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Abstract— A sparse approximation of a function is an ap-
proximation given by a linear combination of “many” basis
functions, where the vector of linear combination coefficients is
sparse, i.e. it has only “a few” non-zero elements. Identifying a
sparse approximation of an unkown function from a set of
data can be useful for many applications in the automatic
control field: system identification, basis function selection,
regressor selection, nonlinear internal model control, nonlinear
feed-forward control, direct inverse control, predictive control,
fast online applications. In this paper, a combined ℓ1-relaxed-
greedy algorithm for sparse identification is proposed and a
Set Membership optimality analysis is carried out. Assuming
that the noise affecting the data is bounded in norm and that
the unknown function satisfies a mild regularity condition, it
is shown that the algorithm provides an almost-optimal (in a
worst-case sense) approximation of the unknown function. A
simulation example is shown, related to direct-inverse control
of a power kite used for high altitude wind energy conversion.

I. INTRODUCTION

Sparse approximation consists in approximating a function

using “a few” basis functions properly selected within a

“large” set. More precisely, a sparse approximation is a linear

combination of “many” basis functions, but the vector of

linear combination coefficients is sparse, i.e. it has only “a

few” non-zero elements. Deriving a sparse approximation

of an unknown function from a set of its values (possibly

corrupted by noise) is here called sparse identification.

Sparsification methods are relevant in many applications:

compressive sensing [1], [2], [3], bioinformatics [4], com-

puter vision [5], signal processing [6], [7], [8], source

separation [9], denoising [10], linear regression [11], and

regularization [12]. Analogies between sparse approximation

and support vector machines have been shown in [13].

Recently, sparsification methods have been introduced in

the automatic control field [14], [15], [16], with promising

results. In this field, sparsification methods might be effective

for both system identification and control design. In system

identification, applications might include regularization, ba-

sis function selection, regressor selection, input selection. In

control design, applications might include nonlinear internal

model control, nonlinear feed-forward control, direct inverse
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control (see Section VI), predictive control, fast online ap-

plications.

The sparsity of a vector is typically measured by the ℓ0
quasi-norm, defined as the number of its non-zero elements.

Sparse identification can be performed by looking for a

coefficient vector of the basis function linear combination

with a “small” ℓ0 quasi-norm. However, the ℓ0 quasi-norm

is a non-convex function and its minimization is in general

an NP-hard problem. Two main approaches are commonly

adopted to deal with this issue: convex relaxation and greedy

algorithms, [17], [18], [19], [20]. In convex relaxation, a

suitable convex function, e.g. the ℓ1 norm, is minimized

instead of the ℓ0 quasi-norm, [18], [19], [20]. In greedy

algorithms, the sparse solution is obtained iteratively, [17].

An interesting feature of these approaches is that, under cer-

tain conditions, they provide sparsest solutions, i.e. solutions

which also minimize the ℓ0 quasi-norm, [17], [18], [19], [21].

In this paper, a combined ℓ1-relaxed-greedy algorithm is

proposed for sparse identification. A condition under which

the algorithm provides a sparsest solution is given in [22].

Then, a Set Membership optimality analysis is performed in

order to assess the accuracy of the approximation obtained

by the ℓ1-relaxed-greedy algorithm. It is assumed that the

noise affecting the data is bounded in norm and that the

unknown function satisfies a mild regularity condition. It

is shown that the ℓ1-relaxed-greedy algorithm provides an

almost-optimal approximation of the unknown function (i.e.

an approximation whose worst-case identification error is not

larger that twice the minimum achievable one). Note that the

optimality analysis carried out here is completely different

from the one in [22], since in [22], the unknown function to

approximate is assumed to be of a given parametric form.

A simulation example is finally presented, related to direct-

inverse control of a power kite used for high altitude wind

energy conversion.

II. NOTATION AND BASIC NOTIONS

A column vector is indicated by a = (a1, a2, . . . , an) ∈
R

n×1, a row vector by aT = [a1, a2, . . . , an] ∈ R
1×n. For

a matrix/vector A ∈ R
K×n, K ∈ {1, 2, . . .}, and a set of

indices λ = {i1, i2, . . . , im} ⊂ {1, 2, . . . , n}, let us introduce

the notation

Aλ
.
= [Ai1 , Ai2 , . . . , Aim]

where Aj are the columns/elements of A. For a partially

ordered set A = {A1, A2, . . . , AN}, and a set of indices

λ = {i1, i2, . . . , im} ⊂ {1, 2, . . . , N}, let us introduce a

similar notation:

Aλ
.
= {Ai1 , Ai2 , . . . , Aim

}.
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The ℓq norm of a vector a is defined as

‖a‖q

.
= (

∑n
i=1 |ai|

q
)

1

q , q ∈ [1,∞),

‖a‖∞
.
= max

i=1,..,n
|ai| .

The ℓ0 quasi-norm of a vector a ∈ R
n is defined as the

number of its elements which are not null:

‖a‖0
.
= card (supp (a)) (1)

where card (·) is the set cardinality, and supp (a) is the

support of a, defined as the set of indices at which a is

not null:

supp (a)
.
= {i ∈ {1, 2, . . . , n} : ai 6= 0} .

The ℓ0 quasi-norm is commonly used to measure the sparsity

of a vector: the smaller is the ℓ0 quasi-norm, the sparser is the

vector. The complement of supp (a), i.e. the set of indices

at which a is null, is denoted by

supp (a)
.
= {i ∈ {1, 2, . . . , n} : ai = 0}
= {1, 2, . . . , n} \ supp (a) .

The Lp norm of a function f : X → Y , where X ⊆
R

nx and Y ⊆ R, is defined as

‖f‖p ≡ ‖f (·)‖p

.
=

[∫
X
|f (x)|

p
dx

] 1

p , p ∈ [1,∞),

‖f‖∞ ≡ ‖f (·)‖∞
.
= ess supx∈X |f (x)| .

Consider a generic feasible optimization problem

a = arg min
a

J (a)

subject to g (a) ≤ 0.

If this problem admits a set of solutions, then a indicates

one of these solutions. Otherwise, a is the unique solution.

III. PROBLEM SETTING

Consider a nonlinear function f0 defined by

y = f0 (x) (2)

where x ∈ X ⊂ R
nx , y ∈ Y ⊂ R, and X and Y are

compact sets. Suppose that f0 is not known but a set of noise-

corrupted data D = {x̃k, ỹk}
L
k=1 is available, described by

ỹk = f0 (x̃k) + dk, k = 1, 2, . . . , L (3)

where dk is noise.

Problem 1: Identify a sparse approximation of f0 from the

data set D. That is, identify from the data set D a function

of the following parameterized form:

fa (x, a) =
n∑

i=1

aiφi (x) = φ (x) a (4)

where φ (x) = [φ1 (x) , φ2 (x) , . . . , φn (x)], φi : X → Y
are basis functions, and a = (a1, a2, . . . , an) ∈ R

n is a

coefficient vector such that:

(i) a is “sparse”;

(ii) the identification error

e (fa)
.
= ‖f0 − fa‖p (5)

is “small”. �

In this paper, following a Set Membership framework

[23], [24], [25], [26], [27], the noise sequence d =
(d1, d2, . . . , dL) is assumed to be unknown but bounded:

‖d‖2 ≤ µ (6)

for some µ ≥ 0. No statistical assumptions on the noise

dk such as stationarity, uncorrelation, type of distribution,

etc. are made. Indeed, such assumptions may be hard to be

verified in several situations. Moreover, they are not suitable

to evaluate the identification error for finite number of data

L. A Set Membership optimality analysis for the case of

ℓ∞-norm-bounded noise is at present under investigation. As

well known, the ℓ∞ norm is more suitable for amplitude

bounded noises, while the ℓ2 norm for energy bounded

noises.

A solution to Problem 1 can thus be found by looking

for a function fa (x, a) of the form (4) such that 1) a is

sparse; 2) fa (x̃, a) is consistent with the measured data and

the prior assumptions on noise. Since the measured data are

described by (3) and the prior assumptions on noise are given

by (6), we have consistency if the following inequality holds:

‖ỹ − fa (x̃, a)‖2 = ‖ỹ − Φa‖2 ≤ µ, where

ỹ
.
= (ỹ1, . . . , ỹL)

Φ
.
=




φ1 (x̃1) · · · φn (x̃1)
...

. . .
...

φ1 (x̃L) · · · φn (x̃L)




=
[

φ1 (x̃) · · · φn (x̃)
]
.

From (1), minimizing the ℓ0 quasi-norm of a vector corre-

sponds to minimizing the number of its non-zero elements,

i.e. to maximizing its sparsity. Thus, the sparsest approxima-

tion of f0 consistent with the measured data and the prior

assumption is a function fa

(
x, a0

)
of the form (4), where

a0 a solution of the following optimization problem:

a0 = arg min
a∈Rn

‖a‖0

subject to ‖ỹ − Φa‖2 ≤ µ.
(7)

Definition 1: For given ỹ, Φ and µ, a coefficient vector

is said maximally sparse if it is solution of the optimization

problem (7). �

Unfortunately, the optimization problem (7) cannot be

solved in general, since the ℓ0 quasi-norm is a non-convex

function and its minimization is an NP-hard problem. Two

main approaches are commonly adopted to deal with this

issue: convex relaxation and greedy algorithms, [17], [18],

[19], [20]. In convex relaxation, an optimization problem

similar to (7) is solved, where the ℓ0 quasi-norm is replaced

by a suitable convex function. The ℓ1 norm is often used,

since this norm is the convex envelope of the ℓ0 quasi-norm,

[18], [19], [20]. In greedy algorithms, a sparse solution is

obtained iteratively, by successively individuating the “most

important” vector elements, [17]. A fundamental feature

of these approaches is that, under certain conditions, they

provide sparsest solutions, [17], [18], [19], [21]. However,

the verification of these conditions is in general hard from
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a computational standpoint, and can actually be performed

only for particular types of basis functions.

In [22], a condition easily verifiable for any kind of

basis functions is given, under which a vector is maximally

sparse. Nevertheless, in situations where this condition is

not satisfied, it is useful to consider a notion of maximum

sparsity weaker than the one introduced in Definition 1.

Definition 2: For given ỹ, Φ and µ, a coefficient vector is

said maximally ζ-sparse if it is solution of the optimization

problem (7) subject to the additional constraints ai = 0,

i /∈ ζ, where ζ ⊂ {1, 2, . . . , n}. �

According to Definitions 1 and 2, a coefficient vector

which is maximally ζ-sparse for a set of indices ζ ⊂
{1, 2, . . . , n}, may not be maximally sparse, but it is anyway

the sparsest one among all the vectors with ai = 0, i /∈ ζ.

This property is important since it ensures that no other

elements ai of a except those with index i /∈ ζ can be set to

zero without yielding ‖ỹ − Φa‖2 > µ.

IV. SPARSE IDENTIFICATION OF NONLINEAR FUNCTIONS

In this section, a combined ℓ1-relaxed-greedy algorithm,

completely based on convex optimization, is proposed for

solving the sparse identification Problem 1.

Algorithm 1

1) Solve the optimization problem

a1 = arg min
a∈Rn

‖a‖1 (8)

subject to ‖ỹ − Φa‖2 ≤ µ (9)

and define the following set of indices:

r
(
a1

) .
=

{
i1, . . . , ij : 0 <

∣∣a1
i1

∣∣ ≤ . . . ≤
∣∣∣a1

ij

∣∣∣
}

2) Compute the coefficient vector a∗ as follows:

for k = 1 : card
(
r
(
a1

))

ck = arg min
a∈Rn

‖ỹ − Φa‖2 (10)

subject to ai = 0,

i ∈ supp
(
a1

)
∪ rλ

(
a1

)

λ = {1, . . . , k}

if
∥∥ỹ − Φck

∥∥
2
≤ µ (11)

a∗ = ck

else

break

end

end �

Algorithm 1 provides an estimate a∗ of a0, where a0 is

a maximally sparse coefficient vector, solution of the non-

convex optimization problem (7). In [22], a condition is

provided, ensuring that a∗ has the same support as a0, and

is thus a maximally sparse vector as well. If a∗ turns out

to be not maximally sparse, this condition can be applied to

the reduced vector a∗
ζ and matrix Φζ , where ζ is the set of

indices at which a∗ is not null, in order to check if a∗ is

maximally ζ-sparse (see Definition 2).

V. SET MEMBERSHIP OPTIMALITY ANALYSIS

In Section IV, an ℓ1-relaxed-greedy algorithm is presented,

able to derive a “sparse” approximation of the function f0,

thus allowing the accomplishment of the requirement (i)

of the identification Problem 1. In this section, considering

a Set Membership framework [23], [24], [25], [26], [27],

this approximation is shown to have “small” identification

error, thus allowing us to satisfy also the requirement (ii) of

Problem 1.

In order to ensure a bounded identification error, some

assumptions have to be made on the noise affecting the

data and on the unknown function f0. In this paper, the

noise sequence d = (d1, d2, . . . , dL) in (3) is assumed to be

bounded according to (6). A regularity assumption is made

on f0, not requiring any knowledge on its functional form.

Consider the following approximation of the function f0:

f∗ (x) =
n∑

i=1

a∗
i φi (x) (12)

where φ1 (x) , φ2 (x) , . . . , φn (x) are known basis functions

and a∗ is the parameter vector identified using Algorithm

IV from the data set D described in (3). Define the residue

function ∆ as

∆(x)
.
= f0 (x) − f∗ (x) .

In this subsection, it is assumed that f0 is a function whose

residue ∆ is Lipschitz continuous over the compact set X:

∆ ∈ F (γ)
.
= {f : |f (x) − f (x̂)| ≤ γ ‖x − x̂‖2 ,∀x,x̂∈ X}

(13)

where the Lipschitz constant γ can be chosen by means of

the procedure presented in [27]. Note that this assumption

is not restrictive. Indeed, it is certainly satisfied for some

γ < ∞, if f0 and f∗ are Lipschitz continuous. This kind

of assumption has been introduced in [27], and allows us to

analyze the optimality properties of an approximation when

no information is available on the parametric form of f0.

Under the assumptions (13) and (6), we have that f0 ∈ FFS,

where FFS is called the Feasible Function Set.

Definition 3: The Feasible Function Set is

FFS
.
= {f : f = f∗ + ∆, ∆ ∈ F (γ) , ‖ỹ − f (x̃)‖2 ≤ µ}

where ỹ = (ỹ1, . . . , ỹL) and f (x̃)
.
= (f (x̃1) , . . . ,

f (x̃L)). �

According to this definition, FFS is the set of all func-

tions consistent with prior assumptions and data. As in

Subsection V, the prior assumptions are considered validated

if at least an estimate consistent with these assumptions and

the data exists, i.e. if FFS is not empty, see also [24], [26],

[27].

Definition 4: Prior assumptions are validated if FFS 6=
∅. �

The following theorem gives a necessary and sufficient

condition for the validation of prior assumptions.

Theorem 1: FFS 6= ∅ if and only if the optimization

problem (8) is feasible.
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Proof. See [28] �

Now assume that FFS 6= ∅. For a given approximation f̂

of f0, a tight bound on the identification error e
(
f̂
)

defined

in (5) is given by the following worst-case error.

Definition 5: Worst-case identification error of an approx-

imation f̂ :

EN
(
f̂
)

.
= sup

f∈FFS

∥∥∥f − f̂
∥∥∥

p

where ‖·‖p is the functional Lp norm. �

An optimal approximation is thus defined as a function

fop which minimizes the worst-case identification error.

Definition 6: An approximation fop is optimal if

EN (fop) = inf
f̂

EN
(
f̂
)

. �

However, finding optimal approximations may be hard or

not convenient, and sub-optimal solutions are looked for.

In particular, approximations called interpolatory are often

considered in the literature.

Definition 7: An approximation fI is interpolatory if

fI ∈ FFS. �

A fundamental property of an interpolatory approximation

is that it guarantees a “small” worst-case error. Indeed, the

degradation of an interpolatory approximation with respect

to an optimal approximation is of at most 2: EN (fI) ≤

2 inf
f̂

EN
(
f̂
)

, see [29], [24]. An approximation with this

property is called almost-optimal. Note that any interpola-

tory approximation is almost-optimal, but not necessarily an

almost-optimal approximation is interpolatory.

The following theorem shows that the approximation f∗

defined in (12), where a∗ is identified by Algorithm 1
from the data set D described in (3) is interpolatory (and

thus almost-optimal). The theorem also provides an explicit

expression of the worst-case identification error. Let us define

the following functions:

∆ (x, ε̂)
.
= min

k=1,...,L
(δk (a∗) + ε̂k + γ ‖x − x̃k‖2)

∆ (x, ε̂)
.
= max

k=1,...,L
(δk (a∗) − ε̂k − γ ‖x − x̃k‖2)

where δk (a∗) = ỹk − f∗ (x̃k) and ε̂k ≥ 0, k = 1, . . . , L.

Theorem 2: For any functional Lp norm, with p ∈ [1,∞]:
(i) The approximation f∗ is interpolatory (and thus almost-

optimal).

(ii) The worst-case identification error of f∗ is bounded as

EN (f∗) ≤ max
‖ε̂‖

2
≤µ

‖ǫ̂‖
2
≤µ

∥∥∆ (·, ε̂) − ∆ (·, ǫ̂)
∥∥

p
. (14)

Proof. See [28]. �

Note that both the approximations provided by step 1

and 2 of Algorithm 1 are sparse. The one derived in step

2 is in general sparser than the one given by step 1.

Both the approximations are almost-optimal if the required

assumptions are satisfied, but none of them is guaranteed to

be optimal. Indeed, deriving an optimal sparse approximation

is at present an open problem.

VI. EXAMPLE: DIRECT-INVERSE CONTROL OF A POWER

KITE FOR HIGH ALTITUDE WIND ENERGY CONVERSION

The Kitenergy technology aims to harvest High Altitude

Wind Energy (HAWE) by using tethered flexible wings

(power kites), connected to the ground by means of two

lines, made of strong composite fibre and wound around

two drums, kept at ground level and linked to reversible

electric motors. The system composed by the kite, the lines,

the onboard sensors, the drums, the generators and the

control hardware is named Kite Steering Unit (KSU). The

KSU can be employed in different configurations to generate

energy (see e.g. [30] for details). In the so-called KE-yoyo

configuration, the KSU is fixed with respect to the ground

and energy is generated by continuously repeating a two-

phase cycle, in which the lines are unrolled under high

pulling forces, thus generating power, and then rolled back

under low pulling forces. In the KE-carousel configuration,

the line length is kept constant and energy is produced by

exploiting the motion of the KSU along a fixed path on the

ground, towed by the kite. Whatever configuration is used,

the kite has to be controlled to fly on figure-eight paths in

crosswind conditions (see Figure 2), which maximize the

pulling forces on the line and hence the generated electrical

power. However, such paths are unstable and thus cannot

be tracked without some feedback control, see e.g. [31].

Therefore, one of the key components of the Kitenergy

system is the control system, which should guide the kite

in order to generate the maximum amount of power, while

at the same time satisfying operational constraints, since the

wing has to be kept above a minimal height from the ground

and line wrapping has to be avoided. The design of the

kite control system has been carried out in [31], [30] by

applying nonlinear model predictive control techniques with

quite good results, but they rely on an accurate model of the

system, which in this case is hard to derive. A Sparse Direct

Inverse Control (SDIC) approach is employed here instead.

The model described in [30] is used as the “real” system,

with the parameters’ values indicated in Table I. In this

TABLE I

MODEL PARAMETERS

m 5 Kite mass (kg)

A 10 Characteristic area (m2)

dl 0.0035 Diameter of a single line (m)

ρl 970 Line density (kg/m3)

CD,l 1 Line drag coefficient

α0 3.5 Base angle of attack (◦)

ρ 1.2 Air density (kg/m3)

r 50 Line length (m)

d 5 Distance between the lines’ hang points
on the kite (m)

∆t 0.1 Sample time (s)

model, a Cartesian coordinate system (X,Y,Z) is consid-

ered, with X axis aligned with the nominal wind speed
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vector direction. Wind speed vector is represented as ~Wl =
~W0 + ~Wt, where ~W0 is the nominal wind, supposed to be

known and expressed in (X,Y,Z) as:

~W0 =




Wx(Z)
0
0


 (15)

Wx(Z) is a known function which describes the variation

of wind speed with respect to the altitude Z (see e.g. [32]).

The term ~Wt may have components in all directions and is

not supposed to be known, accounting for wind unmeasured

turbulence. In system (X,Y,Z), the kite position can be

expressed as a function of its distance r from the origin and

of the two angles θ and ϕ. The variable r is also the length

of the lines, supposed to be straight. For simplicity, a fixed

value of r is used here, but the SDIC approach proposed

here can be used without significant modifications also with

a variable line length r. The system model is described by

a set of differential equations (see [30]):

ż (t) = h (z (t) , u (t) ,Wt (t)) (16)

where z (t) = (θ (t) , θ̇ (t) , ϕ (t) , ϕ̇ (t)) is the state of the

system, W is the wind speed, u (t) = arcsin (∆l/d) is the

command input of the system, ∆l is the difference between

the lengths of the two lines, d is the distance between the

attachment points of the two lines on the kite. The model

(16) is supposed to be unknown here, but a finite set of

noise-corrupted data can be acquired through preliminary

experiments. In order to collect these data, a real-time

simulator of the model (16) has been developed, where the

input u (t) can be chosen by means of a joystick. Using this

simulator and considering a sampling period Ts = 0.5 s, a set

of L = 2000 measurements ũk = u (Tsk) , z̃k = z (Tsk) ,
k = 1, 2, . . . , L, has been generated. In this simulation, the

kite has been ”manually” piloted by means of the joystick in

such a way to cover the region ϕ ∈ [−1, 1] rad, θ ∈ [0.5, 1.5]
rad, without falling down. The following wind shear model

(see (15)) has been used

Wx(Z) =

log

(
Z

0.1

)

log

(
50

0.1

)6.7 (17)

Nominal wind speed is about 6 m/s at 30 m of altitude.

Wind turbulence has been simulated by adding to the nominal

wind ~W0 a random Gaussian vector of zero mean and

standard deviation std(w(t)) = (1.5, 1.5, 1.5) m/s. The

measurements of each component of the state z̃k have been

corrupted by a white gaussian noise with a noise to signal

standard deviation ratio of 3%.

A discrete-time inverse model of (16) has been identified

from the generated data. This inverse model is given by

uk = f∗ (zk+1, zk)

where k = 0, 1, . . . is the discrete time, uk = u (Tsk) , zk =
z (Tsk), and f∗ is an interpolatory sparse function of the

form (12), identified by means of Algorithm 1 from the data

D = {(z̃k+1, z̃k) , ũk}
L
k=1. A set of n = L = 2000 Gaussian

basis functions of the form

φi (x) = e−‖Q(x−x̃i)‖
2

(18)

has been used, where Q ∈ R
nx×nx is a diagonal matrix

whose kth element is proportional to the width of the func-

tion along the dimension k. An optimal choice of the diago-

nal elements of Q has been performed by means of Lemma

2 in [27]. Among this set of functions, Algorithm 1 selected

47 basis functions (11 iterations have been performed in step

2 of the algorithm). The optimization problems in Algorithm

1 have been solved using the CVX package [33], [34].

The direct-inverse controller has been obtained as

uk = f∗ (rk+1, zk)

where rk is a reference signal. Note that, since f∗ is sparse

(only 47 basis functions are used), the evaluation of this

controller is very “fast” and can be easily performed on-

line. Based on this controller, the control system depicted in

Figure 1 has been implemented in Simulinkr.

f * 
kite

 

wind
 

rk+1 
zk ψk 

Fig. 1. Kite control system.

The control system has been tested using a reference signal

corresponding to a periodic orbit having, in the (ϕ, θ)-plane,

a figure-eight shape, see Figure 2. As previously discussed,

this kind of orbit is optimal in terms of traction force

maximization, but it is unstable without feedback control.

In Table II, the Root Mean Square tracking Errors are

reported for two levels of turbulence: weak turbulence

(std(w(t)) = (0.5, 0.5, 0.5) m/s) and strong turbulence

(std(w(t)) = (2, 2, 2) m/s). These errors have been com-

puted as RMSEi =

√
1

200

∑200

k=1

(
ri
k − zi

k

)2
, where the

superscript indicates the vector component. In Figure 2, the

kite orbit is compared in the (ϕ, θ)-plane to the reference for

the two wind strength levels. From these results, it can be

concluded that the direct-inverse controller is able to yield

an accurate tracking, even for strong wind turbulence.

Note that the situation simulated in this example is quite

realistic: in a first phase, the kite is ”manually” piloted

in order to generate data; in a second phase, the data are

used for model identification and/or control design; in a

third phase, the kite is automatically piloted by the designed

controller.

VII. CONCLUSIONS

A combined ℓ1-relaxed-greedy algorithm of nonlinear

functions has been proposed. A Set Membership optimality
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wind std RMSE1 RMSE2 RMSE3 RMSE4

1 0.0079 0.0086 0.0131 0.0082

5 0.0288 0.0202 0.0521 0.0316

TABLE II

ROOT MEAN SQUARE TRACKING ERRORS.
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Fig. 2. Kite orbit. Above: weak wind. Below: strong wind. Bold (black)
line: reference. Dashed (red) line: kite trajectory.

analysis has been performed in order to assess the iden-

tification accuracy of the approximations provided by the

algorithm. It has been shown that the algorithm allows us

to derive interpolatory (and thus almost-optimal) approxima-

tions of the unknown function to be identified. A simulation

example has been presented, related to direct-inverse control

of a power kite used for high altitude wind energy conver-

sion. This example shows that the proposed algorithm can

be used with satisfactory results in quite difficult problems,

involving complex nonlinear systems.
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