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Abstract— This paper presents a novel approach to the design
of estimators for nonlinear systems. The proposed methodology
is based on a combination of linear model-based Moving
Horizon Estimation (MHE) and nonlinear Direct Virtual Sensor
(DVS) techniques. Stability of the designed estimator is guar-
anteed and convex constraints on the variables to be estimated
can be easily taken into account. Moreover, the optimality of
the approach with respect to an “ideal” MHE (obtained by
assuming exact knowledge of the system dynamics and of the
global solution of the related nonlinear program) is analyzed.
The approach is tested on a nonlinear mass-spring-damper
system.

I. INTRODUCTION

In this paper, we study the problem of estimating, at each

time step t, a variable of interest vt in a nonlinear discrete-

time dynamical system. The variable vt is assumed to be

a nonlinear function of the system state xt and input ut,

and it can be subject to constraints. Estimation problems for

nonlinear systems are in general very difficult. The common

approach is to obtain approximate solutions such as extended

Kalman filters, [1], [2], [3], unscented Kalman filters, [4],

ensemble filters, [5], or particle filters, [6], [7], [8]. However,

no optimality properties are usually guaranteed by these

approximations, even the stability of the estimation error is

often not ensured. One of the few filtering techniques that

are able to effectively cope with these issues is Moving

Horizon Estimation (MHE) (see e.g. [9], [10]). In MHE,

at each time step t an estimate v̂t of vt is computed, by

solving a constrained optimization problem, which involves

the simulation of a model of the system and the optimization

of an estimate of the initial state some τ steps in the past.

Such an optimization procedure is repeated at each time

step, in a moving horizon (or receding horizon) fashion [9].

Interesting features of MHE are the possibility to treat in a

quite straightforward way nonlinear models, and to include

state and input constraints in the formulation. Moreover, by

suitably designing the cost function of the underlying opti-

mization problem, stability of the estimation error can be also

guaranteed [9]. However, it has to be noted that MHE relies

heavily on the knowledge of a system model, and this model

may result to be inaccurate with consequent degradation of

the estimation accuracy. Moreover, when nonlinear models
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are used, the resulting optimization problem may be not

convex and finding a global minimum may thus involve a

high computational complexity. On the other hand, when

used with a linear model that has sufficiently good accuracy

in a neighborhood of some system operating point, the MHE

optimization problem is convex and it can be efficiently

solved, and the resulting filter (referred to as “convex MHE”

here) usually gives very good performance when the system

state is close to such operating conditions.

In this paper, we propose a method that allows one to

improve the performance of a convex MHE, when the system

operating conditions are different from the ones pertaining

to the linear model embedded in the MHE filter itself. At the

same time, the method is able to exploit the good accuracy

that the convex MHE achieves when the underlying linear

model is accurate. The method can be applied to any convex

MHE and it is based on the concept of Direct Virtual Sensor

(DVS), i.e. a filtering algorithm derived directly from a finite

number of measured data, without using a system model

[11], [12]. We study here the features of this new technique,

and we apply it in a simulation example, where the problem

of estimating the state of a nonlinear mass-spring-damper

system is considered.

II. PROBLEM FORMULATION

Consider a discrete-time, generally nonlinear system de-

scribed in state-space form:

xt+1 = F (xt, ũt, wt)
ỹt = Hy (x

t, ũt, wt)
vt = Hv (x

t, ũt)
(1)

where t ∈ N, xt ∈ R
nx is the system state, ũt ∈ R

nu

is the measured input, ỹt ∈ R
ny is a measured output,

wt ∈ R
nw is an unmeasured disturbance, and vt ∈ R

nv

is an unmeasured variable of interest. Note that in (1)

the disturbance w is a vector that includes both process

disturbance and measurement noise.
In the following, a sequence of input values starting

from time step t1 up to time step t2 will be denoted by

Ũ t2
t1

= {ũt}t=t2
t=t1

. Likewise, Ỹ t2
t1

and W t2
t1

denote sequences
of outputs and disturbances. The predicted trajectory of the
state of system (1) at time step t obtained by starting from
the state xt−j at time step t − j and by applying given

sequences of inputs Ũ t−1
t−j and disturbances W t−1

t−j is indi-

cated as x(t, t−j, xt−j , Ũ t−1
t−j ,W

t−1
t−j ), while the disturbance-

free predicted trajectory (i.e. W t−1
t−j = 0) is denoted by

x(t, t − j, xt−j , Ũ t−1
t−j ). The predicted output at time step t

starting from the state xt−j at time step t− j and applying

given sequences of inputs Ũ t
t−j and W t

t−j is denoted by
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y(t, t−j, xt−j , Ũ t
t−j ,W

t
t−j), while y(t, t−j, xt−j , Ũ t

t−j) de-

notes the disturbance-free predicted output. Similarly, v(t, t−
j, xt−j , Ũ t

t−j ,W
t−1
t−j ) and v(t, t − j, xt−j , Ũ t

t−j) denote the
predicted unmeasured variable v in the presence and in the
absence of disturbances, respectively.
It is assumed that at any step t the disturbance wt and
the variable vt are contained inside convex compact sets
W ∈ R

nw and V ∈ R
nv respectively. The sets W and V

are usually chosen on the basis of the available physical
insight of the system. Finally, the system (1) is assumed
to be uniformly observable (see e.g. [13]), i.e. for any two
state values xt

1, x
t
2 there exists a finite number of time steps

No and a K-function ζ such that, for any given sequence of

inputs Ũ
t+No−1

t :

ζ(‖xt
1−x

t
2‖) ≤

No−1∑

j=0

‖y(t+j, t, x
t
1, Ũ

t+j

t )−y(t+j, t, x
t
2, Ũ

t+j

t )‖.

We recall that a continuous function ζ(z) is a K-function if

it is strictly monotone increasing, ζ(0) = 0, ζ(z) > 0 for any

z 6= 0 and lim
z→∞

= ζ(z) = ∞. In the described framework,

the problem considered in this work can be stated as follows:

Problem 1: Find a function f (“estimator”, “estimation

algorithm” or “filter”) that computes, at each time step t, an

estimate v̂t ≈ vt such that v̂t ∈ V , whose estimation error

et = vt− v̂t is bounded in some norm and possibly minimal

with respect to a suitable optimization criterion. �

Obviously, if vt = xt the described problem is equivalent

to a state estimation problem, but in general one could be

interested in estimating also other system variables. Due to

the presence of constraints on the variable v, it is not easy to

solve Problem 1 even in the case of a linear system (i.e. with

linear functions F , Hy and Hv). Moreover, the presence of

nonlinearities further increases the difficulty of Problem 1.

III. MOVING HORIZON ESTIMATION

A. Nonlinear and convex Moving Horizon Estimators

Most of the design techniques employed in the literature

to address Problem 1 rely on the knowledge of the system

equations (1), of an initial estimate xt−j of the system

state at a suitably chosen time step t − j and, finally, of

given sequences of past measured input and output values,

Ỹ t
t−τ and Ũ t

t−τ respectively, up to a finite number τ + 1
of past time steps. Among such design techniques, Moving

Horizon Estimation (MHE) is widely recognized as one of

the most promising due to its capability to take into account

explicitly system nonlinearities and constraints. In MHE, a

cost function of the following form is considered:

J(x̂t−τ , Ũ t
t−τ ,W

t
t−τ , Ỹ

t
t−τ , x

t−τ ) =
τ∑

j=0

L(et−τ+j
y , wt−τ+j) + Φ(xt−τ , x̂t−τ ), (2)

where the output error et−τ+j
y , j = 0, . . . , τ is defined as:

et−τ+j
y = ỹt−τ+j

−y(t− τ + j, t− τ , x̂t−τ , Ũ
t−τ+j
t−τ ,W

t−τ+j
t−τ ).

(3)

In (2) the initial state guess xt−τ and the sequences

Ỹ t
t−τ , Ũ

t
t−τ of measured outputs and inputs are known

parameters in the optimization, while the initial state estimate

x̂t−τ and the disturbance sequence W t
t−τ are optimization

variables. The length N = τ + 1 of Ũ t
t−τ and of Ỹ t

t−τ is a

design parameter, as well as the stage cost function L(·, ·)
and the initial cost function Φ(·, ·). Then, Problem 1 is cast in

a numerical optimization framework, in which the following

minimization problem has to be solved:

min
x̂t−τ ,W t

t−τ

J(x̂t−τ , Ũ t
t−τ ,W

t
t−τ , Ỹ

t
t−τ , x

t−τ ) (4a)

subject to

v(t− τ + j, t− τ , x̂t−τ , Ũ
t−τ+j
t−τ ,W

t−τ+j
t−τ ) ∈ V,

∀j ∈ [0, τ ]

w(t− τ + j) ∈ W, ∀j ∈ [0, τ ]. (4b)

If a solution (x̂t−τ∗,W t∗
t−τ ) to (4) is found, the estimate v̂MHE

is computed as the predicted value of v starting from the

optimized initial state guess x̂t−τ∗ and applying the optimal

sequence W t∗
t−τ and the measured sequence Ũ t

t−τ :

v̂t,MHE = v(t, t− τ , x̂t−τ∗, Ũ t
t−τ ,W

t∗
t−τ ). (5)

Finally, problem (4) is solved at each time step after

having updated the sequences Ỹ t
t−τ and Ũ t

t−τ with new

measurements, according to the following Moving Horizon

algorithm:
Algorithm 1: Moving Horizon Estimation

1) At time step t, update the sequences Ỹ t
t−τ and Ũ t

t−τ

with the measured variables ỹt, ũt;

2) update the initial state guess as xt−τ = x(t − τ , t −
τ − 1, x̂t−τ−1∗, Ũ t−τ

t−τ−1,W
t−τ∗
t−τ−1), where W t−τ∗

t−τ−1 is

part of the the optimal disturbance sequence W t−1∗
t−τ−1,

computed at time step t−1, and x̂t−τ−1∗ is the optimal

initial state computed at time step t− 1;

3) solve the optimization problem (4) to compute x̂t−τ∗

and W t∗
t−τ ;

4) compute the estimate v̂t,MHE given by (5);

5) repeat the procedure from step 1) by setting t = t+1.

The resulting MHE, when the system (1) is nonlinear, is

named here “nonlinear MHE”. If the dynamical system un-

derlying the optimization problem (4) is linear and functions

L(·, ·) and Φ(·, ·) are chosen to be convex, the optimization

problem to be solved results to be convex with respect both to

the optimization variables x̂t−τ ,W t
t−τ and to the parameters

xt−τ , Ũ t
t−τ , Ỹ

t
t−τ . In this case, the resulting MHE is named

here “convex MHE”.
Although nonlinear MHE is potentially a powerful ap-

proach whose diffusion is increasing, some issues are still

open.
One of these problems is that the nonlinear program

(NLP) (4) is in general non-convex. In this case, finding

the global minimum of (4) may be extremely hard, whereas

local minima of this function, which are easier to be found,

may lead to poor estimates and/or “jumps” in the estimated

variable between two subsequent time steps.
A second relevant drawback is that, in many practical

applications, the online implementation of a nonlinear MHE

can not be performed, since it requires to solve the NLP (4)

at each sampling time, and this task cannot be performed

online if the sampling time is too small.
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Finally, another important problem, shared by the MHE

approach with all the other model-based design methods

(e.g. Extended Kalman Filter) is that the system (1) in most

practical situations is not known.

On the other hand, in the case of a convex MHE the

optimization problem (4) can be solved efficiently. Now,

in many practical cases some information on the dynamics

of the system is available, as well as on the values of the

related physical parameters, and a linearized system model,

in some nominal operating condition (x, u, w) of interest,

can be easily obtained. In these cases, convex MHEs are

able to provide a quite accurate estimate and to also take

into account constraints on the variable to be estimated.

The novel idea of this paper is to exploit the advantages

of a convex MHE designed by using a linear system model,

thus obtaining a good estimate of v̂t,MHE ≃ vt at least

when the system operates in a neighborhood of (x, u, w),
and to then improve the obtained filter by means of a

so-called Direct Virtual Sensor (DVS) approach, based on

Nonlinear Set Membership (NSM) function approximation

theory. In particular, the DVS-NSM approach can be used

to derive an approximation ∆̂NSM,t of the residue signal

∆t = vt − v̂t,MHE directly from the data measured in a

preliminary experiment, in which vt is also measured (and,

consequently, a measure of ∆t is available). Then, the value

of ∆̂NSM,t is used to improve the estimation accuracy in

those operating conditions in which the convex MHE gives

poor results.

Before introducing the DVS-NSM approach, it is now

useful to make some more considerations on the structure

of a stable MHE, either nonlinear or convex, and on the

regularity properties of a convex MHE.

B. Structural properties of stable MHE estimators

Once the design parameters N , L(·, ·) and Φ(·, ·) have

been chosen, the MHE Algorithm 1 can be regarded to as

a function fMHE whose arguments are the initial state guess

xt−τ and the measured sequences Ỹ t
t−τ and Ũ t

t−τ :

v̂t,MHE = fMHE(Ỹ t
t−τ , Ũ

t
t−τ , x

t−τ ). (6)

Moreover, from step 2) of the MHE Algorithm 1 it can be

noted that at each time step t the initial state guess xt−τ is

a function of the sequences Ỹ t−1
t−τ−1 and Ũ t−1

t−τ−1 and of the

initial state guess xt−τ−1, i.e.:

xt−τ = g(Ỹ t−1
t−τ−1, Ũ

t−1
t−τ−1, x

t−τ−1).

Then, the estimate (6) can be also expressed as

v̂t,MHE = fMHE(Ỹ t
t−τ−1, Ũ

t
t−τ−1, x

t−τ−1), (7)

where, with a slight abuse of notation,

fMHE(Ỹ t
t−τ−1, Ũ

t
t−τ−1, x

t−τ−1) =

fMHE(Ỹ t
t−τ , Ũ

t
t−τ , g(Ỹ

t−1
t−τ−1, Ũ

t−1
t−τ−1, x

t−τ−1)).

Thus, assuming that the MHE algorithm (6) is set up at time

step t0+τ with an initial state guess xt0 , the estimate v̂t,MHE

at the generic time t can be also expressed as

v̂t,MHE = fMHE(Ỹ t
t0
, Ũ t

t0
, xt0), (8)

where fMHE is the function given by the recursive application

of (7). A relatively large literature exists (see e.g. [10]

and the references therein) regarding the study of sufficient

conditions on the system (1), on the constraint sets V, W
and on the design parameters N, L(·, ·), Φ(·, ·) so that the

estimator is asymptotically stable. If fMHE is asymptotically

stable, then for any (small) µ > 0 there exists a sufficiently

large number of time steps m such that, for any two initial

state guesses xt0
1 , xt0

2 , it holds that

‖fMHE(Ỹ t0+m
t0

, Ũ t0+m
t0

, xt0
1 )− fMHE(Ỹ t0+m

t0
, Ũ t0+m

t0
, xt0

2 )‖
≤ µ.

That is, the effect of the initial condition xt0 tends to fade

away, see [13]. Thus, with arbitrarily good precision, after

a suitable (possibly large) number m of time steps it can

be considered that the estimate v̂t0+m depends only on the

sequences Ỹ t0+m
t0

, Ũ t0+m
t0

and not on the initial state xt0 .

Then, in general a stable MHE algorithm can be expressed

as a Nonlinear Finite Impulse Response (NFIR) estimator

fMHE
o plus a “small” truncation error ettrunc:

fMHE(Ỹ t
t0
, Ũ t

t0
, xt0) = fMHE

o (Ỹ t
t−m, Ũ t

t−m) + ettrunc. (9)

Furthermore, convex MHEs also enjoy a continuity property.

In fact, problem (4) can be regarded to as a parametric

optimization problem P(s, θ), with optimization variable

s = (x̂t−τ ,W t
t−τ ) and parameters θ = (Ũ t

t−τ , Ỹ
t
t−τ , x

t−τ ).
Now, in the context of multi-parametric programming it has

been shown that the optimizer s∗(θ) = argminP(s, θ) is

a continuous (in general non-differentiable) function of θ
[14]. Thus, being the system linear, the estimate v̂t,MHE

results to be a continuous function of xt−τ , Ũ t
t−τ , Ỹ

t
t−τ .

The parameter xt−τ is, on its turn, a continuous func-

tion of xt−τ−1, Ũ t−1
t−τ−1, Ỹ

t−1
t−τ−1 and so on backward in

time. Therefore, it turns out that, in the case of convex

MHEs, the function fMHE(Ỹ t
t0
, Ũ t

t0
, xt0) and the NFIR filter

fMHE
o (Ỹ t

t−m, Ũ t
t−m) (9) are continuous with respect to their

arguments.

IV. IMPROVEMENT OF MHE VIA THE DIRECT VIRTUAL

SENSORS APPROACH

In this Section, the case vt ∈ R and V = [v, v] is

considered for simplicity of notation. Suppose that a linear

model of the system (1) is available, either obtained by

linearization of the involved physical laws or identified from

experimental data. Let

f̂MHE(ϕ̃t
t−m)

ϕ̃
t
t−m

.
= (Ỹ t

t−m, Ũ t
t−m)

be a convex MHE designed on the basis of this linear model,

and let us define the following residue function:

∆(ϕ̃t
t−m)

.
= fMHE

o (ϕ̃t
t−m)− f̂MHE(ϕ̃t

t−m)

where fMHE
o is the unknown nonlinear MHE estimator de-

fined in (9).

The approach proposed in this paper is to identify, directly

from a set of data generated by the system (1), a NFIR

approximation ∆̂(ϕ̃t
t−m) of ∆(ϕ̃t

t−m) enjoying suitable op-

timality properties, and to obtain an Improved Moving Hori-

zon Estimator (IMHE) f̂MHE(ϕ̃t
t−m) + ∆̂(ϕ̃t

t−m), allowing
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us to get accurate estimates even when the system (1) is not

operating in linearity conditions. Such an IMHE estimator

is also called Direct Virtual Sensor (DVS), see [12]. The

following problem is thus considered in the next Section:

Problem 2: Given a set of data

D = {ũt, ỹt, ṽt, t = 1, 2, . . . , L} (10)

where ṽt
.
= vt+ ξt is the measured value of vt corrupted by

the noise ξt, find an estimator of the form

v̂t = f̂(ϕ̃t
t−m) = f̂MHE(ϕ̃t

t−m) + ∆̂(ϕ̃t
t−m) (11)

with estimation error minimal with respect to a suitable

criterion. �

The estimator f̂ is selected within the following set of

Lipschitz continuous functions

F(γ,m)
.
=

{
f̂MHE + g :

∣∣∣g(ϕt
t−m)− g(ϕ̂t

t−m)
∣∣∣

≤ γ
∥∥∥ϕt

t−m − ϕ̂
t
t−m

∥∥∥
∞

, ∀ϕt
t−m, ϕ̂

t
t−m ∈ Φ

} (12)

where ‖·‖
∞

is the ℓ∞ norm, γ ≥ 0 is the Lipschitz constant,

and the regressor domain Φ is a bounded convex subset of

R
(m+1)(ny+nu). The motivation for considering this set is to

ensure the estimator stability.

Let us define the estimator fo as the best approximation

within the set F(γ,m) of the MHE estimator fMHE
o in (9):

fo
.
= arg min

f∈F(γ,m)

∥∥fMHE
o − f

∥∥
∞

where ‖f‖
∞

.
= ess sup

ϕ∈Φ |f (ϕ)| is the L∞ functional

norm. Note that, if the MHE optimization problem (4) is

convex in both the optimization variables and the parameters,

then fMHE
o ∈ F(γ,m) (see e.g. [14]) and, consequently,

fo = fMHE
o . In other words, fo is an “ideal” MHE, i.e. a

Lipschitz continuous MHE, obtained by assuming that an

exact model of the system dynamics is available, and that

the global optimum of the MHE optimization problem can

be computed. Here, fo is assumed to be unknown, and an

optimal approximation of it of the form (11) is looked for.

To this aim, consider that the estimation error of an

estimator f̂ of the form (11) is bounded as
∣∣∣vt − f̂

(
ϕ̃

t
t−m

)∣∣∣ =
∣∣∣eto + fo

(
ϕ̃

t
t−m

)
− f̂

(
ϕ̃

t
t−m

)∣∣∣ ≤
≤ |eto|+

∣∣∣fo
(
ϕ̃

t
t−m

)
− f̂

(
ϕ̃

t
t−m

)∣∣∣
(13)

where eto
.
= vt−fo

(
ϕ̃

t
t−m

)
is the estimation error of fo and

|fo

(
ϕ̃

t
t−m

)
− f̂

(
ϕ̃

t
t−m

)
| is the bias between the estimator

f̂ and fo. Since eo does not depend on f̂ , the aim is to reduce

the bias.

Clearly, this bias is not known, since fo is not known. In

order to derive a bound on it, some assumptions on eto and

ξt
.
= ṽt − vt (the measurement error on vt, see Problem 2)

are required. Here, eto is assumed to be bounded as
∣∣eto

∣∣ ≤ δo, ∀t

for some δo ≥ 0. Note that, being fo ∈ F(γ,m), this

assumption is satisfied if the MHE (8) is asymptotically

stable. Assuming that ξt is also bounded, we have that the

noise

dt
.
= ṽt − fo

(
ϕ̃

t
t−m

)
= ξt + eto

is bounded as ∣∣dt
∣∣ ≤ ε, ∀t

for some ε ≥ 0.

Note that the values of the bound ε on noise and the

Lipschitz constant γ can be suitably chosen by means of the

validation procedure in [15]. The value of δo is not required

for the design of the optimal DVS presented in the following.

On the basis of the above assumptions, the Feasible

Estimators Set is now defined.

Definition 1: Feasible Estimators Set:

FES
.
=

{
f ∈ F(m, γ) :

∣∣∣ṽt − f
(
ϕ̃

t
t−m

)∣∣∣ ≤ ε, t ∈ [1, L]
}
.

�

According to this definition, FES is the smallest set

guaranteed to contain fo. The tightest bound on the bias

in (13) is thus given by sup
f∈FES

∣∣∣f
(
ϕ̃

t
t−m

)
− f̂

(
ϕ̃

t
t−m

)∣∣∣,
leading to the following definition of worst-case estimation

error.

Definition 2: Worst-case estimation error of a DVS f̂ :

ED
(
f̂ , t

)
.
= δo + sup

f∈FES

∣∣∣f
(
ϕ̃

t
t−m

)
− f̂

(
ϕ̃

t
t−m

)∣∣∣ . (14)

�

Looking for a DVS that minimizes this error, leads to the

following optimality concept.

Definition 3: A DVS f∗ is optimal if

ED (f∗) = inf
f

ED (f) , ∀t.

�

Let us now define the DVS

v̂t = fc

(
ϕ̃

t
t−m

)

where

fc

(
ϕ̃

t
t−m

)
.
= f̂MHE +

1

2

[
∆

(
ϕ̃

t
t−m

)
+∆

(
ϕ̃

t
t−m

)]
(15)

∆
(
ϕ̃

t
t−m

)
.
= min

[
v − f̂MHE(ϕ̃t

t−m),Λ
(
ϕ̃

t
t−m

)]

∆
(
ϕ̃

t
t−m

)
.
= max

[
v − f̂MHE(ϕ̃t

t−m),Λ
(
ϕ̃

t
t−m

)]

Λ
(
ϕ̃

t
t−m

)
.
= min

k∈[1,L]

(
∆ṽk + ε+ γ

∥∥∥ϕ̃t
t−m − ϕ̃

k
k−m

∥∥∥
∞

)

Λ
(
ϕ̃

t
t−m

)
.
= max

k∈[1,L]

(
∆ṽk − ε− γ

∥∥∥ϕ̃t
t−m − ϕ̃

k
k−m

∥∥∥
∞

)

(16)

and ∆ṽk
.
= ṽk − f̂MHE(ϕ̃t

t−m).
Theorem 1: i) The DVS fc is optimal.

ii) The following tight bounds on vt hold:

f̂MHE(ϕ̃t
t−m) + ∆(ϕ̃t

t−m)− δo ≤ vt

≤ f̂MHE(ϕ̃t
t−m) + ∆(ϕ̃t

t−m) + δo.

iii) The worst-case estimation error of fc is given by

ED (fc, t) = δo +
1

2

[
∆

(
ϕ̃

t
t−m

)
−∆

(
ϕ̃

t
t−m

)]
. (17)
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iv) The constraints are satisfied:

v ≤ fc

(
ϕ̃

t
t−m

)
≤ v. (18)

Proof. See [16]. �

V. SIMULATION EXAMPLE

Consider the equations of motion of a nonlinear mass-spring-

damper system:

ẋ1(t) = x2(t)
ẋ2(t) = −β(x1(t))x2(t) + κ(x1(t))x1(t) + u(t)
y(t) = x1(t) + w(t)

(19)

where u(t) is the input force in N, w(t), |w(t)| ≤ 0.025 is a

uniformly distributed measurement noise, x1(t) is the mass

position in m, x2(t) is the speed in m/s, and

κ(x1) = a0 exp(a1 x1) + a2
β(x1) = a0 exp(a3 x1) + a2.

(20)

The parameter values are a0 = 0.7, a1 = −1, a2 =
0.3, a3 = −2. Moreover, the speed x2(t) is mechanically

saturated between ±1m/s:

x2(t) ∈ X = [−1, 1], ∀t. (21)

The origin is a globally asymptotically stable fixed point and

the system is input-to-state stable, so that experiments can

be carried out in open-loop.

A first experiment has been performed, assuming that

all the states can be measured, to identify a second-order,

discrete time LTI model of the system (19). This model is

of the form [
xt+1
1

xt+1
2

]
= A

[
xt
1

xt
2

]
+But

yt = C

[
xt
1

xt
2

]
+ wt,

with sampling time ts = 0.05 s. A uniformly distributed

random input u(t) with amplitude 0.4 N, plus a sequence of

zero-mean square wave signals and sinusoids of increasing

amplitudes, from 0.4 N to 0.6 N, has been injected for 1000 s

to the system. A uniform random noise rt : |rt| ≤ 0.025 has

been added to all of the measured quantities, i.e. x̃t, ũt, ỹt.
The model matrices A, B and C, identified via least squares,

are

A =

[
0.988 0.043
0.927 −0.48

]
, B =

[
0.009
0.053

]
C =

[
1 0

]
.

(22)

It can be noted that the matrices (22) are close to the

linearized and discretized equations of the system (19) at

x ≃ 0. Therefore, a good accuracy of the MHE filter in

linear operating conditions is expected. The cost function

used in the MHE has been designed according to (2), with

N = 3 and

L(ey, w) = Qe2y +Rw2

Φ(x̂, x) = (x̂− x)TQx(x̂− x),
(23)

where

Q = 10, R = 1, Qx =

[
1 0
0 0.01

]
(24)

where (x̂−x)T indicates the transpose of (x̂−x). Moreover,

the constraint (21) has been included in the optimization

problem (4), which results to be a quadratic program.

A second 1000-s-long experiment has been carried out

to collect the data x̃t, x̂t,MHE, and the related values of

the regressor ϕ̃
t
t−m, with m = 6. A uniform random

measurement noise rt : |rt| ≤ 0.025 has been added to

all the measured quantities. The values of N , Q, R, Qx,

m, have been tuned by trial and error procedures in order

to achieve the best performance of the MHE filter and of

the related DVS correction. For each state xt
1 and xt

2, an

IMHE estimator of the form (15) has been designed. The

related parameters γ1, ε1 and γ2, ε2 have been estimated

according to the guidelines given in [15]. In particular, the

values γ1 = 10−7, ε1 = 0.07, γ2 = 4.37 and ε2 = 0.07
have been chosen. Moreover, the regressor ϕ̃

t
t−m has been

scaled in order to adapt to the properties of the collected

data (see [15] for more details). Note that the quite low

value of γ1 indicates that the estimation errors on this

variables have low variability with respect to ϕ̃
t
t−m. This

is reasonable, since the first variable is directly measured

and the related estimation error is practically negligible and

due to the measurement noise only. On the other hand, a

higher estimation error occurs for the second state variable,

so that the DVS technique presented in this paper is actually

able to provide a significant improvement.

The designed MHE estimator and its improved version,

IMHE, have been tested in a third experiment, performed by

injecting square waves of varying amplitudes to the system.

Also in this experiment, all the measured quantities have

been corrupted by a uniform random measurement noise rt :
|rt| ≤ 0.025. Note that the considered noise amplitude is

quite large, corresponding to a noise-to-signal ratio of about

10% in average.

TABLE I

SIMULATION EXAMPLE. BIAS OF THE MHE AND IMHE FILTERS WITH

DIFFERENT INPUT SQUARE WAVES.

Input ampl. (N) 0.5 1 2 2.5

MHE, xt
1

(m) 1.0·10−3 7.0·10−3 3.2·10−2 4.0·10−2

IMHE, xt
1

(m) -1.7·10−3 6.3·10−4 8.5·10−4 1.0·10−2

MHE, xt
2

(m/s) 1.6·10−2 9.0·10−2 4.5·10−1 5.5·10−1

IMHE, xt
2

(m/s) -3.8·10−3 2.0·10−3 -1.6·10−2 -3.4·10−3

TABLE II

SIMULATION EXAMPLE. RMSE OF THE MHE AND IMHE FILTERS WITH

DIFFERENT INPUT SQUARE WAVES.

Input ampl. (N) 0.5 1 2 2.5

MHE, xt
1

(m) 8.0·10−3 1.1·10−2 4.1·10−2 5.0·10−2

IMHE, xt
1

(m) 8.0·10−3 8.5·10−3 9.9·10−3 2.9·10−3

MHE, xt
2

(m/s) 2.4·10−2 1.0·10−1 5.4·10−1 6.6·10−1

IMHE, xt
2

(m/s) 1.5·10−2 2.3 ·10
−2 9.1 ·10

−2 5.9 ·10
−2

A first square wave with amplitude equal to 0.5 N has been

used to test the estimators in linear system operating condi-

tions. The following square waves, with growing amplitudes

up to 2.5 N, have been used to test the filters when nonlineari-

ties are gradually predominant. The obtained results, in terms

of bias and Root Mean Square Error (RMSE), are reported
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in Tables I and II, respectively. The estimate of the first state
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Fig. 1. Simulation example. Courses of the speed x
t
2

(solid line) and of its

estimates x̂
t,MHE
2

(dotted line), x̂
t,IMHE
2

(dashed line) with a square wave
input with amplitude equal to (a) 0.5, (b) 1 and (c) 2.5

variable is of little interest, since it is directly measured and

both estimators achieve very good accuracy. As regards the

second state variable, it can be noted that the MHE and

IMHE filters give quite similar results in linear operating

conditions, as expected, while in nonlinear conditions the

IMHE is able to achieve a significant improvement with

respect to the MHE. As an example, the time course of xt
2

and of its estimates x̂t,MHE
2 , x̂

t,IMHE
2 provided by the MHE

and IMHE filters, respectively, are shown in Fig. 1(a)-(c).

The different performance of the MHE in linear operating

conditions (Fig. 1(a)) and in nonlinear ones (Fig. 1(b)-(c))

is evident, as well as the quite good behavior of the IMHE.

Fig. 1(c) also shows that the IMHE filter is able to correctly

handle the constraint (21).

VI. CONCLUSIONS

A method for the design of an improved MHE estimator

for nonlinear systems has been presented in the paper. Such

an estimator is defined as the sum of a convex MHE and

of a nonlinear DVS part. The convex MHE achieves good

estimation performance when the system operates close to

linear conditions. The DVS part compensates the mismatch

between the convex MHE and the nonlinear behavior of the

system outside these linear conditions. The improved MHE

estimator is stable by construction and is able to account for

constraints on the variable to be estimated. It has also been

proven that, under mild assumptions, this estimator is optimal

(in the sense of worst-case estimation error minimization).

The effectiveness of the proposed method has been shown

through a simulation example related to state estimation of

a nonlinear mass-spring-damper system.
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