
 
 

 

  

Abstract—The effect of friction on a negative stiffness control 
system is investigated. The series combination of isolators of 
negative and positive stiffness of equal magnitude provides 
infinite stiffness as well as zero compliance of the vibration 
isolation table against direct static load. However the 
performance of negative stiffness control system is affected by 
friction adversely. In another word, nonlinear friction causes an 
adverse effect to the negative stiffness control system, such as 
limit cycle. In the present work, the friction induced limit cycle 
of the negative stiffness control system is identified by using 
describing function method. The intersection of linear and 
nonlinear part of the control system in the same complex plane 
reveals the existence of limit cycle which varies according to the 
control parameters. Hence the relationship between the stiffness 
of the negative stiffness control system and induced limit cycle 
(frequency and amplitude) is established theoretically. The 
induced limit cycle behavior is determined by the conditions of 
nonlinear part at the points of intersection. Finally the 
theoretical limit cycle for a specific set of control parameters in 
designing the controller is verified by experimental result under 
the same conditions.  

I. INTRODUCTION 
N many high-precision manufacturing and measuring 

process, position accuracy is a key performance objective. 
During the last three decades, accuracy requirements have 
turned into from micrometer range to the submicron and even 
nanometer range. Thus the precision vibration isolation plays 
an important role to meet the current demand of position 
accuracy in Hi-tech production processes. There are two main 
sources of vibration; (i) ground vibration and (ii) direct 
disturbance, which should be isolated from vibration free 
platform simultaneously. The zero stiffness and infinite 
stiffness are respectively ideal for reducing ground vibration 
and direct disturbance [1].  

The infinite stiffness as well as zero compliance of 
vibration isolation is realized by connecting normal spring 
with magnetic suspension in series [2]. Zero-power magnetic 
suspension system has itself unique characteristic that it 
behaves as if it has negative stiffness. The linear actuator with 
proper controller of negative stiffness also causes the 
accomplishment of negative stiffness. The series combination 
of the negative stiffness actuator and the normal spring of 
equal magnitude provide infinite stiffness in a vertical system 
[3]. The principle of such vibration isolation has been applied 
to a developed horizontal vibration isolation system where 

linear actuators are used to acquire both negative stiffness and 
positive stiffness [4]. 

The developed horizontal vibration isolation system is 
supported by four vertical supports of free bearing. In 
consequence, the developed active system is subjected to 
friction in contact areas. It is observed that the inherent 
friction leads to a sustained oscillation or limit cycle in the 
negative stiffness control system whereas such oscillation has 
not been observed for positive stiffness control in the same 
system. The phenomenon of oscillation due to friction is often 
unexpected as it causes additional dynamic loads, as well as 
faulty operation of machines and devices. Moreover, the 
presence of friction induced nonlinearity often affects the 
performance of active system adversely [5]. There are several 
methods to analyze the friction nonlinearity; the describing 
function method is exploited and a relationship between the 
magnitude of negative stiffness and the induced limit cycle is 
established in this paper.  

II. VIBRATION ISOLATION WITH NEGATIVE 
STIFFNESS CONTROLLER  

A. Realizing of infinite stiffness using negative stiffness 
To acquire a high-performance vibration isolation system, 

the control system should be stiff against direct disturbance 
and should be soft suspension against ground vibration.  This 
behavior has been achieved by using the concept of series 
connection of negative stiffness and positive stiffness of same 
magnitude [2]-[4].  

When two isolators having stiffness coefficients k1 and k2 
connected in series as shown in Fig. 1, then the combined 
stiffness kc becomes as follows  
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It shows that the combined stiffness of two series connected 
isolators is lower than that of each isolator. However if one 
isolator has negative stiffness and satisfies the following 
condition  

21 kk −= , (2) 
then the resultant combine stiffness of the corresponding 
isolators becomes infinite as follows,  
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B. Active suspension 
Horizontal suspension systems with conventional passive 

isolator are subjected to dislocation into downward when 
they work on inclined plane. Since self-dislocation can be 
treated as direct disturbance, thus the concept of negative 
stiffness as well as infinite stiffness (mentioned in II-A) could 
be applied to horizontal suspension system to hold the 
position of itself on inclined surface.  

Moreover, if an inclined system is isolated from ground by 
high stiffness isolator, then there will be no dislocation but 
the ground vibration would transmit to the suspended object 
directly without attenuation. To overcome such problem, the 
middle mass with soft stiffness is added at the base portion of 
the horizontal suspension system shown in Fig. 2.  

III. DESIGN OF STIFFNESS CONTROL 
In this section, the designing of controllers for realizing 

negative stiffness and positive stiffness with linear actuator 
(voice coil motor (VCM)) are addressed. A basic single 
degree-of-freedom model of vibration isolation table with 
linear actuator (VCM) for designing the controllers is shown 
in Fig. 3. It is assumed that the moving table with mass m 
moves along horizontal translation (x-axis) without any 
internal interference of other axes motion. The motion 
equation of the table actuated by VCM is given in below 

da ffxm +=&& , (4) 
where 
 x: relative displacement of the table, 
 fa: actuator’s thrust force, 
 fd:direct disturbance acting on the table. 
The thrust exerted by the actuator is proportional to the coil 
current i , so the force af can be expressed as 

ikf ia = , (5)  
where 
 ik  : actuator thrust force coefficient. 
The Laplace-transforms of the Eqs. (4) and (5) give transfer 
function representation of actuator’s dynamics written as  
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where each Laplace-transformed variable is denoted by its 
capital and  
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The feedback control current to the actuator correspond to 
linear control law usually is expressed by  
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If the transfer function of the controller is strictly proper, then 
the polynomials can be represented as  
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Substituting the Eq. (7) into the Eq. (6) leads to  
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The disturbance is assumed to be stepwise so that it can be 
modeled as 

s
FsFd

0)( =  (F0: const). (11) 

The control parameters are selected so that  to stabilize the 
closed loop system. Thus the steady-state displacement ( )∞x  
could be stated by considering the Eqs. (10) and (11) as 
follows 
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If the system has stiffness of magnitude kx, then ratio of 
steady state displacement and load can be defined as   
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For getting positive and negative stiffness, the value of kx in 
designing the controller is selected as positive and negative 
value, respectively. Moreover, the infinite stiffness is 
acquired by considering the equal absolute value of kx in 

 
Fig. 1. Series connected springs 

 

Fig. 2. Cancellation of dislocation with infinite stiffness 
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designing the both controllers which is shown in Fig. 4. 
To assign the closed-loop poles arbitrarily, second or 

more-order compensator is necessary. When third-order 
compensator is considered, the characteristic polynomial of 
the closed-loop system (10) becomes 5th-order defined as 
follows 
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The characteristics polynomial of the 5th-order ideal system 
can be represented as follows  
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The coefficients of the transfer function of the negative 
stiffness control system are determined uniquely by 
comparing the Eqs. (15) and (16) and using the condition of 
the Eq. (14). Finally, the controller gains become as follows 
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The developed active system (Fig. 5) consists of isolation 
table and middle mass (table). Both tables are vertically 
supported respect to base using free bearing. In the designing 

of controllers of the developed system with negative stiffness 
control technique [4], the influences of the frictional effect 
are neglected. However, in actual circumstances, friction 
occurs in between the two moving mated parts of active or 
passive system. Thus the developed system encounters 
friction and consequently the system’s performance 
deteriorates sufficiently. In the following sections, the 
induced friction and its consequent effects on the developed 
system with negative stiffness control are analyzed.  

IV. DISCRIBING FUNCTION AND CORRESPONDING 
LIMIT CYCLE  

The describing function is one of the useful tools to 
analyze the nonlinearity of nonlinear control system. The 
describing function of a nonlinear element is defined as the 
complex ratio of the Fourier series fundamental component of 
the output to a sinusoidal input [6].  

Let us consider a feedback control system consists of linear 
and nonlinear parts shown in Fig. 6. The open loop transfer 
functions of linear and nonlinear parts of the system are 
denoted by G(s) and TFn (x0, ω), respectively. To define the 
nonlinearity by describing function, the sinusoidal input to 
nonlinear part is considered as 

)sin()( 0 txtx ω= . (22)  
The output of the nonlinear part y(t) is not obviously 
sinusoidal but periodic with same period of input. The output 
contains higher order harmonic of the fundamental 
component. If the behavior of the accomplished nonlinearity 
is symmetry respect to around zero response, then its periodic 
output could be expanded by a Fourier series as follows [6] 
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The fundamental (first) harmonic of the output is usually 
considered to find the describing function [7] as higher-order 

 
Fig. 4. Arrangement of the proposed control technique 

 
Fig. 3. Basic model of single axis active system 

 

Fig. 5. Photograph of developed active system 

954



 
 

 

components are smaller in magnitude and the low pass filter 
in the control system further attenuates the higher harmonics. 
Thus the describing function (D) of the nonlinearity 
corresponds to the Eqs. (23) and (24) becomes as follows 
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If the input and output of the nonlinearity are the respective 
desired input and output of the nonlinear part, then the 
Laplace-transform of the corresponding describing function 
represents the nonlinear part (TFn) shown in below  
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The close-loop transfer function of the whole nonlinear 
control system shown in Fig. 6 can be expressed as  
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The characteristic polynomial of the respective close-loop 
nonlinear control system (Fig. 6) is defined by 
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The characteristics polynomial (27) consists of open loop 
transfer function of linear and nonlinear parts. Thus the limit 
cycle will appear in the control system if the Eq. (27) is 
satisfied for parameters in nonlinear part (x0 and ω) [8]. Since 
G(jω) and TFn (x0, ω) are complex function of x0 and ω so the 
solution of the Eq. (27) gives both the frequency and 
amplitude of the limit cycle (self-oscillation). 

V. DESCRIPTION OF DEVELOPED SYSTEM WITH 
FRICTION NONLINEARITY 

The self-oscillation of a nonlinear system can be analyzed 
by its close loop characteristics equation [8]. However, for 
such analysis, the characteristic equation has to be defined 
with its open loop transfer function of linear and nonlinear 
part together. Hence to analyze the limit-cycle of the 
developed system, the defining of its linear and nonlinear 
parts are explored in this section. The simplified block 
diagram of the developed system with negative stiffness 
control is shown in Fig. 8. The ultimate open loop transfer 
function representation of the whole system dynamics respect 
to displacement and reference input is given by  
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where  
 Gn(s): stiffness controller transfer function 
 Df : describing function of friction nonlinearity 

 xp, xd : table displacement and reference input, 
respectively. 

Since the open loop transfer function of the whole system 
Gc(s) includes the linear and the nonlinear part dynamics, 
therefore it could be also presented by  

),()()( 0 ωxNsGsGc = , (29) 
where  
 G(s): linear part open loop transfer function  
 N(x0, ω): nonlinear part open loop transfer function. 

The nonlinearity is assumed in the control system due to 
friction only. Therefore when friction is cancelled (Df = 0) 
then open loop transfer function of the whole system turns 
into the open loop transfer function of linear part. It means 
that, the linear part of the system consists of controller, 
actuator and table. Hence corresponding open loop frequency 
response of linear part is presented as  

2
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sGksG ni= . (30) 

Once the open loop transfer function of the linear part is 
obtained then nonlinear part can be determined as  

sDms
ms

sG
sGxN

f

c

+
== 2

2

0 )(
)(),( ω   . (31) 

The negative inverse of the nonlinear part in the control 
system can be presented as below 

 

Fig. 7. Schematic diagram of developed active system 

 

 
Fig. 6. Feedback control system with nonlinearity 

 
Fig. 8. Simplified block diagram for linear and nonlinear part 

of negative stiffness control developed system 
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A. Describing function of friction 
The nonlinear coulomb friction and stribeck effects arise at 

low velocity region but at higher velocity region, little 
viscous resistance takes place [5]. In the developed system, 
contact areas between table and vertical supports are grease 
lubricated. So the viscous effect is neglected in this study as it 
causes very minor effect in total induced friction. Therefore 
the friction for the developed system can be modeled as 
shown in Fig.9. Before starting of motion, the surface is static 
region and intuitively, a force greater than the static friction 
(Fs) is required to move and friction suddenly decreases when 
table starts to move. Usually the friction nonlinearity takes 
place around zero velocity of the system. Therefore the 
constant friction force over the higher velocity region is kept 
in the proposed friction model. The higher velocity region is 
assumed beyond the velocity V0 which corresponds to zero 
static friction and zero stribeck effect in the applied friction 
model (Fig. 9).  

The output behavior of the nonlinear friction respect to 
sinusoidal input is determined by describing function of the 
nonlinear friction (Df) of the developed system. The 
sinusoidal input to the nonlinear developed system is 
considered as follows 

)sin()( tVtx m ω= , (33) 
where Vm and ω are maximum amplitude and frequency of 
input sinusoidal velocity, respectively. Then the applied 
friction model shown in Fig. 13 could be expressed 
mathematically as follows 
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 K1: viscous coefficient at low velocity region.  
The Fourier series output expression of periodic induced 
friction (Ff (t)) can be written as 
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Since Ff (t) is an odd function, so it contains only sine term. 
Therefore the first harmonic output of the nonlinear friction 
of the induced friction could be expressed by Fourier series as 
follows [7]  
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Substituting the Eq. (34) into the Eq. (37) with considering 
the Eq. (36) leads the first harmonic output given in below 
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Hence the sinusoidal input describing function of the friction 
[Df (Vm,,V0)] to the developed can be defined as follows 
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B. Limit cycle prediction  
The response of the close loop control developed system 

respect to reference input can be expressed as  
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where G(s) and N(x0,ω) are open loop transfer function of the 
linear and nonlinear part in the developed system, 
respectively. The procedures to determine the open loop 
transfer function of the linear and nonlinear parts of the 
negative stiffness control developed system are mentioned in 
earlier (Eqs. (30) and (31)). The characteristic equation of the 
close loop negative stiffness control developed system is 
defined by 
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Thus the limit cycle would be able to sustain in the developed 
system if any condition of nonlinearity satisfies the Eq. (41). 
In other words, a self-excited oscillation exists with 
amplitude Vm and frequency ω when a proper selection of h(s) 
and g(s) satisfies the Eq. (41). 

VI. RESULT AND DISCUSSION 
The Nyquist plot approach is conducted to find the 

existence of limit cycle in the negative stiffness control 
developed system theoretically. The Nyquist curves of linear 
and negative inverse nonlinear parts are drawn together on 
same complex plane shown in Fig. 10. The intersection of the 
Nyquist curves represents the existence of limit cycle. In this 
analysis the limit cycles are distinguished for different 
magnitude of negative stiffness kx varied (Eq. 13) from -20 to 

 
Fig. 9. Applied friction model 
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-35 N/mm. Here it is observed that the frequency of induced 
limit cycle is higher for low negative stiffness compared to 
that of higher negative stiffness. 

However the linear part of the positive stiffness (kx = 25 
N/mm) control system does not intersect the nonlinear part 
shown in Fig. 11. Thus positive stiffness control system is 
free from the effects of limit cycle. Moreover the nonlinear 
parts in both positive stiffness and negative stiffness control 
are determined for same conditions. 

The experimental analyses are carried out to verify the 
limit cycle obtained theoretically in the Figs. 10 and 11. 
Experimental time responses to self-oscillation for different 
magnitudes of negative stiffness (same as Fig. 10) are drawn 
in Fig. 12. The negative stiffness are selected as -20 N/mm, 
-25 N/mm, -30 N/mm, -35 N/mm and corresponding 
self-oscillation frequencies are observed around 0.35Hz, 
0.25Hz, 0.2Hz and 0.14 Hz, respectively which sufficiently 
satisfy the theoretical results shown in Fig. 10. Hence 
theoretical limit cycles of a specific negative stiffness control 
system for several sets of control parameters will assist to 
predict the actual limit cycle of that system. 

VII. CONCLUSIONS 
The horizontal vibration isolation table with negative 

stiffness control behaves self-oscillation. The frequency of 
the limit cycle (self-oscillation) is inversely proportional to 
the magnitude of negative stiffness of the control system. The 
friction nonlinearity is mainly responsible for such instability 
in the negative stiffness control developed system. 
Meanwhile, the same system with the positive stiffness 
control is unaffected by such nonlinearity as well as it is free 
from limit cycle. The compensating of nonlinearity as well as 
reduction of limit cycle from negative stiffness control 
system will be conducted in future work. 
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Fig. 10. Limit cycle for different magnitude of negative 

stiffness  

 
Fig. 11. Nyquist plot positive stiffness control system  

 
Fig. 12. Time response to Self-oscillation at different 

magnitude of negative stiffness   
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