξ̂θioi ) ≤ 2 ∀i ∈ V and hence (iii) is satisfied. Thus,

(iii) can be checked if set-valued prior information on the

target orientations, i.e. an upper value of φm is available.

A. Analysis on Averaging Accuracy

In this subsection, we introduce a notion of approximate

averaging. Due to the page constraints, we focus only on the

evolution of the orientation estimates. If we extract only the

orientation part from (3) and (9), we obtain

ė
ˆ̄ξθ̄ioi = e

ˆ̄ξθ̄ioi

(

kesk(eξ̂θei) + ks

∑

j∈Ni

sk(e
ˆ̄ξθ̄oij )

)

(11)
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with e
ˆ̄ξθ̄oij := e−

ˆ̄ξθ̄ioi e
ˆ̄ξθ̄ioj = e−

ˆ̄ξθ̄woi e
ˆ̄ξθ̄woj , which is

independent of the evolution of position estimates.

Let us now define ε-level averaging accuracy as below.

Definition 1: Given target object poses (gioi
)i∈V , the esti-

mates (e
ˆ̄ξθ̄ioi )i∈V achieve ε-level averaging accuracy if there

exists a finite T such that

(e
ˆ̄ξθ̄ioi (t))i∈V ∈ Ω(ε) ∀t ≥ T, ρ :=

∑

i∈V

φ(e−ξ̂θ∗

i eξ̂θioi ).

Ω(ε) :=

{

(e
ˆ̄ξθ̄ioi )i∈V

∣

∣

∣

∣

∣

∑

i∈V

φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi ) ≤ ερ

}

, (12)

In the absence of communication, what each vision camera

can do is to provide as an accurate estimate of gioi
as

possible. Namely, the parameter ρ indicates the best perfor-

mance of average estimation in the absence of communica-

tion. More specifically, the visual motion observer correctly

estimates gioi
if V b

woi
= 0 and hence ρ indicates the ultimate

estimation accuracy of the average in the absence of the

mutual feedbacks and the parameter ε is an indicator of

improvement of average estimation accuracy by inserting the

mutual feedbacks.

In terms of the averaging accuracy by the networked visual

motion observers, we have the following result, where k =

ke/ks, δ := maxi∈V φ(e−ξ̂θ∗

eξ̂θwoi ), δc := δ + c with a

positive scalar c, β := 1−
√

2δc and the set S is defined by

S := {(e ˆ̄ξθ̄ioi )i∈V | e−
ˆ̄ξθ̄ioi eξ̂θ∗

i > 0 ∀i ∈ V}.

Theorem 1: Suppose that the estimates (ḡioi
)i∈V are up-

dated by the networked visual motion observer (3), (4) and

(9). Under Assumptions 1 and 2, if the initial estimates

satisfy (e
ˆ̄ξθ̄ioi (0))i∈V ∈ S , for any ǫ ∈ (0, 1) and c >

0, the orientation estimates (e
ˆ̄ξθ̄ioi )i∈V achieve εave-level

averaging accuracy with

εave =











1 − (1 − ǫ)
(√

β −
√
kdm

)2

,

if k ≤ β/d2
m, β > 0

1, otherwise

, (13)

where dm is defined by dm = minj∈V

√

∑

i∈V d
2
ij and dij

is the size of the shortest path along with the graph G whose

edges are replaced by undirected ones.

Equation (13) says that if we choose a sufficiently small

k, i.e. ks ≫ ke in (9), εave becomes small and the average

estimation accuracy improves. Note that the parameter δ is

upper bounded by φm and a lower bound of β is derived if set

valued prior information on target orientations are available.

The proof for a special case with ks = 1 is already given

in [12] and the above theorem is its generalized version.

However, the procedure of the proof is almost the same as

[12] and we show only the sketch of the proof in the next

subsection omitting the details.

B. Sketch of Proof of Theorem 1

In this subsection, we briefly review the proof of Theorem

1. We first give the following lemma.

Lemma 1: [12] Suppose that all the assumptions of Theo-

rem 1 hold. Then, for all c > 0, there exists finite τ(c) such

that φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi ) ≤ δc for all t > τ(c). In addition, τ(c)

is upper bounded by

τ̄(c) :=
1

c
(max{0,max

i∈V
φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi (0)) − δ}) + 1.

From this lemma, it is easily proved that the set S is

positively invariant for (3) with (9) under Assumption 2 [12].

We next define the following sets.

S0 := S ∩ Ω(1), S1 := S \ S0

S2(k) :=
{

(e
ˆ̄ξθ̄ioi )i∈V ∈ S0

∣

∣

∣
β

∑

i∈V

∑

j∈Ni

φ(e
ˆ̄ξθ̄oij ) ≥ kρ

}

S3(k, ε) := S0 \ (S2(k) ∪ Ω(ε))

for some ε ∈ [0, 1). It should be now noted that

S0 \ (S2(k) ∪ S3(k, ε)) ⊆ Ω(ε). (14)

In the proof of Theorem 1, we employ the energy function

V :=
∑

i∈V

φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi ) =

∑

i∈V

φ(e−ξ̂θ∗

e
ˆ̄ξθ̄woi ).

Then, if k ≤ β/d2
m and β > 0, we have

V̇ ≤ −aj , if (e
ˆ̄ξθ̄ioi )i∈V ∈ Sj , j = 1, 2, 3 (15)

at least after the time τ(c) under Assumptions 1 and 2, where

a1 := β
∑

i∈V

(

keφ(eξ̂θei) + ks

∑

j∈Ni

φ(e
ˆ̄ξθ̄oij )

)

,

a2 :=
∑

i∈V

ke

(

φ(e−ξ̂θ∗

e
ˆ̄ξθ̄woi ) + βφ(eξ̂θei)

)

,

a3 := β
∑

i∈V

(

keǫφ(eξ̂θei) + ks

∑

j∈Ni

φ(e
ˆ̄ξθ̄oij )

)

.

Under Assumptions 1 and 2, a1, a2 and a3 are all strictly

positive and hence the estimates (e
ˆ̄ξθ̄ioi )i∈V settle into the

set Ω(ε) in a finite time from (14). This completes the proof.

Let us define the parameters āi = min
(e

ˆ̄ξθ̄woi )i∈V

ai, i =

1, 2, 3. Then, (15) holds even if ai is replaced by āi, and āi

can be measures of the convergence speed.

C. Convergence Speed Analysis

This paper employs the time to achieve ε-level averaging

accuracy as an index to measure the convergence speed as

Tε = inf{T ≥ 0| (e
ˆ̄ξθ̄ioi (t))i∈V ∈ Ω(ε) ∀t ≥ T}.

The objective here is to derive an upper-bound of Tε when

the networked visual motion observer is applied to the cam-

eras. In terms of the issue, we have the following theorem.

Theorem 2: Suppose that all the assumptions of Theorem

1 hold and the graph is undirected. Then, if ε ≥ 1 we have

Tε ≤ τ(c) + T̄1 with

T̄1 := max

{

0,
V (0) − ερ

Q̃βλmin2(LG)

(

1

ks

+
λmax(LG)

ke

)}

,

where Q̃ = 1
n

∑

i∈V

∑

j∈V φ(e−ξ̂θwoi eξ̂θwoj ), λmin2(M)
and λmax(M) are respectively the second smallest and
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the largest eigenvalues of matrix M and LG is the graph

Laplacian [7] of graph G. In addition, if ε ∈ [εave, 1), then

Tε ≤ τ(c) + T̄1 + max{T2, T3} with

T̄2:=
(1 + β)(1 − ε)

keβ
,

T̄3:=
(1 − ε)ρ

Q̃βλmin2(LG)

(

1

ks

+
λmax(LG)

ǫke

)

.

Proof: Omitted.

To make the meaning of the theorem more clear, we show

the following corollary, which is immediately proved from

Theorem 2.

Corollary 1: Suppose that c, ǫ, k and ε(ε ≥ εave) are

fixed (Then, the remaining free parameters are G and ke).

Then, there exist positive scalars c1, c2 and c3 such that

Tε ≤ c1
ke

(

λmax(LG)

λmin2(LG)

1

λmin2(LG)
+ c2

)

+ c3.

The above results give us helpful insights into the gain

selection and network design. Indeed, when the convergence

speed is insufficient for a designer, Theorem 2 provides

quantitative information on how a redesigned graph and gains

speed up the convergence. Meanwhile, Corollary 1 gives

qualitative insights. In terms of the network design, Corollary

1 says that if the ratio λ̄ = λmax(LG)/λmin2(LG) is small,

the convergence speed accelerates. The ratio λ̄ is known to

be an important physical quantity reflecting synchronizability

of a network [14], [15]. Corollary 1 also says that the

algebraic connectivity λmin2(LG) itself should be large to

assure high convergence speed even in our problem similarly

to the consensus problem on a vector space [7]. Corollary 1

also implies that a large visual feedback gain accelerates the

convergence speed, though it might be trivial from the form

of the estimation algorithm.

V. TRACKING PERFORMANCE ANALYSIS

In this section, we analyze the tracking performance of

the estimates {ḡioi
}i∈V to the average g∗i for moving targets

when the networked visual motion observer is applied to

vision cameras under the following assumption.

Assumption 3: (i) V b
woi

(t) is continuous in t, and

‖ωb
woi

(t)‖2 ≤ w̄ ∀i ∈ V, t ≥ 0. (ii) For all time t ≥ 0,

there exists a pair (i(t), j(t)) ∈ V ×V such that eξ̂θwoi (t) 6=
eξ̂θwoj (t). (iii) e−ξ̂θwoj (t)eξ̂θwoi (t) > 0 ∀i, j ∈ V and t ≥ 0.

A. Motion of The Average

In this subsection, we first present a formulation of the

average motion other than (8). Note first that eξ̂θ∗

is continu-

ously differentiable whose proof is shown in [16]. Moreover,

since eξ̂θ∗

(t) ∈ SO(3) holds for all t ≥ 0, the derivative ėξ̂θ∗

has to satisfy ėξ̂θ∗ ∈ T
eξ̂θ∗SO(3) := {eξ̂θ∗

X| X ∈ so(3)},

where T
eξ̂θ∗SO(3) is the tangent space of the manifold

SO(3) at eξ̂θ∗

. Namely, the trajectory of the Euclidean mean

is described by the differential equation

ėξ̂θ∗

= eξ̂θ∗

ω̂b,∗

with some velocity ω̂b,∗ ∈ so(3).

We next clarify relations between velocities ωb,∗ and

ωb
woi

, i ∈ V . Let us now define w := (ωb
woi

)i∈V . Then, we

have the following lemma.

Lemma 2: Suppose that (eξ̂θwoi )i∈V satisfies
∥

∥

∥
eξ̂θ∗

(t) − S(t)
∥

∥

∥

F
≤ γ ∀t ≥ 0 (16)

for some γ. Then, the following inequality holds for all t ≥ 0.

‖ωb,∗(t)‖2 <
µ2(γ)

n
‖w(t)‖2, µ(γ) :=

√
2√

2 − γ
(17)

Proof: See [16].

Note that ‖eξ̂θ∗

(t) − S(t)‖F is upper bounded by φm and

hence it is estimated by prior information on φm.

B. Tracking Performance Analysis

We consider the whole networked system consisting of

the target object motion (1) and the networked visual motion

observer (3), (4) and (9) for all i ∈ V . Let the collection of

body velocities of the target objects w = (ωb
woi

)i∈V , be the

external input to the systems.

The objective here is to evaluate the distance from the

estimates (ḡioi
)i∈V to the average g∗i in the presence of

the disturbance w. Unlike the static objects case, ρ =
∑

i∈V φ(e−ξ̂θ∗

i eξ̂θioi ) is also time-varying. We thus define

ρ′ := sup
t≥0

ρ(t),

and redefine the set Ω′(ε) by just using ρ′ instead of ρ in (12).

The parameter ρ′ is the supremum of the distance from the

estimate to the average when gioi
is correctly estimated and

hence it is also an indicator of the best average estimation

performance in the absence of communication. Note that the

visual motion observer cannot correctly estimate gioi
as long

as the object is moving with unknown velocity.

The problem to be considered here is redefined as follows.

Definition 2: The estimates (e
ˆ̄ξθ̄ioi )i∈V are said to achieve

ε-level tracking performance if there exists a finite T s.t.

(e
ˆ̄ξθ̄ioi (t))i∈V ∈ Ω′(ε) ∀w and t ≥ T

Then, we have the following theorem.

Theorem 3: Under Assumptions 1 and 3, if (17) holds for

some γ > 0 and ke > µ2(γ), then the orientation estimates

(e
ˆ̄ξθ̄ioi )i∈V updated by the networked visual motion observer

achieve εtrack-level tracking performances with

εtrack := 1 +
µ2(γ)

ke − µ2(γ)
+

w̄2

ρ′(ke − µ2(γ))
.

This theorem implies that ultimate average estimation accu-

racy improves if the visual feedback gain ke is large, which

is natural from the structure of the estimation scheme.

In summary, to achieve fast convergence and a good

tracking performance, we should make the visual feedback

gain ke large (Theorems 2 and 3). However, this results in a

poor averaging performance unless we set a sufficiently large

mutual gain ks (Theorem 1). If such a large ks is acceptable,

we have no problem on the gain selection. However, the

size of ks is in general restricted by the communication
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Fig. 3. Time Responses of V (Left: ks = 0.2, Right: ks = 10)

rate due to limitation in standard feedback control theory.

Then, a trade-off occurs between averaging and tracking

performances. Namely, if we set a large ke, then a good

tracking performance together with high convergence speed

is achieved at the cost of a poor averaging performance and

vice versa. (See [17] for more details on the gain selection).

VI. EXPERIMENTAL VERIFICATION

In this section, we demonstrate the effectiveness of the

present scheme by using a visual sensor network testbed

with three vision cameras, whose detailed information in-

cluding visual feedback and communication rates is found

in [17]. The cameras have the same orientations and only

the positions have the biases p12 = [−0.61 0 0]T [m], p13 =
[0 − 0.58 0]T [m]. Let the frame of the camera 1 be the

world frame. Here, we employ the communication graph

E = {(1, 2), (2, 1), (2, 3), (3, 2)} with dm =
√

2.

Namely, we let the pose estimated by the visual mo-

tion observer be gwoi
. In the experimental system, we

have ξ sin θwo1
= [0.115 0.181 0.067]T , ξ sin θwo2

=
[−0.149 0.156 0.026]T , ξ sin θwo3

= [0.062 0.116 0.071]T ,
which give the average ξ sin θ∗ = [0.009 0.152 0.055]T .
Through trial and error processes, we check that the relative

orientation between eξ̂θwoi and eξ̂θwoj is upper bounded

by φm = 0.04, and hence we set β = 0.70. In addi-

tion, let the initial estimates e
ˆ̄ξθ̄woi (0) be ξ̄ sin θ̄woi

(0) =
[0.289 0.289 0.289]T ∀i ∈ {1, 2, 3}.

In the experiment, to demonstrate validity of Theorem

1, we choose two different gains ke = 0.2, ks = 0.2
and ke = 0.2, ks = 10, where the first choice does not

satisfy k ≤ β/d2
m (εave = 1) and the second one satisfies it

(εave = 0.5987 for c = 10−4, ǫ = 10−2). Fig. 3 shows the

time responses of the function V for ks = 0.2 and ks = 10.

In these figures, the magenta lines indicate the value εaveρ.

We see from the bottom right figures that the responses of V
are eventually lower than the corresponding lines as proved

in Theorem 1. In addition, we also see that the larger mutual

feedback gain achieves a more accurate average estimation

than the smaller one. More detailed analysis on the exper-

iments is shown in [17]. The movie of the experiment is

available at http://www.fl.ctrl.titech.ac.jp/

researches/movie new/movie7/vsn ce.wmv.

Though a quantitative evaluation of tracking performance

cannot be addressed due to the difficulties in computing the

average motion, the latter half of the above movie sufficiently

supports validity of our claim that a large visual feedback

gain results in a good tracking performance. Verifications

through simulation are also addressed in [16].

VII. CONCLUSIONS

In this paper, we have addressed cooperative estimation

of 3D target object motion via networked visual motion

observers. After introducing the networked visual motion

observers, we have clarified the ultimate averaging accuracy,

a relation between the convergence speed and design param-

eters in the algorithm and tracking performance for moving

target objects. Finally the effectiveness of the present estima-

tion algorithm has been demonstrated through experiments.
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