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Abstract—This paper considers the problem of finding dy-
namic sensor activation policies that satisfy the property of K-
diagnosability for discrete event systems modeled by finite state
automata. We begin by choosing a suitable information state for
the problem and defining a controller. We then define a structure
called the most permissive observer, which provides all feasible
solutions for the controller (i.e., for sensor activations). By formu-
lating the problem as a state disambiguation problem, we prove a
number of monotonicity properties about the information state.
Finally, we show that this formulation allows us to efficiently
compute the set of all satisfactory control decisions at all points
in the system’s execution.

I. INTRODUCTION

This paper studies problems of dynamic sensor optimization
in discrete event systems. Our model assumes that a system
is modeled as a deterministic finite state automaton and that
we have sensors that can detect the occurrence of only a
subset of events. These events are classified as “monitorable”
and we may choose not to observe them. In engineering
problems, this might be useful in order to save energy in the
sensors if these are costly to operate. Alternatively, there may
be high energy requirements involved in communicating the
sensor measurements. Another possibility is that we would
like to minimize communication of sensor measurements for
the purpose of maintaining security. For any of these or other
reasons, we assume that we would like to minimize sensor
activations (for a more detailed explanation of the motivation
for dynamic sensor activation, see [1]. For a concrete example,
see [2]). Additionally, we assume that, among the remaining
inherently unobservable events, there is a significant event
whose occurrence we would like to be able to determine. In
this work, we consider the event in question to be a fault event.
The control problem is to determine which sensors to turn
on/off at every point in time while maintaining the property of
K-diagnosability. The K-diagnosability property is similar to
that of diagnosability as found in [3], but where the diagnosis
must be made with a delay of at most K events. Specifically,
the system must always be able to distinguish between faulty
and non-faulty executions within K + 1 events after a fault.

A number of other recent works have considered the
problem of optimizing sensor activations while maintaining
some notion of diagnosability; see, e.g., [1], [4], [5]. In [4],
dynamic programming is used to find an optimal solution to
the problem of optimizing sensor activations while maintaining

the property of diagnosability simultaneously for automata
with multiple fault types. In [5], game theory is used first to
define a structure called most permissive observer (which will
be redefined in this paper). Results from the theory of games
on graphs are then used, resulting in algorithms that solve
the optimal sensor activation problem. Their methodology is
extended to opacity in [6]. In [1], the problem of decentralized,
or multi-agent, diagnosis is solved through a “window-based
partition” approach. Algorithms that run in time polynomial
in the window partition size are given for both the centralized
and decentralized event diagnoses cases.

Several criteria can be used for guiding the solution of the
dynamic sensor activation problem. A simple one is that of
state disambiguation: sensors must be activated often enough
so that certain pairs of discrete states should never be confused
at run-time, along any system trajectory. State disambiguation
requirements arise naturally at the discrete-event level. For
example, the discrete-event-theoretic property of observabil-
ity [7], which is part of the necessary and sufficient conditions
for the existence of discrete-event controllers for partially-
observed systems, can be expressed as a state disambiguation
property (cf. [8]). We demonstrate in this paper that K-
diagnosability can be mapped to a problem of state disam-
biguation over a suitable refinement of the discrete state space.
Hence, our results can be adapted, with simple modifications,
to solve a standard state disambiguation problem.

Our work is most closely related to the approach of [5], in
that the goal is maintaining the K-diagnosability property for
a system modeled by an automaton, and that we both define
the “most permissive observer” (MPO), a discrete structure
that captures all controllers that constitute feasible solutions.
In [5], the MPO is defined through game theory and the theory
of games on graphs. Our MPO is defined as a bipartite graph
over suitable information states. Although we both end up
with the same structure, our goal is to develop an information
state based approach to the construction of the MPO, which
allows for two benefits: first, a clearer understanding of infor-
mational properties of the MPO; second, a greater adaptability
in being applied to other dynamic optimization problems in
discrete event systems. As in [5], we tackle the dynamic
control problem in two parts: first, we construct the MPO
which contains all controllers that satisfy the K-diagnosability
property; second, we use the MPO as a “feasbile space” over
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which to optimize. This work addresses the first part. With the
MPO, we can then use techniques from [5] or [4] to find a
single optimal solution.

Our notion of MPO was first introduced in [9]. In [9], we
proved that our information state was “sufficient” in the sense
that no generality is lost by examining only controllers based
on that information state. Section II of this paper will recall
some definitions from [9]. In the main body of this paper, we
show how to map the K-diagnosability problem to the state
disambiguation problem. The most significant contribution of
this paper is that this approach allows us to establish the
existence of a simple and efficient test on the information
state for determining whether or not any particular control
decision maintains the K-diagnosability property. We also
characterize informational properties of the MPO and then
present an efficient algorithm for its construction.

For some references on other concepts of observers in
logical discrete-event models, see [10]–[13].

The rest of this paper is organized as follows. Section
II describes the model under consideration, followed by a
number of definitions related to our information state. Section
III formally defines the K-diagnosability property, explains
how to formulate it as a state disambiguation problem, and
defines the recursive structure of the MPO. Section IV estab-
lishes a number of theorems that show how the “extended
specification” (from the literature on state disambiguation,
see [14]) can be used to efficiently compute the MPO on-
line. Finally, we have conclusions and references. Note that
all proofs have been omitted due to space constraints.

II. AUGMENTED STATES AND THE INFORMATION STATE

Consider a deterministic automaton G = (X,E, f, x0),
where X is the set of states, E is the set of events, f :
X × E → X is the system’s partial transition function, and
x0 is the initial state. Define L(G) to be the language of G,
that is, the set of all strings of events that can occur in G.
Assume that the set E is partitioned into four disjoint sets
E = Eo ∪ Es ∪ Euo ∪ Ef , each corresponding to different
categories of events: Eo is the set of events that are always
monitored, Es is the set of events that are observable but may
not always be monitored (for example, if a sensor is turned
off), Ef is the set of unobservable faulty events (or any set
of important unobservable events whose occurrence we would
like to diagnose) and Euo is the set of unobservable (non-
faulty) events. In this work, we assume that there is only one
fault event.

We wish to dynamically diagnose any occurrence of the fault
event. Here, we use the notion of K-diagnosability (formally
defined in section III), which states that we must be able to
diagnose the occurrence of any fault (with certainty) within
at most K + 1 events after the fault event. At each point
in the system’s execution, we wish to find the set of all
control decisions that allow the system to maintain the K-
diagnosability property, after each run of control decisions and
observed events. The MPO, which we will define in section

III and show how to construct in section IV, contains all
controllers that constitute feasible solutions to this problem.

The remainder of this section briefly provides the mathemat-
ical preliminaries necessary for defining the MPO as it pertains
to the problem of K-Diagnosability. Parts of this section are
recalled or modified from [9], where we first introduced our
MPO.

Definition II.1 (Augmented State). The augmented state is
a pair (x, n) ∈ X × {−1, 0, 1, . . .}, where, n represents a
“count” of the number of events (of all kinds) that have
occurred since a fault event occurred, or −1 if no fault
event has occurred. The set of such states is denoted by
X+ = X × {−1, 0, 1, . . .}. The initial augmented state is
x+

0 = (x0,−1). For any augmented state x+ ∈ X+, let the
state and count components be denoted by S(x+) and N(x+),
respectively, so that x+ = (S(x+), N(x+)).

Definition II.2 (Augmented Transition Function). We next
define the augmented transition function g : X+ ×E → 2X

+

on augmented states that is induced by the automaton G =
(X,E, f, x0) and the partition of event set E. Formally, for
any u = (xu, nu) and event e, we have:
• Case 1: If nu = −1 and e /∈ Ef then g(u, e) =
{(f(xu, e),−1)}.

• Case 2: If nu = −1 and e ∈ Ef then g(u, e) =
{(f(xu, e), 0)}.

• Case 3: If nu ≥ 0 and e /∈ Ef then g(u, e) =
{(f(xu, e), nu + 1)}.

• Case 4: If nu ≥ 0 and e ∈ Ef then g(u, e) =
{(f(xu, e), 0), (f(xu, e), nu + 1)}.

It is because of this last case that g is defined as a mapping
from augmented states to sets of augmented states rather than
simply to augmented states. So that the function can be applied
iteratively, we define g applied to a set as the union of g
applied to each augmented state in the set. Mathematically,
we write: g(U, e) =

⋃
u∈U g(u, e). This definition is extended

to strings (rather than merely events) in the usual way. Finally,
we define g(s) = g(x+

0 , s) for brevity.

Definition II.3 (Augmented Automaton). We define the aug-
mented automaton as the automaton G+ = (X+, E, g, x+

0 )
defined over augmented states that is induced from the original
automaton G. Specifically, we take X+ and x+

0 as defined in
Defintion II.1 and g as defined in Definition II.2 (the event set
E remains the same). Note that G+ might not be deterministic,
even if G is, due to case 4 in the definition of the augmented
state transition function g. Furthermore, without a bound on
the count component of augmented states, G+ might not be
finite in size (in section IV, we will use a trimmed version of
G+ that avoids this problem).

Definition II.4 (Run). A run ρ of length n is defined as
a sequence C0, e0, . . . , Cn−1, en−1 of control decisions or
sensor activations (the Ci’s, which are subsets of events to
monitor) and observed events (the ei’s). Since the events are
observed, they must be among the monitored events. That is,
ei ∈ Ci, for all i = 0, . . . , n− 1. On the other hand, the strict
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alternation of control decisions and observed events reflects
the assumption that control decisions are only changed upon
the observance of an event. Denote by Rn the set of runs of
length n. Finally, let ρ(k) = C0, e0, . . . , Ck−1, ek−1 denote
the subsequence of ρ of length k.

Definition II.5 (Admissible Controller). An admissible con-
troller is a sequence C = (C0, C1, . . .) of functions Cn :
Rn → 2E , n = 0, 1, . . . from runs to control decisions that
satisfies the following two conditions:

1) Cn(ρ) ⊇ Eo for all ρ ∈ Rn and all n = 0, 1, . . . (Cn

includes the set of events that are always monitored).
2) Cn(ρ) ∩ (Euo ∪ Ef ) = ∅ for all ρ ∈ Rn and all

n = 0, 1, . . . (Cn cannot include any event that is
unobservable, whether faulty or non-faulty).

Note that Cn is used to denote both the controller and
the control decision. Hereafter, the context will make it clear
which is which.

Definition II.6 (Information State). An information state (IS)
is a subset S ⊆ X+ of augmented states. We will denote by
I = 2X

+

the set of information states.

Definition II.7 (Information State Based Controller). An in-
formation state based controller (or IS-controller) is a function
C : I → 2E that satisfies the two conditions of an admissible
controller (i.e., C(i) ⊇ Eo and C(i)∩ (Euo ∪Ef ) = ∅ for all
i ∈ I).

Constructing an observer for an automaton and a fixed set
of unobservable events is a relatively simple task. To construct
the observer when the set of observable events is a dynamic
control decision, we must explicitly model the effect of the
controller on the evolution of the information state.

Definition II.8 (Total Observer). The total observer is
defined as a directed bipartite graph (Y ∪ Z,A). Here, Y is
the set of information states (i.e., Y = I), Z is the set of
information states augmented with monitored event decisions
(i.e., Z = I × 2E), and A is the set of edges in the graph. A
Y state is a (information) state in which a control decision
is taken and a Z state is a pair consisting of a (information)
state and a set of monitored events, in which an observable
event occurs, among those in the current set of monitored
events. Thus, any run results in the alternation between Y
and Z states. The set A contains all transitions from Y
states to Z states (all admissible control decisions) and all
transitions from Z states to Y states (all observable events).
Specifically, a transition from a Y state to a Z state represents
the unobservable reach. As a transition from a Z state to a
Y state occurs upon the observance of a monitored event,
it is necessary for each Z state to “remember” the set of
monitored events from the Y state that led to it. Let I(z)
and C(z) denote z’s information state and control decision
components, respectively, so that z = (I(z), C(z)). Formally,
(y, z) ∈ A, labeled with C(y) if:

I(z) =

{
v ∈ X+ : (∃u ∈ y)(∃t ∈ (E \ C(y))∗)
s.t. v ∈ g(u, t)

}
(1)

=
⋃
u∈y

⋃
t∈(E\C(y))∗

g(u, t) (2)

C(z) = C(y) (3)

where g(·, ·) is the augmented transition function. In words,
this means that I(z) is the set of augmented states reachable
from some augmented state of the preceding Y state through
some string of unmonitored events, and that C(z) is the set of
monitored events chosen in the preceding Y state. We write
hY Z(y, C(y)) = z. Formally, (z, y) ∈ A, labeled with e ∈
C(z) if:

y = {v ∈ X+ : (∃u ∈ I(z)) [v ∈ g(u, e)]} (4)

=
⋃

u∈I(z)

g(u, e) (5)

In words, this means that y is the set of augmented states
reachable from some augmented state of the information state
component of the preceding Z state through the single event
e. As before, we write hZY (z, e) = y. The initial state of the
system is the Y state corresponding to the initial information
state, i.e., y0 = {x+

0 }.

Definition II.9 (Y and Z state Controller Induced Information
State Evolution). Given a controller C, we define ISY

C (y, s)
to be the Y state that results from the occurrence of string s,
when starting in Y state y. This can be computed as follows:

ISY
C (y, ε) := y

ISY
C (y, e) :=

{
hZY (hY Z(y, C(y)), e) if e ∈ C(y)
y if e /∈ C(y)

ISY
C (y, es) := ISY

C (ISY
C (y, e), s)

(6)
For brevity, we define ISY

C (s) := ISY
C (y0, s). We define

ISZ
C (z, s) analogously:

ISZ
C (z, ε) := z

ISZ
C (z, e) :=

 hY Z(y′, C(y′))
where y′ = hZY (z, e)

if e ∈ C(z)

z if e /∈ C(z)
ISZ

C (y, es) := ISZ
C (ISZ

C (z, e), s)
(7)

As before, we define ISZ
C (s) := ISZ

C (z0, s), where z0 =
hY Z(y0, C(y0)) (which is well defined for a fixed con-
troller).

For a fixed set of monitored events, it is a trivial task to
define the projection of a string. When the set of monitored
events changes dynamically along the string’s execution, in a
way that depends on the particular controller C, it is necessary
to define a controller induced projection.

Definition II.10 (Controller Induced Projection). Given a
controller C, we define PC(z, s) as the string t that is observed
upon the occurrence of the string s, when starting in Z state
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z. This can be computed as follows:

PC(z, ε) := ε

PC(z, e) :=

{
e if e ∈ C(z)
ε if e /∈ C(z)

PC(z, es) :=

{
ePC(z′, s) if e ∈ C(z)
PC(z, s) if e /∈ C(z)

where z′ = hY Z(y′, C(y′)) and y′ = hZY (z, e)

(8)

For the last case, the first argument of PC must be updated
with the new Z state if event e is observed. For brevity, we
define PC(s) := PC(z0, s).

III. K-DIAGNOSABILITY, STATE DISAMBIGUATION, AND
THE MOST PERMISSIVE OBSERVER

This section consists of three parts. In the first part, we for-
mally define the property of K-Diagnosability. In the second
part, we briefly describe the state disambiguation problem and
show that the K diagnosability property can be formulated as
a state disambiguation problem. Finally, we define the Most
Permissive Observer (MPO) in the last part.

Definition III.1 (K-Diagnosability). We recall the standard
definition of diagnosability from [3]. Adapted for a fixed K
and the context of a dynamic observer, we say that a system
G is K-diagnosable given controller C if there do not exist a
pair of strings sY , sN ∈ L(G) such that:

1) sY has an occurrence of a fault event f ∈ Ef and sN
does not.

2) sY has at least K + 1 events after the fault event f
3) PC(sY ) = PC(sN ), that is, the observed string of events

is identical given the controller.
We also say that a system G is K-diagnosable if there exists
a controller C such that G is K-diagnosable given controller
C. We call such a controller safe.

Definition III.2 (State Disambiguation Problem). The state
disambiguation problem is defined as a triple 〈Gsd,Σo, Tspec〉,
where Gsd = (Xsd,Σ, fsd, xsd0 ) is an automaton, Σo ⊆ Σ is
a set of monitorable events, and Tspec ⊆ Xsd ×Xsd is a set
of pairs that must not be confused. The state disambiguation
problem consists of finding a controller C for Gsd, which
chooses sensors to activate, such that the state of Gsd is never
confused between any pair of states in the specification Tspec.
The controller C is defined as a sequence of functions from
runs to control decisions, as in the previous section. That is,
C = (C0, C1, . . .), where Cn : Rn → 2Σo . Using the notation
defined in the previous section, we can define the problem
formally as that of finding a controller C such that:

s1, s2 ∈ L(G) : PC(s1) = PC(s2)
⇒ (f(x0, s1), f(x0, s2)) /∈ Tspec.

(9)

To formulate the K-diagnosability problem as a state dis-
ambiguation problem, we specify each of Gsd, Σo, and Tspec:
• Gsd = G+

K which is the automaton of Definition II.3, but
restricted to augmented states having counts no greater
than K + 1.

• Σo = Eo∪Es is the set of monitorable events (we assume
that C is an admissible controller).

• Finally, we define Tspec as:

Tspec =
{(u, v) ∈ X+ ×X+ s.t.
N(u) = −1 and N(v) = K + 1} . (10)

Comparing definitions III.1 and III.2, we see that this state
disambiguation problem can be satisfied if and only if there
do not exist two strings s1 and s2 with PC(s1) = PC(s2),
N(g(x+

0 , s1)) = −1, and N(g(x+
0 , s2)) = K + 1. Recall that

N(g(x+
0 , s)) is equal to −1 if there is no fault in s, and the

number of events since a fault event otherwise. If we take
s1 and s2 in this problem to correspond to sN and sY of
definition III.1, we see that the two problems are identical,
except for the fact that, in the definition of K-diagnosability
sY must have at least K + 1 events after a fault, whereas in
Tspec the string s2 has exactly K + 1 events after a fault. To
see that this makes no difference, suppose that there exist two
strings sN and sY that violate K-diagnosability and that sY
has r events after a fault. Then we may simply truncate sY to
obtain an s′Y with exactly K + 1 events after a fault. If this
shortens the projection PC(sY ), we can shorten sN as well so
that PC(s′Y ) = PC(s′N ).

Definition III.3 (K-diagnosable binary function for infor-
mation states). An information state i ∈ I violates K-
diagnosability if there exist two augmented states x+

1 , x
+
2 ∈ i

where x+
1 = (x1,−1) and x+

2 = (x2, n) for some n > K. In
light of the definition of Tspec, we define the K-diagnosability
binary function for information states DI : I → {0, 1} as:

DI(i) =

{
0, ∃u, v,∈ I : (u, v) ∈ Tspec
1, else (11)

In words, DI(i) = 1 if and only if i does not violate the
K-diagnosability property.

Definition III.4 (K-diagnosability binary functions for Y and
Z states). Having defined safe controller, we now define the
notion of safe Y and Z states. Specifically, we say that a
Y state is safe if it currently satisfies the K diagnosability
property and there exists some controller that maintains the K-
diagnosability property for all future executions of the system.
Since we can choose control decisions but not event occur-
rences, we define a Z state to be safe if all of its successor
Y states are safe. We therefore define two K-diagnosability
binary functions, DY : Y → {0, 1} and DZ : Z → {0, 1}
(similar to DI , but for Y and Z states) as follows:

DY (y) =

 1
if DI(y) = 1 and
∃C(y) : DZ(hY Z(y, C(y))) = 1

0 else
(12)

DZ(z) =

 1
if DI(I(z)) = 1 and
DY (hZY (z, e)) = 1 ∀e ∈ C(z)

0 else
(13)
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From these definitions, we can say that G is K-
diagnosable if and only if DI(y0) = 1, and ∃C(y0) :
DI(hY Z(y0, C(y0))) = 1, and ∃C(y0)∀e0 ∈ C(y0) :
DI(hZY (hY Z(y0, C(y0)), e0)) = 1, etc... Put in terms of the
information state evolution, we can equivalently say that G
is K-diagnosable if and only if ∃C such that ∀s ∈ L(G),
DI(ISY

C (s)) = 1 and DI(I(ISZ
C (s))) = 1 (in practice,

the second condition is sufficient since y ⊆ I(z) whenever
z = hY Z(y, C(y))). Thus the alternation of existential and
universal quantifiers implicitly captures the idea that there
must exist some controller such that some condition (namely
K-diagnosability in this case) must hold for all possible
strings of events.

Definition III.5 (Fault diagnosis binary function). Define the
fault diagnosis binary function DF : Y → {0, 1} as follows:

DF (y) =

{
1 if N(u) 6= −1 ∀u ∈ y
0 else (14)

In words, this means that DF (y) = 1 if and only if all possible
executions s ∈ L(G) resulting in information state y had a
fault occurrence. A Y state y satisfying DF (y) = 1 is called
diagnosed.

Definition III.6 (Most Permissive Observer). The most per-
missive observer is defined as the K-diagnosable connected
subgraph of the total observer that includes state y0, together
with an additional state F (called the “fault detected” state).
By the K-diagnosable subgraph of the total observer, we
mean the subgraph of the total observer consisting only of K-
diagnosable Y and Z states, and the transitions between them.
The recursive structure of DY and DZ therefore captures all
“safe” control decisions C(y), for all y ∈ Y (and only safe
control decisions), where by safe we mean that these decisions
do not cause an immediate or unavoidable eventual violation of
K-diagnosability. The single state F is used to denote any state
where a fault has been diagnosed. That is, a state y satisfying
DF (y) = 1. All such Y states are replaced by the single state
F , which is a terminal node in the sense that there are no
transitions out of it (i.e., we make no further control decisions
from F ).

IV. ALGORITHMIC ASPECTS OF THE MPO

This section consists of three parts. In the first part, we
present the extended specification and describe how to com-
pute it. In the second part, we prove a number of interesting
informational properties about the MPO, culminating in two
theorems providing for a simple test in determining the safety
of the Y and Z states of the MPO. Finally, we give an
algorithm for constructing the MPO in the last part.

Definition IV.1 (Extended Specification). To begin, we repeat
the definition of the extended specification found in [14]. To
do so, we must first define the natural projection P : E∗ →

(Eo ∪ Es)
∗ as:

P (ε) := ε

P (e) :=

{
e if e ∈ Eo ∪ Es

ε if e /∈ Eo ∪ Es

P (es) := P (e)P (s)

(15)

The extended specification is therefore defined as the set of all
augmented state pairs that cannot be confused because even if
all the sensors in Eo ∪ Es are turned on for the rest of time,
there still exists some sequence of events such that some pair
in Tspec will be confused:

T e
spec =

{(u, v) ∈ X+ ×X+ : ∃s1, s2 s.t. P (s1) = P (s2)
and (g(u, s1), g(v, s2)) ∈ Tspec}

(16)

There are a number of approaches for computing the
extended specification T e

spec. One approach is to explicitly
compute the automaton G+

K , reverse its transitions and then
do a depth-first search (DFS). Another method is to reverse
the augmented state transition function g on-line, while doing
a DFS. The first algorithm has the obvious disadvantage
of having greater overhead but the substantial advantage of
potentially resulting in a smaller T e

spec, since many of the
augmented states encountered in the second method might not
actually be reachable. Either way, the algorithm comes down
to a DFS over the space of pairs of augmented states with
reversed transitions. Specifically, we make use of the fact that,
if some event e is unobservable, then confusing u, v ∈ X+

implies confusing g(u, e) and v (as well as u and g(v, e)),
whereas if e is observable, then confusing u, v ∈ X+ implies
confusing g(u, e) and g(v, e).

Definition IV.2 (Extended specification binary function for
information states). In light of the definition of T e

spec, we define
the extended specification binary function for information
states De

I : I → {0, 1} as follows:

De
I(i) =

{
0, ∃u, v,∈ I : (u, v) ∈ T e

spec
1, else

(17)

In words, De
I(i) = 1 if and only if i does not violate the

extended specification.

A few theorems are necessary before showing how the
extended specification is useful.

Theorem IV.1 (More information and more observation can-
not harm safety for Y or Z states). If Z state z1 is safe, and
Z state z′1 satisfies I(z′1) ⊆ I(z1) and C(z′1) ⊇ C(z1), then
z′1 is also safe. Similarly, if Y state y1 is safe, and Y state y′1
satisfies y′1 ⊆ y1 and then y′1 is also safe.

Corollary IV.2 (Observing more cannot harm safety). If
control decision C1 is safe in Y state y1, then so is any control
decision C ′1 ⊇ C1.

Lemma IV.3 (Equality of projection when everything is
observed is equivalent to equality of projection under all
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controllers). For any two strings s1, s2 ∈ E∗ and starting
Z state z, P (s1) = P (s2)⇔ ∀C,PC(z, s1) = PC(z, s2).

Theorem IV.4 (Safety is equivalent to satisfying the extended
specification for Z states). For any Z state z, we have
DZ(z) = De

I(I(z)). That is, a Z state is safe if and only
if it satisfies the extended specification.

Note that this immediately implies that the safety of a Z
state is solely dependent on its information state component,
and not on its associated control decision.

Theorem IV.5 (Safety is equivalent to satisfying the extended
specification for Y states). For any Y state y, we have
DY (y) = De

I(y). That is, a Y state is safe if and only if
it satisfies the extended specification.

These last two theorems have important implications. With-
out making use of the extended specification, determining
the safety of any control decision is no simple matter. The
structure of the MPO itself provides the only obvious means
for attempting this, which is to search through the space of
Y and Z states until all remaining states that can be reached
are either known to be unsafe (if DI(·) = 0), or have already
been visited (i.e., the search has run into a loop). Indeed, this
was the algorithm we were using before adopting the state
disambiguation approach and it can take exponential time in
the size of G, every time we want to determine the safety of a
control decision. On the basis of previous results, the extended
specification approach allows us to circumvent this problem
by simply replacing this whole search by a single subroutine
called each time we would like to determine the safety of a par-
ticular information state. At any Y state y, we can determine
whether or not it is safe to take control decision C(y) through
two steps: first, we compute z = hY Z(y, C(y)) and, second,
we verify whether I(z) satisfies the extended specification.
The first step takes is accomplished through a depth first search
over G+

K and therefore takes time O(K|X| · |E|) whereas the
second step takes time proportional to the size of the extended
specification, which is O(K|X|2). Thus, the total running time
is O(K|X|(|X|+ |E|)).

The basic outline of an implemented algorithm for con-
structing the MPO is shown in Algorithm DoDFS. The algo-
rithm simply performs a depth-first search (DFS). The param-
eter G represents the finite-state automaton, the parameter y
is a Y state, and the parameter E contains the set of events
Eo (E.eo in the algorithms), Es (E.es in the algorithms), Euo

and Ef . The algorithm DoDFS searches through the space of
Y states and, for each encountered Y state y, finds the safe
control decisions. Finding the safe control decisions is done in
lines 2-10. This is accomplished by considering each subset of
events el ⊆ E.es, and determining whether it is safe to choose
to monitor only the events el ∪ E.eo. This determination is
made by a call to DeI (which simply computes the value of
De

I(I(hY Z(y, el ∪ E.eo))). If the control decision is safe, it
is added to the list sl (state list) and y is marked as safe.
Traversing the space of Y states is done on lines 11-19. This
is accomplished by considering all safe control decisions of

1: procedure DODFS(G, y, Tespec, sl, E)
2: for all el ⊆ E.es do . Try all subsets of events
3: ur ← GetUR(y,E.eo ∪ el) . Unobservable reach
4: if DeI(ur, Tespec) = true then
5: Add (y,E.eo ∪ el) to sl . Control decision
E.eo ∪ el in state y is safe

6: end if
7: end for
8: if y is not marked “safe” then
9: Mark y as “unsafe”

10: end if
11: for all el ⊆ es s.t. (y,E.eo ∪ el) ∈ sl do . Try all

safe control decisions
12: ur ← GetUR(y,E.eo ∪ el) . Unobservable reach
13: for all e ∈ E.eo ∪ el do . Try all events
14: next← Next(ur, e) . Get next y state
15: if next not marked then
16: DoDFS(G,next, Tespec, sl, E)
17: end if
18: end for
19: end for
20: end procedure

the current y state, determining the next Z state and, for each
such Z state, computing all possible successor Y states and
making a recursive call. Since there are a finite number of
augmented states with count at most K + 1, there are a finite
number of information states that will be traversed and the
algorithm must eventually terminate. The initial call to the
algorithm (not shown here) is: DoDFS(G, y0,K, ∅, E).

Proposition IV.1 (Running time of DoDFS). The running time
of algorithm DoDFS is in O([2(K+3)|X|][2|Es|][(K+3)|X|2]).

If a fault event occurs multiple times, it needs to be tracked
(i.e., included in the information state) once for each potential
occurrence. If there are multiple different faults to diagnose, it
is actually preferable to define mutiple different MPOs, one for
each fault, rather than defining a single one that diagnoses all
faults, since the latter method would require keeping a separate
count for each type of fault event, which would dramatically
increase the size of the state space. If the MPO is found to
be in the F state, then the system designer could potentially
reset the system and simultaneously reset the MPO.

An example of the MPO is useful at this point:

Example IV.1 (A simple example). Consider the automaton
on the left side of Fig. 1. If we take K = 1, the specification
Tspec is given by Tspec = {(u, v) ∈ X+ × X+ : N(u) =
−1 ∧ N(v) = K + 1 = 2}. If we use the first method for
computing T e

spec, that is, the method in which we construct
G+

K , then we obtain the following extended specification:

T e
spec = {((0,−1), (5, 2)), ((1,−1), (5, 2)),

((2,−1), (5, 2)), ((0,−1), (4, 1))}
Note that this T e

spec is much smaller than the original Tspec. If
we had computed T e

spec using the on-line algorithm, the result
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Fig. 1. Left: A finite state automaton. Events are classified as follows: Eo = ∅, Es = {a, b}, Euo = {t}, and Ef = {f}. Right: The corresponding
information state based MPO.

would have been at least as large as Tspec (and somewhat larger,
in fact). Since ((0,−1), (4, 1)) ∈ T e

spec, event b must be moni-
tored initially. If C(y0) = {b} only, then z0 = hY Z(y0, {b}) =
({(0,−1), (1,−1), (3, 0)}, {b}). Upon the occurrence of event
b, we obtain y1 = hZY (z0, b) = {(2,−1), (4, 1)}. Since
((2,−1), (5, 2)) ∈ T e

spec, it is now necessary to monitor event
a. Thus, z1 = hY Z(y1, {a}) = ({(2,−1), (4, 1)}, {a}). If the
system is truly in state (2,−1), then no observable event will
ever occur and we will remain perpetually uncertain as to
whether or not a fault event occurred. This is not a problem,
because we do know that, if a fault occurred, only one event
has occurred since. On the other hand, if we do observe
event a, then we obtain y2 = hZY (z0, a) = (5, 2), and we
can diagnose the fault. Now, return to the very first control
decision. If we choose to monitor both events a and b, then
we obtain z0 = hY Z(y0, {a, b}) = ({(0,−1), (3, 0)}, {a, b}).
If event b occurs, we obtain y1 = hY Z(z0, b) = {(4, 1)} and
we can immediately diagnose the fault. On the other hand, if
event a occurs, then we obtain y1 = hY Z(z0, a) = {(1,−1)},
and all further control decisions are irrelevant since we know
that no fault has occurred in the past or can occur in the future.
Interestingly, this means that, by choosing to observe more
initially, we can actually achieve 0-diagnosability. The MPO
obtained is shown on the right side of Fig. 1. In the diagram of
the MPO, rectangular states correspond to Y states and oval
states correspond to Z states. This is the same notation used
in [5].

V. CONCLUSION

We considered the problem of finding optimal dynamic
sensor activation policies that enforce the K-diagnosability
property. We defined the most permissive observer (MPO),
whose structure contains all the solutions to the problem. We
then proceeded to formulate the K-diagnosability property in
terms of the state disambiguation problem, and proved the
central result of this paper, namely that there exists a simple
test for determining safe control decisions at each point in
the system’s execution. We then translated this result into an
effcient algorithm for constructing the MPO, which can be
done on-line. That is, although the entire MPO is exponential
in size, we showed that the safety of individual control deci-
sions can be efficiently determined at each information state.
In future work, we will investigate improving the efficiency of

our algorithms, and work on the problem of finding a single
optimal controller, using the MPO as a basis.
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