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Abstract— We present a Newton–based extremum seeking
algorithm for the multivariable case. The design extends the
recent Newton–based extremum seeking algorithms for the
scalar case and introduces a dynamic estimator of the Hessian
matrix that removes the difficulty with the possible singularity
of this matrix estimate. This estimator has the form of a
differential Riccati equation. We prove local stability of the
new algorithm for general nonlinear dynamic systems using
averaging and singular perturbations. In comparison with the
standard gradient–based multivariable extremum seeking, the
proposed algorithm removes the dependence of the convergence
rate on the unknown Hessian matrix and makes the convergence
rate, of both the parameter estimates and of the estimates
of the Hessian inverse, user-assignable. In particular, the new
algorithm allows all the parameters to converge with the same
speed, even with maps that have highly elongated level sets. In
the parameter space, the new algorithms produces trajectories
straight to the extremum, as opposed to non–direct “steepest
descent” trajectories. Simulation results show the advantage of
the proposed approach over gradient–based extremum seeking.

I. INTRODUCTION

a) Motivation: Dramatic advances have occurred over

the past decade both in the theory [2], [3], [7], [12], [16],

[17], [18], [19], [20], [21] and in applications [4], [5], [6],

[8], [9], [10], [11], [13], [22], [23] of extremum seeking con-

trol. All these references employ gradient–based extremum

seeking.

A Newton–based extremum seeking algorithm was intro-

duced in [14] where, for the single-input case, an estimate

of the second derivative of the map was employed in a

Newton-like continuous-time algorithm. A generalization,

employing a different approach than in [14], was presented

in [15], where a methodology for generating estimates of

higher-order derivatives of the unknown single-input map

was introduced, for emulating more general continuous-time

optimization algorithms, with a Newton algorithm being a

special case.

The key distinction of the Newton algorithm relative to

the gradient algorithm is that, while the convergence of the

gradient algorithm is dictated by the second derivative (Hes-

sian) of the map, the convergence of the Newton algorithm is

independent of the Hessian and can be arbitrarily assigned.
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This is particularly important in non-model based algorithms,

like extremum seeking, where the Hessian is unknown.

The power of the Newton algorithm is particularly evident

in multi-input optimization problems. With the Hessian being

a matrix in this case, and with it being typically very different

from the identity matrix, the gradient algorithm typically

results in different elements of the input vector converging at

vastly different speeds. This problem is inherent to gradient–

based schemes. To rectify it one would need to modify the

algorithm using the inverse of the Hessian matrix which is

not available as the model of the system is assumed to be

unavailable. On the other hand, the Newton algorithm, if

equipped with a convergent estimator of the Hessian matrix,

achieves convergence of all the elements of the input vector

at the same, or at arbitrarily assignable, rates.

b) Results of the paper: In this paper we present a

multivariable Newton–based extremum seeking algorithm,

which yields arbitrarily assignable convergence rates for each

of the elements of the input vector. We generate the estimate

of the Hessian matrix by generalizing the idea proposed in

[15] for the scalar case.

Generating an estimate of the Hessian matrix in non-

model based optimization is not the only challenge. The other

challenge is that the Newton algorithm requires an inverse of

the Hessian matrix. The estimate of this matrix, as it evolves

in continuous time, need not necessarily remain invertible.

We tackle this challenge by employing a dynamic system for

generating the inverse asymptotically. This dynamic system

is a filter in the form of a Riccati differential equation. When

fed with a positive/negative–definite estimate of the Hessian

matrix over a longer period of time, this filter converges to

a positive/negative–definite inverse of the Hessian matrix.

Hence, after a transient, our non–model based algorithm

behaves (on average) as a model-based Newton algorithm.

While the basic idea of our algorithm is developed for

static maps, we provide the analysis of convergence when

the algorithm is applied to general nonlinear systems, as in

[12]. We apply classical averaging and singular perturbation

methods, so our stability result is local—the parameter

estimates start not too far from the true parameters and the

estimate of the Hessian matrix starts not too far from the

true Hessian matrix. We can also prove non–local stability

of the proposed scheme in a similar manner as [19] where

gradient–based algorithm was investigated.

The continuous–time Newton algorithm that we propose

is novel, to our knowledge, even in the case when the

cost function being optimized is known. The state–of–the–

art continuous–time Newton algorithm in [1] employs a

Lyapunov differential equation for estimating the inverse of
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Fig. 1. Gradient–based extremum seeking for a static map.

the Hessian matrix—see (3.2) in [1]. The convergence of

this estimator is actually governed by the Hessian matrix

itself. This means that the algorithm in [1] removes the

difficulty with inverting the estimate of the Hessian, but

does not achieve independence of the convergence rate from

the Hessian. In contrast, our algorithm’s convergence rate is

independent from the Hessian and is user–assignable.

c) Organization: We state the problem and review the

gradient–based extremum seeking algorithm for a static map

in Section II. Section III presents our Newton–based scheme

for the static map. In this section we explain how we generate

the estimate of the Hessian matrix and the estimate of

its inverse. A generalization of the Newton–based scheme

to dynamic plants is introduced in Section IV. The main

stability result is stated in Section V. Stability analysis of

the reduced order model based on the averaging theorem is

presented in Section VI. Section VII presents an illustrative

example to highlight the difference between the proposed

scheme and the standard gradient–based extremum seeking.

Proofs of Theorems 1 and 2 are omitted due to space

constraints.

II. REVIEW OF THE GRADIENT ALGORITHM FOR STATIC

MAP

Consider a convex static map

y = Q(θ), θ =
[

θ1 θ2 · · · θn
]T

, (1)

with a local maximum at θ∗. The cost function is not

known in (1), but we can measure y and we can manipulate

θ. The gradient–based extremum seeking scheme for this

multivariable static map is shown in Fig. 1, where K is

a positive diagonal matrix, and the perturbation signals are

defined as

S(t) =
[

a1 sin(ω1t) · · · an sin(ωnt)
]T

, (2)

M(t) =
[

2

a1
sin(ω1t) · · · 2

an
sin(ωnt)

]T
, (3)

where ωi/ωj are rational for all i and j, and ai’s are real

numbers, with the frequencies chosen such that ωi 6= ωj and

ωi + ωj 6= ωk for distinct i, j, and k.

Remark 1: A gradient–based extremum seeking for the

static map (1) is given by
˙̂
θ = KM(t)y, θ = θ̂ + S(t).

In the parameter error variable θ̃ = θ̂ − θ∗, the closed-loop

system in Fig. 1 is given by
˙̃
θ = KM(t)Q

(

θ∗ + θ̃ + S(t)
)

.

The basic idea of the scheme, as well as of the choice of the

perturbation signals, is understood by noting that, for the case

of a quadratic map, Q(θ) = Q∗+ 1

2
(θ− θ∗)TH(θ− θ∗), the

averaged system is given by

˙̃
θ = KHθ̃, (4)
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Fig. 2. Newton–based extremum seeking for a static map.

where H is the Hessian of the static map, and it is

negative definite. This observation reveals two things: (a)

the gradient–based extremum seeking algorithm is locally

convergent, and (b) the convergence rate is governed by

the unknown Hessian matrix H . One of the features of

the Newton algorithm presented in the next section is to

eliminate the dependence of the convergence rate on the

unknown H .

III. NEWTON ALGORITHM FOR STATIC MAP

The Newton–based extremum seeking algorithm for a

static map is shown in Fig. 2, where ωr is a positive real

number. There are two vital parts in the Newton–based

algorithm: the perturbation matrix N(t), which generates

an estimate of the Hessian, and the Riccati equation, which

generates an estimate of the inverse of Hessian matrix, even

when the estimate of the Hessian is singular.

The idea for producing the estimate of the Hessian matrix,

H := ∂2Q(θ∗)/∂θ2, is borrowed from the scalar design in

[15]. Referring to the Taylor series expansion of the cost

function around the peak, we have

y=Q(θ∗ + θ̃ + S(t))

=Q(θ∗)+
1

2

(

θ̃+S(t)
)T

H
(

θ̃+S(t)
)

+R(θ̃ + S(t)),(5)

where ∂Q(θ∗)/∂θ = 0 and R(θ̃ + S(t)) stands for higher

order terms in θ̃ + S(t). Product of N(t) and y generates

an estimate of the Hessian. We show that by an appropriate

selection of matrix N(t), the average value of Ĥ = N(t)y
over the period Π, which is related to ωi’s (see (10)), is an

estimate of the Hessian. We start with

1

Π

∫ Π

0

N(σ)ydσ=I+J +H̄+
1

Π

∫ Π

0

R(θ̃ + S(σ))N(σ)dσ, (6)

I :=
1

Π

∫ Π

0

(

Q(θ∗) +
1

2
θ̃THθ̃

)

N(σ)dσ, (7)

J :=
1

Π

∫ Π

0

θ̃THS(σ)N(σ)dσ, (8)

H̄ :=
1

Π

∫ Π

0

1

2
S(σ)THS(σ)N(σ)dσ

=
1

Π

∫ Π

0

1

2

n
∑

i=1

n
∑

j=1

Hi,j sin(ωiσ) sin(ωjσ)N(σ)dσ. (9)

By taking Π as

Π = 2π × LCM
{ 1

ωi

}

, i ∈ {1, 2, · · · , n}, (10)
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where LCM stands for the least common multiple, we

have I = 0 if N has zero average over Π. Also, taking

N such that 1

Π

∫ Π

0
sin(ωiσ)Nj,k(σ)dσ = 0, holds for all

i, j, and k ∈ {1, 2, · · · , n}, makes the integral J equal to

zero. Furthermore, H̄ is equal to H if we choose N such

that

1

Π

∫ Π

0

sin2(ωiσ)Ni,i(σ)dσ 6= 0 (11)

1

Π

∫ Π

0

sin(ωiσ) sin(ωjσ)Ni,j(σ)dσ 6= 0 (12)

1

Π

∫ Π

0

sin2(ωiσ)Ni,j(σ)dσ = 0 (13)

1

Π

∫ Π

0

sin(ωiσ) sin(ωjσ)Ni,i(σ)dσ = 0, (14)

for all distinct i and j. Noting that Π is the common period

of the probing frequencies we have

1

Π

∫ Π

0

sin2(ωiσ) cos(2ωiσ)dσ = −
1

4
(15)

1

Π

∫ Π

0

sin2(ωiσ) sin
2(ωjσ)dσ =

1

4
(16)

1

Π

∫ Π

0

sin3(ωi) sin(ωj)dσ = 0 (17)

1

Π

∫ Π

0

sin(ωiσ) sin(ωjσ) cos(2ωiσ)dσ = 0, (18)

for all i 6= j. Hence, one possible choice of elements of

the n×n matrix N(t) that satisfy all of the aforementioned

constraints is given by

Ni,i=
16

a2i

(

sin2(ωit)−
1

2

)

(19)

Ni,j=
4

aiaj
sin(ωit) sin(ωjt), i 6= j, (20)

where NT (t)=N(t). Based on this selection, we have

1

Π

∫ Π

0

N(σ)ydσ = H+
1

Π

∫ Π

0

R(θ̃+S(σ))N(σ)dσ. (21)

In Section VI we show that this averaged value is close

enough to the actual value of the Hessain, under specific

conditions on ωi and ai.
Computing the inverse of the Hessian matrix is the next

step. Calculating Γ, the estimate of the inverse of the Hessian,

in an algebraic fashion creates difficulties when the matrix

Ĥ is close to singularity, or it is indefinite. To deal with this

problem, a dynamic estimator is employed to calculate the

inverse of Ĥ using a Riccati equation. Consider the following

filter

Ḣ = −ωrH+ ωrĤ. (22)

Note that the state of this filter converges to Ĥ , an estimate

of H . Denote Γ=H−1. Since Γ̇ = −ΓḢΓ, then equation

(22) is transformed to the differential Riccati equation

Γ̇ = ωrΓ− ωrΓĤΓ. (23)

The equilibria of the Riccati equation (23) are Γ∗=0n×n and

Γ∗ = Ĥ−1, provided Ĥ settles to a constant. Since ωr > 0,

the equilibrium Γ∗ = 0 unstable, whereas the linearization

of (23) around Γ∗ = Ĥ−1 shows that Γ̇ = −ωrΓ, the other

equilibrium is locally exponentially stable. This shows that,

after a transient, the Riccati equation converges to the actual

value of the inverse of Hessian matrix if Ĥ is a good estimate

of H .

Remark 2: To highlight the contrast between the Newton

and gradient algorithms, we refer to Remark 1 where the

average behavior of the gradient algorithm is discussed. For

the Newton algorithm in Fig. 2, the algorithm is given by

˙̂
θ = −KΓM(t)y (24)

Γ̇ = ωrΓ− ωrΓN(t)yΓ, (25)

where θ = θ̂ + S(t).
In the error variables θ̃ = θ̂− θ∗, Γ̃ = Γ−H−1, when the

map is quadratic, Q(θ) = Q∗ + 1

2
(θ − θ∗)TH(θ − θ∗), the

averaged closed-loop system is given by

˙̃
θ = −Kθ̃ −KΓ̃Hθ̃ (26)

˙̃Γ = −ωrΓ̃− ωrΓ̃HΓ̃, (27)

where KΓ̃Hθ̃ is quadratic in Γ̃ and θ̃, and ωrΓ̃HΓ̃ is

quadratic in Γ̃. The linearization of this system has all of

its eigenvalues at −K and −ωr. Hence, unlike the gradient

algorithm, whose convergence is governed by the unknown

Hessian H , the convergence rate of the Newton algorithm

can be arbitrarily assigned by the designer with an appropri-

ate choice of K and ωr.

IV. NEWTON ALGORITHM FOR DYNAMIC SYSTEMS

Consider a general multi-input-single-output (MISO) non-

linear model

ẋ = f(x, u) (28)

y = h(x), (29)

where x ∈ R
m is the state, u ∈ R

n is the input, y ∈ R

is the output, and f : Rm × R
n → R

m and h : Rm → R

are smooth. Suppose that we know a smooth control law

u = α(x, θ) parametrized by a vector parameter θ ∈ R
n. The

closed–loop system ẋ = f(x, α(x, θ)) then has equilibria

parametrized by θ. We make the following assumptions about

the closed-loop system, as in [12].

Assumption 1: There exists a smooth function l:Rn→R
m

such that f(x, α(x, θ)) = 0 if and only if x = l(θ).
Assumption 2: For each θ∈Rn, the equilibrium x= l(θ) of

the system ẋ = f(x, α(x, θ)) is locally exponentially stable

uniformly in θ.

Assumption 3: There exists θ∗ ∈ R
n such that

∂

∂θ
(h◦l)(θ∗) = 0, (30)

∂2

∂θ2
(h◦l)(θ∗) = H < 0, H = HT . (31)

Our objective is to develop a feedback mechanism which

maximizes the steady-state value of y but without requiring
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ẋ = f(x, α(x, θ))

?

Fig. 3. Gradient–based extremum seeking.
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Fig. 4. Newton–based extremum seeking. The initial condition Γ(0) should
be chosen negative definite and symmetric.

the knowledge of either θ∗ or the functions h and l. The

gradient–based extremum seeking design that achieves this

objective, suitably adapted from [12] to the multivariable

case, is shown schematically in Fig. 3. Parallel to this, we

present the generalized scheme for multivariable Newton–

based extremum seeking as shown in Fig. 4.

The perturbation signals are defined by equations (2),

(3), (19) and (20). The probing frequencies ωi’s, the filter

coefficients ωh, ωl, and ωr and gain K are selected as

ωi = ωω′

i = O(ω), i ∈ {1, 2, · · · , n} (32)

ωh = ωωH = ωδω′

H = O(ωδ) (33)

ωl = ωωL = ωδω′

L = O(ωδ) (34)

ωr = ωωR = ωδω′

R = O(ωδ) (35)

K = ωK ′ = ωδK ′′ = O(ωδ), (36)

where ω and δ are small positive constants, ω′

i is a rational

number, ω′

H , ω′

L, and ω′

R are O(1) positive constants, and

K ′′ is a n×n diagonal matrix with O(1) positive elements.

The analysis of [2], [12], [16] shows that, in the gradient–

based scheme, for “sufficiently small” ω and |a|, where

a = [a1 a2 · · · an]
T

, and sufficiently small δ, which imply

small filter cut–off frequencies, the states (x, θ̂) of the closed-

loop system exponentially converge to an O(ω + δ + |a|)–
neighborhood of (l(θ∗), θ∗), and the output y converges to

an O(ω + δ + |a|)–neighborhood of the optimum output

y∗ = (h◦l)(θ∗).
In Section VI we show that the average value of Σ(t)

over the period Π is close enough to the actual value of the

Hessian, under specific conditions on ω, δ and a. Since we

are integrating over a finite time period, and we set the phase

delays of the periodic perturbation signals equal to zero, it

is possible to exclude condition ωi 6= ωj + ωk. The probing

frequencies need to satisfy

ω′

i /∈
{

ω′

j ,
1

2
(ω′

j+ ω′

k),ω
′

j+2ω′

k, ω
′

j+ω′

k ± ω′

l

}

, (37)

for all distinct i, j, k, and l. As we see in section VI, ignoring

these conditions is shifting the estimate of the parameter

away from its true value, and leading to inaccurate estimates

of the gradient vector and Hessian matrix.

V. STABILITY OF THE CLOSED–LOOP SYSTEM WITH THE

NEWTON–BASED EXTREMUM SEEKING ALGORITHM

We summarize the system in Fig. 4 as

d

dt

















x

θ̃

Ĝ

Γ̃

H̃
η̃

















=

























f(x, α(x, θ∗ + θ̃ + S(t)))

−K(Γ̃ +H−1)Ĝ

−ωlĜ+ ωl

(

y − h◦l(θ∗)− η̃
)

M(t)

ωr(Γ̃ +H−1)
(

I − (H̃ +H)(Γ̃ +H−1)
)

−ωlH̃ − ωlH + ωl

(

y − h◦l(θ∗)− η̃
)

N(t)

−ωhη̃ + ωh

(

y − h◦l(θ∗)
)

























.(38)

To conduct a stability analysis we introduce error variables

θ̃ = θ̂ − θ∗, η̃ = η − h◦l(θ∗), Γ̃ = Γ −H−1, and H̃ =
Ĥ −H , where θ = θ̂ + S(t). We perform a slight abuse of

notation by stacking matrix quantities Γ̃ and H̃ along with

vector quantities, as alternative notational choices would be

more cumbersome. Our main stability result is stated in the

following theorem.

Theorem 1: Consider the feedback system (38) under

Assumptions 1, 2 and 3. There exist δ̄, ā > 0 and for

any |a| ∈ (0, ā) and δ ∈ (0, δ̄) there exists ω̄ > 0
such that for any given a and δ and any ω ∈ (0, ω̄)
there exists a neighborhood of the point (x, θ̂, Ĝ,Γ, Ĥ, η) =
(l(θ∗), θ∗, 0, H−1, H, h◦l(θ∗)) such that any solution of sys-

tems (38) from the neighborhood exponentially converges to

an O(ω+ δ+ |a|)–neighborhood of that point. Furthermore,

y(t) converges to an O(ω+δ+|a|)–neighborhood of h◦l(θ∗).
We summarize the system (38) in the time scale τ=ωt as

ω
dx

dτ
= f(x, α(x, θ∗ + θ̃ + S̄(τ))) (39)

d

dτ

[

θ̃T ĜT Γ̃T H̃T η̃
]T

=

δ





















−K ′′(Γ̃ +H−1)Ĝ

−ω′

LĜ+ ω′

L

(

y − h◦l(θ∗)− η̃
)

M̄(τ)

ω′

R(Γ̃ +H−1)
(

I − (H̃ +H)(Γ̃ +H−1)
)

−ω′

L(H̃ +H) + ω′

L

(

y − h◦l(θ∗)− η̃
)

N̄(τ)

−ω′

H η̃ + ω′

H

(

y − h◦l(θ∗)
)





















, (40)

where S̄(τ)=S(t/ω), M̄(τ)=M(t/ω) and N̄(τ)=N(t/ω).

VI. AVERAGING ANALYSIS

The main step in our analysis is to study the system

in Fig. 4. We “freeze” x in (39) at its equilibrium value

4439



x = l(θ∗ + θ̃+ S̄(τ)), and substitute it into (40), getting the

reduced system

d

dτ

[

θ̃Tr ĜT
r Γ̃T

r H̃T
r η̃r

]T
=

δ



















−K ′′(Γ̃r +H−1)Ĝr

−ω′

LĜr + ω′

L

(

ν(θ̃r + S̄(τ))− η̃r

)

M̄(τ)

ω′

R(Γ̃r +H−1)
(

I + (H̃r +H)(Γ̃r +H−1)
)

−ω′

LH̃r − ω′

LH + ω′

L

(

ν(θ̃r + S̄(τ))− η̃r

)

N̄(τ)

−ω′

H η̃r + ω′

Hν(θ̃r + S̄(τ))



















,(41)

where ν(z) = h◦l(θ∗ + z) − h◦l(θ∗). In view of Assump-

tion 3, ν(0) = 0, ∂ν(0)/∂z = (0), ∂2ν(0)/∂z2 = H < 0.

To prove the overall stability of (38), first we show that

the reduced system (41) has a unique exponentially stable

periodic solution around its equilibrium.

Theorem 2: Consider system (41) under Assumption 3.

There exist δ̄, ā > 0 such that for all δ ∈ (0, δ̄) and |a| ∈
(0, ā) system (41) has a unique exponentially stable periodic

solution
(

θ̃Πr (τ), Ĝ
Π
r (τ), Γ̃

Π
r (τ), H̃

Π
r (τ), η̃Πr (τ)

)

of period Π

and this solution satisfies

∣

∣

∣
θ̃Πr,i(τ)−

n
∑

j=1

cij,ja
2
j

∣

∣

∣
≤ O(δ + |a|

3
) (42)

∣

∣

∣
ĜΠ

r (τ)
∣

∣

∣
≤ O(δ) (43)

∣

∣

∣
Γ̃Π
r (τ)+

n
∑

i=1

n
∑

j=1

H−1W iH−1cij,ja
2
j

∣

∣

∣
≤ O(δ + |a|

3
) (44)

∣

∣

∣
H̃Π

r (τ)−
n
∑

i=1

n
∑

j=1

W icij,ja
2
j

∣

∣

∣
≤ O(δ + |a|

3
) (45)

∣

∣

∣
η̃Πr (τ)−

1

4

n
∑

i=1

Hi,ia
2
i

∣

∣

∣
≤ O(δ + |a|

4
) (46)

for all τ ≥ 0, where

(

W i
)

j,k
=

∂3ν(0)

∂zi∂zj∂zk
, ∀i, j, and k ∈ {1, 2, · · · , n} (47)
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, ∀i, j ∈{1, 2, · · · , n}.(48)

VII. SIMULATION RESULTS

To illustrate the results and highlight the difference be-

tween the gradient–based and Newton–based extremum seek-

ing methods, the following static quadratic input-output map

is considered y = Q(θ) = Q∗ + 1

2
(θ − θ∗)TH(θ − θ∗).
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Fig. 5. The estimate of the minimum versus time.

To make a fair comparison between the two methods, all

parameters are chosen the same except the gain matrix.

Before selecting matrix K we investigate the performance

of the gradient–based scheme versus the Newton–based

scheme.

Recall (26) and (27). The initial convergence rate for

the Newton–based scheme is governed by the time-varying

matrix −KnΓ(t)H . Equation (4) shows that in the gradient–

based scheme the convergence depends on the eigenvalues of

KgH . This means that, to have a fair comparison between

the two methods, we should select Kg and Kn such that

Kg = −KnΓ(0).
We perform our tests with the following parameters, δ =

0.1, ω = 0.1rad/s, ω1 = 70ω, ω2 = 50ω, ω′

L = 10, ω′

H = 8,

ω′

R = 10, a = [0.1 0.1]T , K ′′

g = 10−4diag([−25 − 25]),

K ′′

n = diag([1 1]), Γ−1
0 = 400diag([1 1]), θ̂0 = [2.5 5]T ,

Q∗ = 100, θ∗ = [2 4]T , H11 = 100, H12 = H21 = 30, and

H22 = 20.

Fig. 5 illustrates the estimate of the minimum. Evolution of

the parameters is depicted in Fig. 6. Since the initial estimate

of the Hessian is not true, each parameter starts to update

with a different rate. As seen in Fig. 7, after 40 seconds

the estimate of the Hessian is close enough to its actual

value. Hence, the convergence rates of both parameters are

the same after 40 seconds. Furthermore, Fig. 6(c) shows that

the Newton–based extremum seeking moves the parameters

to the peak along a shorter trajectory than the gradient–

based method. The Hessian matrix converges to its actual

value as depicted in Fig. 7. Also it is worth noting that the

Hessian converges faster to its actual value than Ĝ and θ̂.

As illustrated in Fig. 8 the estimate of the gradient vector

converges to zero after Hessian matrix finds its true value.

VIII. CONCLUSIONS

Using the gradient–based extremum seeking in the mul-

tivariable case without having a good information about

the curvature of the cost function, namely, the Hessian

matrix, may result inappropriate performance. With a grow-

ing number of the parameters, it is almost impossible to

tune the convergence rate of all parameters in a desirable

fashion. The Newton–based extremum seeking, which relies

on the estimation of the gradient and Hessian matrix of the
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Fig. 6. Parameter estimates. (a and b) time responses. (c) phase portrait.
The Newton trajectory is straight to the extremum, whereas the gradient
trajectory follows the curved, steepest-descent path.
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Fig. 7. Time evolution of the Hessian matrix estimator Γ−1. The true
value of H is reached in 40 seconds. Note in Fig. 6 that the Newton and
gradient trajectories coincide for the first 40 seconds, after which, Newton
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Fig. 8. The estimate of the gradient vector versus time.

cost function at the same time, removes the trial and error

process to update all parameters uniformly. Furthermore, the

proposed Newton scheme eliminates the concern about the

inversion of the Hessian estimate matrix by performing the

inversion dynamically using a Riccati equation filter. The

convergence rates of both the parameter and of the estimator

of the Hessian inverse are independent of the unknown

Hessian and can be assigned arbitrary by the user.
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