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Abstract— We consider a sequence of transferable utility
(TU) games where, at each time, the characteristic function is a
random vector with realizations restricted to some set of values.
We assume that the players in the game interact only with
their neighbors, where the neighbors may vary over time. The
main contributions of the paper are the definition of a robust
(coalitional) TU game and the development of a distributed
bargaining protocol. We prove the convergence with probability
1 of the bargaining protocol to a random allocation that lies
in the core of the robust game under some mild conditions on
the players’ communication graphs.

I. INTRODUCTION

Coalitional games with transferable utilities (TU) have
been introduced by von Neumann and Morgenstern [24].
They have been used to model cooperation in supply chain or
inventory management applications [6], [10], network flow
applications [2] and in communication networks [20].

In this paper, we consider a sequence of coalitional TU
games for a finite set of players. The model used in the
current paper is motivated by applications in the context
of network flow problems and multi-inventory control as
illustrated in [3], [4].

Given a player’s neighbor-graph, each player i negotiates
allocations by adjusting the allocations he received from his
neighbors through weight assignments. We use some mild
assumptions on the players’ neighbor-graph. Assuming that
the core of the robust game is nonempty, we show that
our bargaining protocol converges with probability 1 to a
common (random) allocation in the core.

The work in this paper deviate from the stochastic frame-
work provided in [9], [21], [22] in at least three aspects: i)
the existence of a neighbor-graph, ii) the presence of multiple
iterations in the bargaining process, iii) and the consideration
of the robust game. Also, a new element with respect to
previous work [8], [11], is that the values of the coalitions
are realized exogenously.

Dynamic robust TU games have been considered in [3]
and [4]. Convergence of allocation processes is a main topic
also in [5], [13]. Convergence of bargaining processes has
also been explored under dynamic coalition formation [1].

The work in this paper is also related to the literature on
agreement among multiple agents [23], [15] as well as [16],
[17], [19], [18] for distributed multi-agent optimization.
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This paper is organized as follows. In Section II, we
introduce the dynamic TU game. In Section III, we prove
the convergence of the bargaining protocol. In Section IV,
we report some numerical simulations, and we conclude in
Section V.
Notation. We view vectors as columns. For a vector x, we
use xi or [x]i to denote its ith coordinate component. We
also use xi to denote the vector associated to player i. For
two vectors x and y, we use x < y (x ≤ y) to denote xi <
yi (xi ≤ yi) for all coordinate indices i. We let x′ denote
the transpose of a vector x, and ‖x‖ denote its Euclidean
norm. An n × n matrix A is row-stochastic if the matrix
has nonnegative entries aij and

∑n
j=1 aij = 1 for all i =

1, . . . , n. For a matrix A, we use aij or [A]ij to denote its
ijth entry. A matrix A is doubly stochastic if both A and
its transpose A′ are row-stochastic. Given two sets U and S,
we write U ⊂ S to denote that U is a proper subset of S.
We use |S| for the cardinality of a given finite set S.

We write PX [x] to denote the projection of a vector x on
a set X , and we write dist(x,X) for the distance from x
to X , i.e., PX [x] = arg miny∈X ‖x − y‖ and dist(x,X) =
‖x−PX [x]‖, respectively. Given a set X and a scalar λ ∈ R,
the set λX is defined by λX , {λx | x ∈ X}. Given two
sets X,Y ⊆ Rn, the set sum X +Y is defined by X +Y ,
{x + y | x ∈ X, y ∈ Y }. Given a set N of players and
a function η : S 7→ R defined for each nonempty coalition
S ⊆ N , we write < N, η > to denote the transferable utility
(TU) game with the players’ set N and the characteristic
function η. We let ηS be the value η(S) of the characteristic
function η associated with a nonempty coalition S ⊆ N .
Given a TU game < N, η >, we use C(η) to denote the
core of the game,

C(η) =

{
x
∣∣∣ ∑
i∈N

xi = ηN ,
∑
i∈S

xi ≥ ηS for all S ⊂ N

}
,

where S is always considered to be non-empty.

II. DYNAMIC TU GAME AND ROBUST GAME

A. Problem Formulation and Bargaining Process

Consider a set of players N = {1, . . . , n} and the set of
all possible (nonempty) coalitions S ⊆ N among them. Let
m = 2n−1 be the number of possible coalitions. We assume
that time is discrete and use t = 0, 1, 2, . . . to index the time.

We consider a dynamic TU game, denoted < N, {v(t)} >,
where {v(t)} is a sequence of characteristic functions. In this
game, the players are involved in a sequence of instantaneous
TU games whereby, at each time t, the instantaneous TU
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game is < N, v(t) > with v(t) ∈ Rm for all t ≥ 0.
Further, we let vS(t) denote the value assigned to a nonempty
coalition S ⊆ N in the instantaneous game < N, v(t) >.
Throughout the rest of the paper, we assume that S 6= ∅,
i.e., we do not consider empty coalitions.

Assumption 1: There exists vmax ∈ Rm such that for all
t ≥ 0,

vN (t) = vmax
N ,

vS(t) ≤ vmax
S for all coalitions S ⊂ N.

We refer to the game < N, vmax > as robust game. We
assume that the robust game has a nonempty core.

Assumption 2: The core C(vmax) is not empty.
An immediate consequence of Assumptions 1 and 2 is

that the core C(v(t)) of the instantaneous game is always
not empty. This follows from the fact that C(vmax) ⊆ C(η)
for any η satisfying ηN = vmax

N and ηS ≤ vmax
S for S ⊂ N ,

and the assumption that the core C(vmax) is not empty.
We assume that each player i is rational and efficient. This

translates to each player i ∈ N choosing his allocation vector
within the set of allocations satisfying value constraints of
all coalitions that include player i. This set is referred to as
the bounding set of player i. For a generic game < N, η >,
it is given by

Xi(η) =

x ∈ Rn |
∑
j∈N

xj = ηN ,
∑
j∈S

xj ≥ ηS

for all S ⊂ N s.t. i ∈ S} .

Note that each Xi(η) is polyhedral.
In what follows, we find it convenient to represent the

bounding sets and the core in alternative equivalent forms.
For each coalition S ⊆ N , let eS ∈ Rn be the incidence
vector for S, i.e., the vector with the coordinates given by

[eS ]i =
{

1 if i ∈ S,
0 else.

Then, the bounding sets and the core are given by

Xi(η) = {x ∈ Rn | e′Nx = ηN , e
′
Sx ≥ ηS (1)

for all S ⊂ N with i ∈ S},

C(η) = {x ∈ Rn | e′Nx = ηN , e
′
Sx ≥ ηS (2)

for all S ⊂ N}.

Observe that the core C(η) of the game < N, η > is the
intersection of the bounding sets Xi(η) of the players, i.e.,

C(η) = ∩ni=1Xi(η). (3)

We now discuss the bargaining protocol where repeatedly
over time each player i ∈ N proposes an allocation vector.
The allocation vector proposed by player i at time t is
denoted by xi(t) ∈ Rn, where the jth component xij(t) rep-
resents the amount that player i would allocate to player j. To
simplify the notation in the dynamic game < N, {v(t)} >,
we let Xi(t) denote the bounding set of player i for the

instantaneous game < N, v(t) >, i.e., for all i ∈ N and
t ≥ 0,

Xi(t) = {x ∈ Rn | e′Nx = vN (t), e′Sx ≥ vS(t) (4)
for all S ⊂ N with i ∈ S} .

Now, we focus on players interactions in time. We assume
that each player may observe the allocations of a subset of the
other players at any time, which are termed as the neighbors
of the player. The players and their neighbors at time t can
be represented by a directed graph G(t) = (N, E(t)), with
the vertex set N and the set E(t) of directed links. A link
(i, j) ∈ E(t) exists if player j is a neighbor of player i
at time t. We always assume that (i, i) ∈ E(t) for all t,
which is natural since every player i can always access its
own allocation vector. We refer to graph G(t) as a neighbor-
graph at time t. In the graph G(t), a player j is a neighbor
of player i (i.e., (i, j) ∈ E(t)) only if player i can observe
the allocation vector of player j at time t.

Given the players’ neighbor-graph G(t), each player i
negotiates allocations by averaging his allocation and his
neighbors’ allocations. More precisely, at time t, the bargain-
ing process for each player i involves the player’s individual
bounding set Xi(t), its own allocation xi(t) and the observed
allocations xj(t) of some of his neighbors j. Formally, we let
Ni(t) be the set of neighbors of player i at time t (including
himself), i.e.,

Ni(t) = {j ∈ N | (i, j) ∈ E(t)}.

With this notation, the bargaining process is given by:

xi(t+1) = PXi(t)

 ∑
j∈Ni(t)

aij(t)xj(t)

 ∀i ∈ N, t ≥ 0 (5)

where aij(t) ≥ 0 is a scalar weight that player i assigns
to the proposed allocation xj(t) of player j and PXi(t)[·]
is the projection onto the player i bounding set Xi(t). The
initial allocations xi(0), i ∈ N, are selected randomly and
independently of {v(t)}.

The bargaining in (5) can be written more compactly by
introducing zero weights for players j whose allocations are
not available to player i at time t. Specifically by defining
aij(t) = 0 for all j 6∈ Ni(t) and t ≥ 0, we have the following
equivalent representation of the bargaining protocol:

xi(t+ 1) = PXi(t)

 n∑
j=1

aij(t)xj(t)

 ∀i ∈ N, t ≥ 0. (6)

Here, aij(t) = 0 for j 6∈ Ni(t) and aij(t) ≥ 0 for j ∈ Ni(t).
We now discuss the specific assumptions on the weights

aij(t) and the players’ neighbor-graph that we will rely on.
We let A(t) be the weight matrix with entries aij(t). We
will use the following assumption for the weight matrices.

Assumption 3: Each matrix A(t) is doubly stochastic with
positive diagonal, and there exists a scalar α > 0 such that

aij(t) ≥ α whenever aij(t) > 0.
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In view of the construction of matrices A(t), we see that
aij(t) ≥ α for j = i and perhaps for some players j that are
neighbors of player i.

It is natural to expect that the connectivity of the players’
neighbor-graphs G(t) = (N, E(t)) impacts the bargaining
process. At any time, the instantaneous graph G(t) need
not be connected. However, for the proper behavior of the
bargaining process, the union of the graphs G(t) over a period
of time is assumed to be connected.

Assumption 4: There is an integer Q ≥ 1 such that the
graph

(
N,
⋃(t+1)Q−1
τ=tQ E(τ)

)
is strongly connected for every

t ≥ 0.
Assumptions 3 and 4 together guarantee that the players

communicate sufficiently often to ensure that the information
of each player is persistently diffused over the network in
time to reach every other player.

B. Preliminary Results

In our analysis we often use the following relation that
holds for the projection operation on a closed convex set
X ⊆ Rn: for any w ∈ Rn and any x ∈ X ,

‖PX [w]− x‖2 ≤ ‖w − x‖2 − ‖PX [w]− w‖2. (7)

This relation is known as a strictly non-expansive projection
property (see [7], volume II, 12.1.13 Lemma, page 1120).

We next relate the distance dist(x,C(η)) from a point x
to the core C(η) with the distances dist(x,Xi(η)) from x to
the bounding sets Xi(η). To do so, we use the polyhedrality
of the bounding sets Xi(η) and the core C(η), as given in (1)
and (2) respectively, and a special relation for polyhedral sets.
This special relation states that for a nonempty polyhedral
set P = {x ∈ Rn | a′`x ≤ b`, ` = 1, . . . , r}, there exists a
scalar c > 0 such that

dist(x,P) ≤ c
r∑
`=1

dist(x,H`) for all x ∈ Rn, (8)

where H` = {x ∈ Rn | a′`x ≤ b`} and the scalar c depends
only on the vectors a`, ` = 1, . . . , r. Relation (8) is known as
Hoffman bound, as it has been established by Hoffman [12]

Now, we are ready to present the result relating the values
dist2(x,C(η)) and dist2(x,Xi(η)).

Lemma 1: Let < N, η > be a TU game with a nonempty
core C(η). Then, there is a constant µ > 0 such that

dist2(x,C(η)) ≤ µ
n∑
i=1

dist2(x,Xi(η)) for all x ∈ Rn,

where µ depends on the collection of vectors {ẽS | S ⊂
N, S 6= ∅}, where each ẽS is the projection of eS on the
hyperplane H = {x ∈ Rn | e′Nx = ηN}.

Proof: (Sketch) Aside from the Hoffman bound, in the
proof we also use the fact that the square distance from a
point x to a closed convex set X contained in an affine set
H is given by

dist2(x,X) = ‖x− PH [x]‖2 + dist2(PH [x], X). (9)

Note that the scalar µ in Lemma 1 does not depend on
the coalitions’ values ηS for S 6= N . It depends only on the
vectors eS , S ⊆ N , and the grand coalition value ηN .

As a direct consequence of Lemma 1, we have the
following result for the instantaneous game < N, v(t) >
under the assumptions of Section II-A.

Lemma 2: Let Assumptions 1 and 2 hold. We then have
for all x ∈ Rn and all t ≥ 0,

dist2(x,C(v(t))) ≤ µ
n∑
i=1

dist2(x,Xi(t)),

where C(v(t)) is the core of the game < N, v(t) >, Xi(t)
is the bounding set of player i, and µ is the constant from
Lemma 1.

III. CONVERGENCE TO CORE OF ROBUST GAME

In this section, we prove convergence of the bargaining
process in (6) to a random allocation in the core of the robust
game with probability 1. We find it convenient to re-write
bargaining protocol (6) by isolating a linear and a non-linear
term. The linear term is the vector wi(t) defined as:

wi(t) =
n∑
j=1

aij(t)xj(t) for all i ∈ N and t ≥ 0. (10)

Note that wi(t) is linear in players’ allocations xj(t). The
non-linear term is the error

ei(t) = PXi(t)[w
i(t)]− wi(t). (11)

Using (10) and (11), we can rewrite protocol (6) as follows:

xi(t+1) = wi(t)+ei(t) for all i ∈ N and t ≥ 0. (12)

Recall that the weights aij(t) ≥ 0 are such that aij(t) = 0
for all j 6∈ Ni(t). Also, recall that A(t) is the matrix with
entries aij(t), which defines the vectors wi(t) in (10).

In what follows we will show that, with probability 1,
bargaining protocol (10)–(12) converges to the core C(vmax)
of the robust game < N, vmax >, provided that v(t) =
vmax happens infinitely often in time with probability 1.
To establish this we use some auxiliary results, which we
develop in the next two lemmas.

The following lemma provides a result on the sequences
xi(t) and shows that the errors ei(t) are diminishing.

Lemma 3: Let Assumptions 1 and 2 hold. Also, assume
that each matrix A(t) is doubly stochastic. Then, for bar-
gaining protocol (10)–(12), we have
(a)

{∑n
i=1 ‖xi(t)− x‖2

}
converges for all x ∈ C(vmax).

(b)
∑∞
t=0

∑n
j=1 ‖ei(t)‖2 < ∞ and limt→∞ ‖ei(t)‖ = 0

for all i ∈ N .
Proof: By xi(t+1) = PXi(t)[w

i(t)] and by strictly non-
expansive property of the Euclidean projection on a closed
convex set Xi(t) (see (7)), we have for all i ∈ N , t ≥ 0 and
x ∈ Xi(t),

‖xi(t+ 1)− x‖2 ≤ ‖wi(t)− x‖2 − ‖ei(t)‖2. (13)

Under Assumptions 1 and 2, the core C(vmax) is con-
tained in the core C(v(t)) for all t ≥ 0, implying that
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C(vmax) ⊆ C(v(t)) for all t ≥ 0. Furthermore, since
C(v(t)) = ∩ni=1Xi(t), it follows that C(vmax) ⊆ Xi(t) for
all i ∈ N and t ≥ 0. Therefore, relation (13) holds for all
x ∈ C(vmax). Thus, by summing the relations in (13) over
i ∈ N , we obtain for all t ≥ 0 and x ∈ C(vmax),
n∑
i=1

‖xi(t+1)−x‖2 ≤
n∑
i=1

‖wi(t)−x‖2−
n∑
i=1

‖ei(t)‖2. (14)

By the definition of wi(t) in (10), using the stochasticity of
A(t) and the convexity of the squared norm, we obtain

n∑
i=1

‖wi(t)− x‖2 =
n∑
i=1

∥∥∥∥∥∥
n∑
j=1

aij(t)xj(t)− x

∥∥∥∥∥∥
2

≤
n∑
j=1

(
n∑
i=1

aij(t)

)
‖xj(t)− x‖2.

By the doubly stochasticity of A(t), we have
∑n
i=1 aij(t) =

1 for every j, implying
∑n
i=1 ‖wi(t)−x‖2 ≤

∑n
i=1 ‖xi(t)−

x‖2. By substituting this relation in (14), we arrive at
n∑
i=1

‖xi(t+1)−x‖2 ≤
n∑
i=1

‖xi(t)−x‖2−
n∑
i=1

‖ei(t)‖2. (15)

The preceding relation shows that the scalar sequence
{
∑n
i=1 ‖xi(t) − x‖2} is non-increasing for any given x ∈

C(vmax). Therefore, the sequence must be convergent since
it is nonnegative. Moreover, by summing the relations in (15)
over t = 0, . . . , s and then, letting s→∞, we obtain

∞∑
t=0

n∑
i=1

‖ei(t)‖2 ≤
n∑
i=1

‖xi(0)− x‖2,

which implies that limt→∞ ei(t) = 0 for all i ∈ N .
In our next result, we will use the instantaneous average

of players allocations, defined as follows:

y(t) =
1
n

n∑
j=1

xj(t) for all t ≥ 0.

Lemma 4: Let Assumptions 3 and 4 hold. Suppose that
for the bargaining protocol (10)–(12) we have

lim
t→∞

‖ei(t)‖ = 0 for all i ∈ N.

Then, for every player i ∈ N we have

lim
t→∞

‖xi(t)− y(t)‖ = 0, lim
t→∞

‖wi(t)− y(t)‖ = 0.
Proof: For any t ≥ s ≥ 0, define matrices

Φ(t, s) = A(t)A(t− 1) · · ·A(s+ 1)A(s),

with Φ(t, t) = A(t). Using the matrices Φ(t, s) and the
expression for xi(t) in (12), we relate xi(t) with xi(s) at
a time s for 0 ≤ s ≤ t− 1, as follows:

xi(t) =
n∑
j=1

[Φ(t− 1, s)]ij xj(s) (16)

+
t−1∑

r=s+1

 n∑
j=1

[Φ(t− 1, r)]ij ej(r − 1)

+ ei(t− 1).

Using the doubly stochasticity of A(t), y(t) = 1
n

∑n
j=1 x

j(t)
and relation (16), we obtain for all t ≥ s ≥ 0,

y(t) =
1
n

n∑
j=1

xj(s) +
1
n

t∑
r=s+1

 n∑
j=1

ej(r − 1)

 . (17)

By our assumption, we have limt→∞ ‖ei(t)‖ = 0 for all i.
Thus, for any ε > 0, there is an integer ŝ ≥ 0 such that
‖ei(t)‖ ≤ ε for all t ≥ ŝ and all i. Using relations (16)
and (17) with s = ŝ, we obtain for all i and t ≥ ŝ+ 1,

‖xi(t)− y(t)‖ ≤
n∑
j=1

∣∣∣[Φ(t− 1, ŝ)]ij −
1
n

∣∣∣ ‖xj(ŝ)‖
+

t−1∑
r=ŝ+1

n∑
j=1

∣∣∣[Φ(t− 1, r)]ij −
1
n

∣∣∣‖ej(r − 1)‖

+‖ei(t− 1)‖+
1
n

n∑
j=1

‖ej(t− 1)‖.

Since ‖ei(t)‖ ≤ ε for all t ≥ ŝ and all i, it follows that

‖xi(t)− y(t)‖ ≤
n∑
j=1

∣∣∣[Φ(t− 1, ŝ)]ij −
1
n

∣∣∣ ‖xj(ŝ)‖
+ε

t−1∑
r=ŝ+1

n∑
j=1

∣∣∣[Φ(t− 1, r)]ij −
1
n

∣∣∣ + 2ε.

Under Assumptions 3 and 4, the following result holds for
the matrices Φ(t, s), as shown in [14] (see there Corollary
1):∣∣∣∣[Φ(t, s)]ij −

1
n

∣∣∣∣ ≤ (1− α

4n2

)d t−s+1
Q e−2

for all t ≥ s ≥ 0.

Substituting the preceding estimate in the estimate for
‖xi(t)− y(t)‖, we obtain

‖xi(t)− y(t)‖ ≤
(

1− α

4n2

)d t−ŝ
Q e−2 n∑

j=1

‖xj(ŝ)‖

+nε
t−1∑

r=ŝ+1

(
1− α

4n2

)d t−r
Q e−2

+ 2ε.

Letting t→∞, we see that

lim sup
t→∞

‖xi(t)− y(t)‖ ≤ nε
∞∑

r=ŝ+1

(
1− α

4n2

)d t−r
Q e−2

+ 2ε.

Note that
∑∞
r=ŝ+1

(
1− α

4n2

)d t−r
Q e−2

< ∞, which by the
arbitrary choice of ε yields

lim
t→∞

‖xi(t)− y(t)‖ = 0 for all i ∈ N.

Now, we focus on
∑n
i=1 ‖wi(t) − y(t)‖. Since wi(t) =∑n

j=1 aij(t)x
j(t) and since A(t) is stochastic, it follows

n∑
i=1

‖wi(t)− y(t)‖ ≤
n∑
i=1

n∑
j=1

aij(t)‖xj(t)− y(t)‖.
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Exchanging the order of the summations over, and then using
the doubly stochasticity of A(t), we have
n∑
i=1

‖wi(t)− y(t)‖ ≤
n∑
j=1

(
n∑
i=1

aij(t)

)
‖xj(t)− y(t)‖

=
n∑
j=1

‖xj(t)− y(t)‖.

Since limt→∞ ‖xj(t) − y(t)‖ = 0 for all j, we have∑n
i=1 ‖wi(t) − y(t)‖ → 0, implying ‖wi(t) − y(t)‖ → 0

for all i.
We are ready to establish the following convergence result

for the robust game < N, vmax >.
Theorem 1: Let Assumptions 1–4 hold. Also, assume that

Prob {v(t) = vmax i.o.} = 1,

where i.o. stands for infinitely often. Then, the players
allocations xi(t) generated by bargaining protocol (10)–(12)
converge with probability 1 to an allocation in the core
C(vmax), i.e., there is a random vector x̃ ∈ C(vmax) such
that with probability 1,

lim
t→∞

‖xi(t)− x̃‖ = 0 for all i ∈ N.
Proof: By Lemma 3, the sequence {

∑n
i=1 ‖xi(t)−x‖2}

is convergent for every x ∈ C(vmax) and the errors ei(t) are
diminishing for each player i, i.e., ‖ei(t)‖ → 0. Then, by
Lemma 4 we have ‖xi(t)− y(t)‖ → 0 for all i. Hence,

{‖y(t)− x‖} is convergent for every x ∈ C(vmax). (18)

We want to show that {y(t)} is convergent and that its limit
is in the core C(vmax) with probability 1. For this, we note
that since xi(t+ 1) ∈ Xi(t), it holds for all t ≥ 0,
n∑
i=1

dist2 (y(t+ 1), Xi(t)) ≤
n∑
i=1

‖y(t+ 1)− xi(t+ 1)‖2.

The preceding relation and ‖xi(t)−y(t)‖ → 0 for all i ∈ N
(cf. Lemma 4) imply

lim
t→∞

n∑
i=1

dist2 (y(t+ 1), Xi(t)) = 0.

By Assumptions 1 and 2, and Lemma 2 we have for t ≥ 0,

dist2 (y(t+ 1), C(v(t))) ≤ µ
n∑
i=1

dist2 (y(t+ 1), Xi(t)) .

By combining the preceding two relations we see that

lim
t→∞

dist2 (y(t+ 1), C(v(t))) = 0. (19)

By our assumption, we have that the event {v(t) =
vmax infinitely often} happens with probability 1. We now
fix a realization {vω(t)} of the sequence {v(t)} such that
vω(t) = vmax holds infinitely often (for infinitely many t’s).
Let {tk} be a sequence such that

vω(tk) = vmax for all k ≥ 0.

All the variables corresponding to the realization {vω(t)}
are denoted by a subscript ω. By relation (18) the sequence

{yω(t)} is bounded, therefore {yω(tk)} is bounded. Without
loss of generality (by passing to a subsequence of {tk}
if necessary), we assume that {yω(tk)} converges to some
vector ỹω , i.e.,

lim
k→∞

yω(tk) = ỹω.

Thus, the preceding two relations and Eq. (19) imply that
ỹω ∈ C(vmax). Then, by relation (18), we have that
{‖yω(t)− ỹω‖} is convergent, from which we conclude that
ỹω must be the unique accumulation point of the sequence
{yω(t)}, i.e.,

lim
t→∞

yω(t) = ỹω, ỹω ∈ C(vmax).

This and the assumption Prob {v(t) = vmax i.o.} = 1,
imply that the sequence {y(t)} converges with probability 1
to a random point ỹ ∈ C(vmax). Since by Lemma 4 we
have ‖xi(t) − y(t)‖ → 0 for every i, it follows that the
sequences {xi(t)}, i = 1, . . . , n, converge with probability 1
to a common random point in the core C(vmax).

IV. NUMERICAL ILLUSTRATIONS

We consider a dynamic coalitional TU game with 3
players, so the number of possible nonempty coalitions is
m = 7. The characteristic functions vS(t) are generated
independently with identical uniform distribution over an in-
terval. Specifically, at each time t, the value v{1}(t) is chosen
randomly in the interval [4, 7] with uniform probability inde-
pendently of the other times. Similarly, the values v{2}(t) are
generated in the interval [0, 3]. The grand coalition value is
fixed to 10 at all times, and the other coalition values are 0.

We run 50 different Monte Carlo trajectories each one
having 100 iterations. The number of iterations is chosen
long enough to show the convergence of the protocols. All
plots include the sampled average and sampled variance for
the 50 different trajectories that were simulated. Each trajec-
tory is generated by starting with the same initial allocations,
which are given by x1(0) = [10 0 0]′, x2(0) = [0 10 0]′,
and x3(0) = [0 0 10]′. The sampled average is computed for
each time t = 1, . . . , 100, by fixing the time t and computing
the average value of the 50 trajectory sample values for that
time. The sampled variance is computed as the variance of
the samples with respect to their sampled average.

Regarding the players’ neighbor-graphs, we assume that
the graphs are deterministic but time-varying. The graphs
for the times t = 0, 1, 2 are as follows: player 2 and 3
connected at time t = 0 (see Figure 1(a)), then player 3
and 1 connected at time t = 1 (Figure 1(b)), and finally
player 1 and 2 connected at time t = 3 (Figure 1(c)). These

v1

v2 v3

(a)

v1

v2 v3

(b)

v1

v2 v3

(c)

Fig. 1. Topology of players’ neighbor-graph at three distinct times
t = 0, 1 and 2.

233



Fig. 2. Plots of the sampled average (left) and variance (right) of players’
allocations xi(t), i = 1, 2, 3 generated by bargaining protocol (10)–(12).
Sampled averages of the allocations xi(t) converge to the same point x̃ =
[7 3 0]′ ∈ C(vmax), while sampled variances go rapidly to zero.

graphs are then repeated consecutively in the same order. In
this way, the players’ neighbor-graph is connected every 2
time units (Assumption 4 is satisfied with Q = 2).

The matrices A(0), A(1) and A(2) that we associate with
these three graphs, are respectively given by: 1 0 0

0 1
2

1
2

0 1
2

1
2

 ,
 1

2 0 1
2

0 1 0
1
2 0 1

2

 ,
 1

2
1
2 0

1
2

1
2 0

0 0 1

 .
These matrices are also repeated in the same order for the
rest of the time. Thus, at any time t, the matrix A(t) is
doubly stochastic, with positive diagonal, and every positive
entry bounded below by 1

2 , so Assumption 3 is satisfied with
α = 1

2 . All simulations are carried out with MATLAB on
an Intel(R) Core(TM)2 Duo, CPU P8400 at 2.27 GHz and
a 3GB of RAM. The run time of each simulation is around
90 seconds.

The characteristic function vmax for the robust game
is obtained by considering the highest possible coalition
values which results in vmax = [7 3 0 0 0 0 10]′. We note that
C(vmax) contains a single point, namely [7 3 0]′.

To ensure that v(t) = vmax infinitely often, as required
by Theorem 1 for the convergence of the protocol, we
adopt the following randomization mechanism. At each time
t = 1, . . . , 100, we flip a coin and if the outcome is “head”
(probability 1/2), the coalitions’ values v{1}(t) and v{2}(t)
are extracted from the intervals [4, 7] and [0, 3], respectively,
with uniform probability independently of the other times. If
the outcome of the coin flip is “tail”, then we assume that
the robust game realizes and take v(t) = vmax.

In Figure 2 we report our simulation results for the average
of the sample trajectories obtained by Monte Carlo runs
using (10)–(12). We show the sampled average and variance
of the allocations xi(t), i = 1, 2, 3 per iteration t. In
accordance with the convergence result of Theorem 1, the
sampled averages of the players’ allocations xi(t) converge
to the same point, namely x = [7 3 0]′ which is in the core
of the robust game C(vmax).

V. CONCLUSIONS

This article deals with dynamics and robustness within
the framework of coalitional TU games. The novelty of the
work lies in the design of a decentralized allocation process
defined over a communication graph of players.
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[16] A. Nedić and A. Ozdaglar. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Control,
54(1):48–61, 2009.
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game theory for communication networks. IEEE Signal Processing
Magazine, Special Issue on Game Theory, 26(5):77–97, 2009.

[21] J. Suijs and P. Borm. Stochastic cooperative games: Superadditivity,
convexity, and certainty equivalents. Games and Economic Behavior,
27(2):331–345, 1999.

[22] J. Timmer, P. Borm, and S. Tijs. On three shapley-like solutions
for cooperative games with random payoffs. International Journal
of Game Theory, 32:595–613, 2003.

[23] J.N. Tsitsiklis. Problems in Decentralized Decision Making and Com-
putation. PhD thesis, Dept. of Electrical Engineering and Computer
Science, MIT, 1984.

[24] J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton Univ. Press, 1944.

234


