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Abstract— In this paper, the problem of collision avoid-
ance between two vehicles is considered, in which one vehicle
is autonomous and the other one is human-driven. This
problem arises in cooperative active safety systems at traffic
intersections, mergings, and roundabouts, in which some
vehicles are equipped with on-board communication and
automatic control, while others are not capable of communi-
cating and are human-driven. We model the human driving
behavior through a hybrid automaton, whose current mode
is determined by the driver’s decisions, and solve the problem
as a safety control problem for hybrid systems with imperfect
state information. The experimental results demonstrate that
our solution is substantially less conservative than solutions
employing worst-case design.

I. INTRODUCTION

Recent technological advancements in embedded com-

puting and communication have made systems that assist

drivers to maintain safety a reality. These systems are

currently an important part of initiatives by government

and industry such as the Crash Avoidance Metrics Partner-

ship (CAMP) [1] and the Vehicle Infrastructure Integration

Consortium (VIIC) [2] in the U.S. In these systems,

road-side infrastructure will be equipped with sensors

that obtain information about the surrounding vehicles

and environment. This information will be transmitted to

equipped vehicles through vehicle-to-infrastructure (V2I)

and vehicle-to-vehicle (V2V) wireless communication.

Based on this information, in principle, a coordinated

control strategy among vehicles to guarantee collision free

systems can be devised. However, safety must be guaran-

teed in the presence of human-driven vehicles that are

not equipped with on-board control and communication

capabilities. In [14, 15], this problem is theoretically for-

mulated as a safety control problem for hybrid automata

with imperfect mode information. Within this approach,

the non-communicating human-driven vehicle is modeled

as a hybrid system with unknown discrete state, called

Hidden Mode Hybrid System (HMHS). The discrete mode

of the HMHS represents the unknown driving intension

of the human driver, such as braking, acceleration, or

coasting. The vehicle with on-board controller estimates

this mode in real time and establishes a control action that

maintains safety.
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The safety control problem for hybrid systems has been

extensively considered in the literature when the state is

available for measurement [8–10, 12]. A number of works

have addressed the control problem for special classes of

hybrid systems with imperfect state information [4, 17]. A

controller that utilizes a state estimator for systems with

finite number of states is considered in [17]. These results

are leveraged to control a class of rectangular hybrid

automata with imperfect state information, which can be

abstracted by a finite state system. In [4, 7], computation-

ally efficient state estimation and control algorithms were

proposed for special classes of hybrid system with order

preserving dynamics.

In this paper, we employ the approach of [14, 15] to

a semi-autonomous intersection system scenario realized

in a multi-vehicle test-bed. Within this test-bed, a scaled

vehicle driven by a human through a steering and throt-

tle/brake pedal setup is used along with an autonomous

vehicle that can drive on a pre-determined path containing

a conflict point with the human-driven vehicle. Human

behavior near the intersection is modeled by a hybrid

automaton that can be in either of two modes: acceleration

or braking. The human-driving behavior parameters are

estimated through a process of supervised learning. The

dynamic feedback map is composed of a mode estimator

and a static feedback map. The mode estimator, based

on position measurements, determines the current driv-

ing mode of the human-driven vehicle. The autonomous

vehicle, on the basis of the current mode uncertainty,

determines the control map that guarantees that the current

system configuration is kept outside of a current mode-

dependent capture set. This results in safe throttle/brake

commands applied to the autonomous vehicle.

This paper is organized as follows: in Section II, we

review the problem definition and solution as taken from

[14, 15]; Section III presents the application scenario; we

discuss the experimental setup and results in Sections IV

and V.

II. Safety control problem for hidden mode hybrid

systems

We now formally introduce the problem by first defin-

ing the general hybrid automaton model.

Definition 1. A Hybrid Automaton with Uncontrolled

Mode Transitions H is a tuple H = (Q, X,U,D,
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Fig. 1. Two-vehicle Conflict Scenario. Vehicle 1 is autonomous and
communicates with the infrastructure via wireless, while vehicle 2 is
human-driven and does not communicate with the infrastructure. The
longitudinal displacement and speed of ith vehicle is denoted by pi and
vi, i ∈ {1, 2}. A collision occurs when more than one vehicle occupies
the conflict area at the same time.

Σ, Inv,R, f ), in which Q is the set of modes; X is the

continuous state space; U is the continuous set of control

inputs; D is the continuous set of disturbance inputs; Σ is

the set of disturbance events that trigger transitions among

modes; Inv = {ǫ} is the discrete set of silent events, which

correspond to no transition occurring; R : Q × Σ → Q is

the mode update map and f : X × Q × U × D→ X is the

vector field, which is allowed to be piecewise continuous

with its arguments.

For a hybrid automaton H, we denote by T =
⋃N

i=0[τi, τ
′
i
)] a hybrid time trajectory [9] such that σ(τ′

i
) ∈

Σ and σ(t) ∈ Inv for t ∈ [τi, τ
′
i
) for all i such that

τi < τ
′
i
. The “)]” parenthesis denotes that the last interval

(if N < ∞) may be open or closed. We thus represent

H by q(τi+1) = R(q(τ′
i
), σ(τ′

i
)), σ(τ′

i
) ∈ Σ and ẋ(t) =

f (x(t), q(t), u(t), d(t)), d(t) ∈ D, σ(t) ∈ Inv, where τi for

i ∈ {0, ...,N} are the times at which a discrete transition

takes place and are such that τi ≤ τ
′
i
= τi+1, q(τi+1)

denotes the value of q after the ith transition, q(t) :=

q(supτi≤tτi) for t ∈ T and σ(t) ∈ Inv, x(0) = x0 ∈ X, and

q(τ0) = q0 ∈ Q. We assume without loss of generality that

τ0 = 0. Since discrete transitions change only the discrete

state, we have that x(τi+1) = x(τ′
i
) for all i. For input

signal σ : T → Σ, we denote the discrete state trajectory

by φq(t, q0,σ) = q(t) with q(0) = φq(0, q0,σ). We define

the set of reachable modes from any initial set of modes

q̄ ⊂ Q by R(q̄) :=
⋃

q0∈q̄

⋃

t≥0

⋃

σ
φq(t, q0,σ).

Definition 2. A Hidden Mode Hybrid System (HMHS)

is a hybrid automaton with uncontrolled mode transitions

in which the discrete state q(t) is not measured and q0 is

only known to belong to a set q̄0 ⊆ Q.

We denote a HMHS by H in the remainder of the

paper. The only information about the mode is its initial

uncertainty, denoted q̄0 ⊆ Q, the measured signals x(t)

and the control signal u(t). Let Bad ⊆ X be a bad

set of states, the control task is to keep the continuous

state x(t) outside Bad for all time using all the available

information. In order to keep track of the current mode

uncertainty, we introduce a discrete state estimate and

formulate the control problem as one with perfect state

information [13–15].

Definition 3. A discrete state estimate is a time-dependent

set, denoted q̂(t) ∈ Q̂, with the properties that (i) q(t) ∈ q̂(t)

for all t ≥ 0; (ii) For t2 ≥ t1, we have that q̂(t2) ⊆ R(q̂(t1)).

Define the new hybrid automaton Ĥ =

(Q̂, X,U,D,Y, Înv, R̂, f ), in which Q̂ is a new set of

discrete states, Y is a set of discrete events, Înv = {ǫ} is

a set of silent events with Y ∩ Înv = ∅, R̂ : Q̂ × Y → Q̂ is

a discrete state transition map. Let T̂ =
⋃N̂

i=0[τ̂i, τ̂
′
i
)] be

a hybrid time trajectory such that τ̂0 = τ0, y(τ̂′
i
) ∈ Y and

y(t) ∈ Înv for t ∈ [τ̂i, τ̂
′
i
) for all i such that τ̂i < τ̂

′
i
. We

represent Ĥ by q̂(τ̂i+1) = R̂(q̂(τ̂′
i
), y(τ̂′

i
)), y(τ̂′

i
) ∈ Y and

˙̂x(t) ∈ f (x̂(t), q̂(t), u(t), d(t)), d(t) ∈ D, y(t) ∈ Înv, where we

have defined q̂(t) := q̂(supτ̂i≤tτ̂i) for all t ∈ T̂ . The map R̂

is such that q̂(t) is a discrete state estimate, x̂(0) = x0 and

q̂(τ̂0) = q̄0. This in turn implies that (a) R̂(q̂, y) ⊆ R(q̂)

for all y ∈ Y and q̂ ∈ Q̂ and that (b) τ̂′
0
= τ̂0 = 0 and

y(τ̂′
0
) is such that R̂(q̂(τ̂′

0
), y(τ̂′

0
)) := R(q̂(τ̂0)) = R(q̄0). The

discrete input y(t) derives information from the measured

continuous state signal about the values of ẋ(τ) for τ < t

and uses this information to determine the current values

of q compatible with such a derivative (see [3, 5, 6] for

more information on mode estimators).

We now define the safety control problem with per-

fect state information for system Ĥ in which, the state

q̂(t) and x̂(t) = x(t), is measured. Let π̂ : Q̂ × X →

U be a feedback map. We denote the x̂-trajectories

of the closed loop system by φπ̂
x̂
(t, (q̄0, x0),d, y), which

are given by the system Ĥ, in which we have set

u(t) = π̂(q̂(t), x̂(t)). The capture set for system Ĥ is

given by Ĉ :=
⋃

q̂∈Q̂

(

q̂ × Ĉq̂

)

, in which Ĉq̂ := {x0 ∈

X | ∀ π̂, ∃d, y, t ≥ 0 s.t. some φπ̂
x̂
(t, (q̂, x0),d, y) ∈ Bad} is

called mode-dependent capture set. It represents the set of

all continuous states that are taken to Bad for all feedback

maps when the initial mode estimate is equal to q̂.

Problem 1. (Control Problem with Perfect State Infor-

mation) Determine the set Ĉ and a feedback map π̂ that

keeps any initial condition (q̄0, x0) < Ĉ outside Ĉ.

The solution to Problem 1 can be obtained by leverag-

ing results available for control of hybrid automata with

perfect state information [14, 15]. For this purpose, for any

q̂ ∈ Q̂ and S ⊆ X define the operator Pre as Pre(q̂, S ) :=

{x ∈ X | ∀π̂, ∃ d, t ≥ 0 s.t. some φπ̂
x̂
(t, (q̂, x),d, ǫ) ∈ S }.

The set Pre(q̂, S ) is the set of all continuous states that are

taken to S for all feedback maps when the mode estimate

is kept constant to q̂. An algorithmic procedure is defined

in [14, 15] for obtaining set Ĉq̂ on the basis of the Pre

operator.

III. Application scenario

Referring to Figure 1, vehicle 1 is autonomous and

communicates with the infrastructure, while vehicle 2 is
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human-driven and does not communicate its intents. We

assume that the infrastructure measures the position and

speed of vehicle 2 through road-side sensors such as

cameras and magnetic-induction loops and that it transmits

this information to the on-board controller of vehicle 1.

Vehicle 1 has to use this information to avoid a collision.

Vehicle 1 longitudinal dynamics along its path are

given by the second order system ṗ1 = v1, v̇1 = a u +

b − cv2
1
, in which p1 is the longitudinal displacement of

the vehicle along its path and v1 is the longitudinal speed

(see Figure 1), u ∈ [uL, uH] represents the input command,

b < 0 represents the static friction term, and c > 0 with

the cv2
1

term modeling air drag (see [16] for more details

on the model).

Vehicle 2 is controlled by the driver decisions. There

has been a wealth of work on the modeling of human

driving behavior for vehicle safety applications [11]. In

this work, we model human driving behavior in the prox-

imity of an intersection through a simple hybrid system

with two modes: braking and acceleration, that is,

ṗ2 = v2, v̇2 = βq + γqd, (1)

with q ∈ {A, B}, d ∈ [−d̄, d̄], p2 is the longitudinal

displacement of the vehicle along its path and v2 is the

longitudinal speed (see Figure 1), d̄ > 0, q is the mode

with q = B corresponding to braking mode and q = A

corresponding to acceleration mode, and γq > 0. The value

of βq corresponds to the nominal dynamics of mode q

and thus we have that βB < 0 and that βA > 0. The

disturbance d models the error with respect to the nominal

model. This implies that if v̇2 ∈ βq+γq[−d̄, d̄], the current

mode can be mode q. This allowed error in each mode

captures the several ways in which mode A or mode B

can be realized. It also captures (as we shall see in the

experimental section) variability among drivers. We finally

assume that there is confusion between the modes, that

is, {βB + γB[−d̄, d̄]} ∩ {βA + γA[−d̄, d̄]} , ∅, which leads to

having βB + γBd̄ ≥ βA − γAd̄.

The intersection system is a hybrid automaton with

uncontrolled mode transitions H, in which Q = {A, B};

X = R4 and x ∈ X is such that x = (p1, v1, p2, v2);

U = [uL, uH] ⊂ R; D = [−d̄, d̄] ⊂ R; Σ = ∅; R : Q×Σ→ Q

is the mode update map, which is trivial as Σ = ∅, that is,

the mode can start in either A or B and no transitions occur

between these two modes and f : X×Q×U×D→ X is the

vector field, which is piecewise continuous and is given

by f (x, q, u, d) = ( f1(p1, v1, u), f2(p2, v2, q, d)) in which

f1(p1, v1, u) =





























v1


















0 if (v1 = vmin andα1 < 0)

or (v1 = vmax andα1 > 0)

α1 otherwise





























,

(2)

f2(p2, v2, q, d) =





























v2


















0 if (v2 = vmin andα2 < 0)

or (v1 = vmax andα2 > 0)

α2 otherwise





























,

(3)

with α1 = au + b − cv2
1

and α2 = βq + γqd. There is

a lower non-negative speed limit, vmin, and upper speed

limit, vmax, implying that vehicles cannot go in reverse and

guaranteeing liveness of the system. Referring to Figure

1, the set of bad states for system H models collision

configurations and it is given by Bad := {(p1, v1, p2, v2) ∈

R
4 | (p1, p2) ∈ [L1,U1] × [L2,U2]}.

In this scenario, system Ĥ = (Q̂, X,U,D,Y, Înv, R̂, f ),

in which Q̂ = {q̂1, q̂2, q̂3} with q̂1 = {A, B}, q̂2 = {A},

q̂3 = {B}, and q̂(0) = q̂1, is uniquely defined once the

set Y and map R̂ are defined. We define Y = {yA, yB}.

Starting in q̂1, event yA occurs as soon as B is not currently

possible given the measurement x and event yB occurs as

soon as A is not currently possible given the measurement

x. This results in the map R̂ defined as R̂(q̂1, yA) := q̂2

and R̂(q̂2, yB) := q̂3. In order to establish when A or B

are ruled out given the measurement of x, we consider

the following estimate β̂(t) = 1
t

∫ t

0
v̇2(τ)dτ, t ≥ T, where

T > 0 is a time window. If the mode is q, then necessarily

we have that |β̂(t) − βq| ≤ γqd̄. Thus, for t > T, define

y(t) = yA if |β̂(t) − βB| > γBd̄, y(t) = yB if |β̂(t) − βA| >

γAd̄, and y(t) = ǫ otherwise. For the mode estimator,

property (i) is satisfied as if q is currently possible (i.e.,

|β̂ − βq| ≤ γqd̄), it cannot be discarded starting from

q̂1. Similarly, once mode q is discarded, since R does

not allow transitions, q cannot be possible even when

|β̂−βq| ≤ γqd̄. Condition (ii) is satisfied as q̂2 ⊆ R(q̂1) and

q̂3 ⊆ R(q̂1). For system Ĥ, we have Ĉq̂1
= Pre(q̂1, Bad),

Ĉq̂2
= Pre(q̂2, Bad) and Ĉq̂3

= Pre(q̂3, Bad) (refer to [14,

15]).

A. Computational tools

The sets Pre(q̂, Bad) can be efficiently computed for

the application under study. This is because for every

mode estimate q̂ the continuous dynamics are the par-

allel composition of two order preserving systems [7].

Specifically, for the application example, define the re-

stricted Pre operators for i ∈ {1, 2, 3} Pre(q̂i, Bad)uL
:=

{x ∈ X | ∃ d, t ≥ 0 s.t. some φx̂(t, (q̂i, x), uL,d, ǫ) ∈

Bad} and Pre(q̂i, Bad)uH
:= {x ∈ X | ∃ d, t ≥

0 s.t. some φx̂(t, (q̂i, x), uH ,d, ǫ) ∈ Bad}. Then, we have

that (refer to [7])

Pre(q̂i, Bad) = Pre(q̂i, Bad)uL
∩ Pre(q̂i, Bad)uH

, (4)

for i ∈ {1, 2, 3}. Each of the sets Pre(q̂i, Bad)uL
and

Pre(q̂i, Bad)uH
can be computed by linear complexity

discrete time algorithms.

For each mode q̂i for i ∈ {1, 2, 3}, a safe control map

π̂(q̂i, x) makes the vector field point outside set Ĉq̂i
when
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x is on the boundary of Ĉq̂i
. This keeps the state outside

Ĉq̂. For Ĥ, we have Ĉq̂i
= Pre(q̂i, Bad) for all i ∈ {1, 2, 3},

in which the sets Pre(q̂i, Bad) for every i ∈ {1, 2, 3} satisfy

relation (4). Because of this relation, one can show (refer

to [7]) that a control map π̂(q̂i, x) that maintains the state

x outside Pre(q̂i, Bad) is given by






























uH if x ∈ Pre(q̂i, Bad)uL
∩ ∂Pre(q̂i, Bad)uH

uL if x ∈ Pre(q̂i, Bad)uH
∩ ∂Pre(q̂i, Bad)uL

{uH , uL} if x ∈ ∂Pre(q̂i, Bad)uH
∩ ∂Pre(q̂i, Bad)uL

U otherwise.

Since we have that Pre(q̂i, Bad) ⊆ Pre(q̂1, Bad) for i ∈

{2, 3}, when the mode switches from q̂1 to q̂2 or from

q̂1 to q̂3 the continuous state x being outside Pre(q̂1, Bad)

implies that it is also outside Pre(q̂2, Bad) or Pre(q̂3, Bad).

Therefore, the feedback map above guarantees that the

state never enters the capture set.

IV. Experimental setup

The two-vehicle conflict scenario of Figure 1 is real-

ized experimentally in a multi-vehicle test-bed, which we

describe here.

Fig. 2. The scaled vehicle with its label (top-left), the human-

driver interface (bottom-left) and the roundabout system (right),

LO is the length of the outer path while LI is the length of the

inner path.

A. Scaled vehicle and human-driver interface

A car chassis (length 0.375 m, width 0.185 m and

wheelbase 0.257 m) is used as the hardware platform for

the scaled vehicle. The vehicle, as shown in Figure 2 (top

left), is equipped with an on-board computer (Mini ITX)

and a motion controller. The longitudinal response of this

vehicle is dynamically similar to that of a high mobility

multipurpose wheeled vehicle (HMMWV) [16]. One of

the scaled vehicles is configured to be an autonomous

vehicle that can follow a predefined path and control its

throttle/brake input while another acts as a human-driven

vehicle that can be driven using a human-driver interface.

The human-driver interface comprises of a steering wheel

and two pedals for throttle and brake commands (see

Figure 2). The hardware used is a Logitech MOMO

force feedback racing wheel and pedal set. The control

algorithms are programmed on the on-board computer.

B. Roundabout system

The roundabout system (Figure 2) is designed to repli-

cate a collision situation at a road intersection where

two vehicles merge. There are two circular paths that

share a common section on a 6 m by 6 m arena. The

human-driven vehicle follows the outer path while the

autonomous vehicle follows the inner path in an anti-

clockwise direction. A collision is possible at the inter-

section when both vehicles are in the area shaded red,

in Figure 2, at the same time. This area corresponds to

the set, B = {(p1, p2)|(p1, p2) ∈ [L1,U1] × [L2,U2]}, with

L1 = 7.863 m, L2 = 12.414 m,U1 = 8.763 m and U2 =

13.314 m. The length of the outer path is 14.22 m and

the inner path is 11.62 m. The human-driver controls the

vehicle from the human-driver interface and has the full

view of the roundabout system. Point DP is referred to

as the human-decision point, this is the point where the

human-driver has to decide if he/she wants to break or

accelerate in order to force both vehicles to enter the bad

set at the same time. Point DP is located 6 m before

the point L2 on the outer path. The maximum allowable

speed that can be achieved by a vehicle in the roundabout

system is 1100 mm/sec and the minimum speed is 350

mm/sec. A PID controller maintains the speed at minimum

or maximum if the speed violates these limits. When

the two vehicles are simultaneously present in the shared

path (between points Pt1 and Pt2), another PID controller

prevents rear end collision.

An overhead camera based positioning system can

simultaneously monitor 6 vehicles with an accuracy in

position of 50 mm. Each vehicle is mounted with a

track-able and distinguishable, black and white label. The

cameras are connected via FireWire to three dedicated

desktop computers. Each computer receives input from

two cameras and runs image processing and tracking algo-

rithms developed in the lab 1. The positioning information

is transmitted to the vehicles over the wireless network.

C. Learning of human driving model

We model the human-driven vehicle using a hybrid

automaton whose discrete state models the intention of the

human-driver. We assume that the human either decides

to brake or accelerate near the intersection. A set of

experiments are performed in which human subjects drive

a vehicle on the outer path in the roundabout system

(Figure 2). Since we intend to characterize the human

driving model, the subjects are directed to either brake

or accelerate at the human-decision point, while also

avoiding a moving target on the inner path. The data

collected is then analyzed to estimate the parameters βq

and γq as described in Section II.

1https://wikis.mit.edu/confluence/display/DelVecchioLab/Home
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In the trials, the vehicle is started 2 m after the

collision point (see Figure 2) at a random velocity and

approximately follows the outer path. About 4 m before

the collision point, the driver is allowed to take control

of the vehicle ans is asked randomly to either pass the

moving target on the inner path (acceleration trial) or

allow the moving target to pass the human-driven vehicle

(braking trial). We used 5 different subjects to run 10

acceleration and 10 braking trials each. The sample time

and the position of the vehicle are recorded. The data is

analyzed starting 3 m before the collision point. We denote

the position measurement at time step k by p(k) and the

time lapsed between two consecutive steps is dT =0.1

sec. The acceleration/deceleration at time step k is denoted

a(k) and can be calculated as a(k) =
p(k)−2p(k−1)+p(k−2)

dT 2 . The

average acceleration/deceleration is calculated for the trial

as ā = 1
N−1

∑N
k=2 a(k). A total of 99 trial runs are obtained

from 5 subjects.

These trials are divided into the training set, comprising

79 trials with 40 braking and 39 acceleration trials, and

the test set comprising of the remaining trials. The model

depicting the driver behavior is created by fitting two

Gaussian distributions to the training data for braking

and acceleration trials. The test data is used to verify the

model. In order to obtain the best model, more than 1000

randomly chosen training and testing sets are considered.

The average training and testing errors are .56% and .96%

respectively. For use as the final model, we chose a model

with no training and testing error. The associated Gaussian

distribution is shown in Figure 3. From these results, we

have that the mean of the acceleration mode is 350.5

mm/sec2 and that of braking mode is -282.7 mm/sec2. We

thus take the value of parameters in equation (1) as βB =

-282.7 mm/sec2 and βA=350.5 mm/sec2. The values of γB

and γA are given by γA =139.6 mm/sec2 and γB =106.6

mm/sec2. The value of d̄ is set to d̄ = 3 and corresponds to

three standard deviations. This also results in an overlap

of human input range in braking and acceleration modes.
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ā(mm/sec2)

P
ro

b
a

b
ili

ty

β
B
 = −282.7

β
A
 = 350.5

γ
A
 = 139.6

γ
B
 = 106.6

Fig. 3. Gaussian distribution for braking and acceleration trials.
D. Trials experimental conditions

To make sure that the human driving model can gener-

alize and is able to identify the intent of human subjects

not present during training, a set of eight subjects that

are different from the set used to generate the human-

driving model is used. The experiment is started with an

introduction to the setup. This is followed by a practice

session in which the subject drives the human controlled

vehicle on the outer path. Next, the autonomous vehicle is

run on the inner path at a constant speed of 500 mm/sec.

The speed limits are vmin = 350 mm/sec and vmax = 1100

mm/sec. The subjects are free to drive the human-driven

vehicle at any speed between the points Pt1 and Pt2.

Since we are interested in scenarios where the mode can

be distinguished, the subjects are instructed not to apply

any control between point Pt2 and DP, while the vehicle

speed is maintained at 600 mm/sec. This is done to avoid

situation in which the vehicle speed is vmin (or vmax) at

the intersection and the subject decides to apply brake

(or throttle) at the decision point, which will in the mode

being identified as both braking and acceleration. Thus,

we instruct the human subjects to either accelerate or

decelerate as soon as they cross the decision point so as

to hit the autonomous vehicle or to force the two vehicles

in the bad set at the same time.

V. Experimental results

A total of eight subjects took part in the experiments.

The duration of each trial depends on the time each

vehicle can operate on a single battery charge. A fully

charged battery yields an operating time of around 10 to

15 minutes. This operation time is divided into the driver

training time and the actual experimentation time. Some

subjects learn to drive the vehicle and follow the outer path

closely in less than 5 minutes while others take a longer

time. This variation in subjects results in the variation

of trial length. The shortest trial length that we obtained

is 230 seconds while the longest is 600 seconds. The

cumulative time for which the trials are conducted is 3479

seconds resulting in a total of 97 instances of collision

avoidance in which the human-driver tried to force a

collision and the autonomous vehicle applied control in

order to avoid the collision. In doing so, the autonomous

vehicle entered the capture set in 3 such instances and

resulted in a collision in 1 such instance resulting in an

overall success rate of 96.9 %. Figure 4 show collision

avoidance instances when the human-driven vehicle mode

is identified as A.

VI. Conclusion

In this paper, we have applied formal techniques for

safety control to develop a semi-autonomous cooperative

active safety system for collision avoidance between an

autonomous and a human-driven vehicle at an intersec-

tion. We experimentally validated the safety system in

the multi-vehicle lab. The experimental results illustrate

that in a structured task, such as driving, simple human

decision models can be effectively learned and employed

in a feedback control system that enforces a safety
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specification. They also highlight how the incorporation

of these models in a safety control system makes the

control actions required for safety less conservative. The

experimental data shows that a collision was averted in

97% of the possible conflict situations. The failures can

be attributed to the delays in the wireless communication

network that can cause the current measurement to be

different from the actual value resulting in an erroneous

control input. In our future work, these delays will be

formally accounted for in the theory.
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