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Abstract— In this paper we propose an uniform sliding
mode controller for a second order uncertain system providing
convergence to an arbitrary small vicinity of origin in finite
time, which can be bounded by some constant independent from
initial conditions and uncertainties. With this aim a nonlinear
sliding surface is proposed ensuring during the sliding motions
an uniform convergence of the trajectories to any arbitrary
small vicinity of origin in finite time bounded by some constant
independent from initial conditions on the surface.

I. INTRODUCTION

The problem of robust prescribed time stabilization is one

of the actual tasks in modern control theory. For example,

controlling hybrid systems with strictly positive dwell time,

it is preferably for control task to provide the robust exact

system stabilization before the next of switching or impulse

takes place. A reasonable class of controllers providing both:

finite time convergence and insensitivity with respect to

matched uncertainties/disturbances are sliding mode con-

trollers (see, for example [15]).

Traditional sliding mode control design consists of two

steps, [15]: (a) design of the sliding surface ensuring de-

sired behavior of system without uncertainties; (b) design

of discontinuous controllers enforcing the sliding motions

and compensation of matched uncertainties. The main dis-

advantage of such methodology is the so called chattering

phenomenon restricting the possibilities of usage of first

order sliding mode controllers to the hardware, where the

switching is a natural mode of work.

A super-twisting controller allows to adjust the chattering

problem in the system with Lipschitz continuous uncertain-

ties/disturbances [10]. It opened the door for usage of the

properties of sliding modes to practically all continuous

controllers. It is necessary to remark that for both classical

and super-twisting control design methodologies the conver-

gence time grows together with initial conditions, i.e., (a)

the time of convergence to the sliding surface grows together

with initial conditions; (b) even if the trajectory is starting

on the sliding surface the convergence time to the given

vicinity of origin on sliding surface is also growing together

with initial conditions on the surface. The uniform super-

twisting based differentiator and observer for mechanical
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systems was designed in [3], [4], ensuring the convergence

of differentiator/observer in finite time bounded by some

constant independent from initial conditions. For the case of

a sliding mode controller, the methodology of these papers

can ensure the uniform convergence to the sliding surface

only but does not ensure the uniform convergence to origin

for the system trajectories on the sliding surface.

On the other hand, the use of nonlinear sliding surfaces

instead of linear surfaces of a classical sliding mode control

design have proved to enhance the desired performance

in closed-loop of the system with sliding mode control

algorithms, which can not be always achieved only with

linear switching surfaces, (see [2], [1], [14] and references

there).

In this paper we propose an exact sliding mode controller

for a second order system providing the convergence of

the system trajectories to any arbitrary small vicinity of

origin in finite time upper bounded by some constant in-

dependent from initial conditions and some class of uncer-

tainties/disturbances. To achieve this aim: (a) a nonlinear

sliding surface is suggested ensuring during sliding motions

uniform convergence of the trajectories to any arbitrary small

vicinity of origin in finite time upper bounded by some

constant independent from initial conditions on the surface;

(b) an absolutely continuous super-twisting based controller

is suggested providing convergence of the trajectories to the

sliding surface in a finite time upper bounded by another

constant independent from initial conditions and for a special

class of uncertainties/disturbances.

The methodology used in this paper is based on Lyapunov

functions proposed in [12], [3], [5], [13], [4]. In the following

section we introduce some basic concepts which are useful

for the understanding of the paper.

A. Basic Definitions

Consider the following non autonomous dynamic system

ẋ = f (x)+w(x, t), (1)

where x∈Rn are the system states, the functions f : Rn →Rn,

w : R×Rn → Rn, w(x, t) ∈ Wnv is an uncertainty/disturbance

and the class Wnv functions represents a family of non

vanishing perturbations at the origin. The functions f (·) and

w(·, ·) ensure the existence of solutions to the system (1) in

the sense of Filippov (1988). Denote a solution trajectory of

(1) with the initial condition x(t0) = x0 and t0 ∈ [0,∞) by

xs(t,x0, t0).
Let Bµ = {x : ||x|| < µ} be a ball centered at the origin

with radius µ > 0 and let T (x0,µ) be the convergence time
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of some trajectory of ( 1) from any initial conditions (x0, t0)
to Bµ , which means that ∀t > T (x0,µ) the solution belongs

to the ball Bµ ,i.e. xs(t,x0, t0) ∈ Bµ .
Definition 1: Suppose that w(t,x) = 0. The origin of (1) is

asymptotically uniformly stable w.r.t. initial conditions (AUS)

if for each µ there exists Tµ > T (x0,µ)> 0 such that for any

initial condition x0 ∈Bn, the trajectory xs(t,x0)∈Bµ , ∀t ≥Tµ .

Definition 2: The origin of (1) is

• uniformly exactly stable (UES) w.r.t. initial conditions

(t0,x0) if for any µ and any disturbance w(x, t) ∈ Wnv

there exists Tµ > T (x0,µ) > 0 such that for any initial

conditions x0 ∈ Rn and t0 ∈ [0,∞), xs(t,x0, t0)∈Bµ , ∀t ≥
t0 +Tµ .

• uniformly finite-time exactly stable (UFTES) w.r.t. initial

conditions (t0,x0) if for any x0 ∈ Rn, any t0 ∈ [0,∞)
and any disturbance w(x, t)∈Wnv there exists a constant

T > 0 independent from (x0, t0), such that xs(t,x0, t0)≡ 0

holds, ∀t ≥ t0 +T .

Note that when w(t,x) = 0, (1) is an autonomous system.

B. Standard Sliding Mode Control Design

Consider a controllable single-input uncertain second-

order linear time invariant system in regular form

ẋ1 = a11x1 + a12x2,
ẋ2 = a21x1 + a22x2 + u+w(x, t),

(2)

where [x1,x2] ∈ R
2 is the state vector, u ∈ R

1 is the con-

trol input, the parameters a11,a12 6= 0,a21.a22 are constants,

w(x, t) ∈ W0 is a uncertainty/disturbance in the system (2),

which belongs to the class W0 = {w(x, t) : |w(x, t)| ≤ ρ0,ρ0 >
0}. To design the sliding mode control in the classical sense,

it is necessary to design firstly the sliding surface. The linear

sliding surface for the system (2) can be usually designed as

s = x2 + c1x1, (3)

by some discontinuous control law (see, [15], for example),

sliding mode is ensured in a finite time. During the sliding

mode s(x) = 0, it implies

ẋ1 = (a11 − a12c1)x1, (4)

and on the sliding, the above equation describes system

dynamics completely determined by c1. The constant c1

could be chosen ensuring the desired eigenvalue of (4).

Therefore, the convergence time to a neighborhood of the

origin becomes unbounded even if the trajectory is started

on the sliding surface when the sliding motion is started

each time far away. After the design of the sliding surface,

a control input must be obtained ensuring the sliding motion

in a finite time from some initial condition. The standard

sliding mode control design suggests that the control law

which enforces the sliding mode should be designed in such

a way the sufficient condition for sliding mode existence

sṡ <−n|s| is satisfied [15]. For the system (2) a control law

that satisfies this condition is designed as

u =−(c1a11 + a21)x1 − (c1a12 + a22)x2 −Qsign(s) , (5)

Q is chosen from certain upper bound of the uncertainty, i.e,

ρ0 ≤ Q.

Using the main idea of the sliding mode control design and

considering a certain class of uncertainties/disturbances Wnv,

our aim is for the linear system (2) is: (a) design a nonlinear

sliding surface, such that, when the motion is restricted to the

manifold s = 0, the reduced-order model converge uniformly

(with respect to the initial conditions) to a neighborhood of

the origin (Section II); (b) design the control input to ensure

sliding motion in prescribed time from any arbitrary initial

condition and with chattering alleviation (Section III).

II. UNIFORM SLIDING SURFACE

Let us take an uniform sliding dynamic in the form

s = x2 + c1x1 + c2|x1|
q sign(x1) , (6)

where c1,c2 > 0 and q > 1 are positive scalars. Let us show

that if q is bigger than one, the rate convergence makes so

strong that it becomes uniform with respect to the initial

conditions. Note that in the case q = 1, the usual linear

sliding surface is obtained.

Introducing (s,x1) as new state variables (where s is

defined as in (6)) and applying the control input

u = ueq + v, (7)

ueq =− [c1(a11 −a12c1)+(a21 −a22c1)]x1 − (a12c1 +a22)s
−qc2|x1|

q−1 [(a11 −a12c1)x1 −a12c2|x1|
q sign(x1)+a12s]

+(c1a12 +a22)c2|x1|
q sign(x1) ,

(8)

we can rewrite the system (2) in the form

ẋ1 = (a11 − a12c1)x1 − a12c2|x1|
q sign(x1)+ a12s

ṡ = v+w(x, t),
(9)

the term ueq compensates the nominal system dynamic. It is

easy to see that the dynamics of the system (2), in the sliding

mode (i.e., s = 0), is governed by the differential equation

ẋ1 = (a11 − a12c1)x1 − a12c2|x1|
q sign(x1) . (10)

And ∀q > 1 and ∀x1 started far away from the origin, the

high degree term |x1|
q sign(x1) does the convergence faster

and uniform. The uniform convergence of the system (10) in

sliding mode is showed in the following theorem.

Theorem 3: If c1 and c2 are selected such that a11 −
a12c1 < 0 and a12c2 > 0, the reduced system (10) is asymp-

totic stability uniform w.r.t initial conditions and every tra-

jectory reaches a neighborhood of the origin of radius µ > 0

before

Tµ =−
1

(q− 1)β
ln

(

β µq−1

α +β µq−1

)

, (11)

where α =−a11 + a12c1 and β = a12c2.

Proof: When a11 − a12c1 < 0 and a12c2 > 0 the

equilibrium point is asymptotically stable. It can be easily

demonstrated using the Lyapunov function Vs = |x1|. The

time derivative along the trajectories of (10) is given by

V̇s =−αVs−βV
q
s , Vs(x1(0)) = v0 ≥ 0 . Then, V̇s is negative
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definite. For q > 1, the solution of the differential equation

is given by

Vs(t)
1−q = exp(−(1− q)β t)v1−q

0 − α
β exp(−(1− q)β t)·

[exp((1− q)β t)− 1].
(12)

The time T1 taken of every trajectory from any initial state
x1(0) to a level set Vs = µ , where 0 < µ < Vs(x1(0)), is
determined by

T1(v0,µ) =
1

(q−1)β

[

ln

(

βv
q−1
0

α +βv
q−1
0

)

− ln

(

β µq−1

α +β µq−1

)

]

.

The reaching time T1(v0,µ) depends on the parameters

c1,c2,µ and is upper bounded by a constant which is

independent on the initial condition x1(0) ∈ Vs(x0),that is,

the convergence time T1(v0,µ) of every trajectory can be

upper bounded by (11), i.e., T1(v0,µ)≤ Tµ .

If µ → 0, the convergence time to a neighborhood of the

origin is infinite, which correspond to the asymptotic (expo-

nential) convergence. By there exists some constant Tµ > 0

independent of the initial conditions we can conclude that

the sliding motion is uniformly convergent. Hence, ∀x0 ∈ R2

and ∀t ≥ Tµ , the system trajectories of (10) are in the interior

of a ball Bµ = {x1 : |x1| < µ} centered at the origin. Once

the surface is specified with some performance requirements

in the system, the new control input v must be designed

in such a way it guarantees the sliding mode. For instance,

there exists some control laws based on the classical design

that enforces the sliding motion (see, for example [8]).

These control laws are obtained by the so-called reaching

law approach in which the switching function dynamics are

specified a priori and basically based on a first-order sliding

mode (FOSM).

III. UNIFORM EXACT SUPER-TWISTING BASED SLIDING

MODE ENFORCEMENT

The use of the relay (or unit controllers) sliding mode in

the control law to enforce the sliding motion produces the

chattering effect. To eliminate the high frequency component

of this controllers in the first sliding mode a low-pass filter is

frequently used. Another approach to deal with this problem

is using high order sliding modes. Up to now only few 2-

sliding controllers have been proposed [11]. The so-called

Super-Twisting Algorithm (STA) has been widely used as

an absolutely continuous controller because it ensures all

the main properties of first order sliding mode control for

the system with Lipschitz continuous matched bounded un-

certainties/disturbances, i.e., with bounded gradients. Taking

into account this advantages we will introduce a controller

based on the STA to alleviate the chattering effect. The

second-order uniformly exact controller (SOUEC) is given

now by

v =−k1φ1 (s)− k2

∫ t

0
φ2 (s)dt , (13)

where k1,k2 are the gains to be designed,

φ1 (s) = µ1|s|
1
2 sign(s)+µ2s+µ3|s|

3
2 sign(s) ,

φ2 (s) =
1

2
µ2

1 sign(s)+
3

2
µ1µ2 |s|

1
2 sign(s)+(µ2

2 +2µ1µ3)s

+
5

2
µ2µ3 |s|

3
2 sign(s)+

3

2
µ2

3 |s|
2 sign(s) ,

being µ1,µ2 and µ3 positive constants. Actually, every

trajectory will have achieved the sliding surface before some

time, which is uniformly bounded by a constant. The SOUEC

is based on standard Super-Twisting Controller (STC) and it

is clear to see that the standard STA based controller can

be recovered, when µ2,µ3 = 0, and the gains k1,k2 > 0.

Also, the control law v inherits the robustness properties

of a STC, such that, it is absolutely continuous control

law and the class of uncertainties/disturbances supported

by this controller does not include bounded discontinuous

functions, such that, the control law v can not compensate

these class of functions. To determinate the class of uncer-

tainties/disturbances supported by the new control law v, let

us assume that w(x, t) can always be written as

w(x1,x2, t) = g1 (x1,s, t)+ g2 (x1,x2, t) , (14)

and we assume that w ∈ W2, where the class of uncer-

tainties supported by v is the set W2 = {w : |g1 (x1,s, t)| ≤
ρ1 |φ1 (s)| ,

∣

∣

d
dt

g2 (x1, t)
∣

∣≤ ρ2 |φ2 (s)|}, for some known con-

stants ρ1,ρ2 ≥ 0. Also, the system (9) with the controller

(13) and the disturbance w ∈ W2, can be written as

ẋ1 = (a11 − a12c1)x1 − a12c2|x1|
q sign(x1))+ a12s

ṡ =−k1φ1 (s)+ ς + g1 (x1,x2, t) ,

ς̇ =−k2φ2 (s)+
d
dt

g2 (x1,x2, t) .
(15)

The existence of control law is discussed in the following

theorem.

Theorem 4: The control law (7), with ueq as in (8) and

v as in (13), enforces every trajectory of (9) to move from

any initial condition to the sliding surface and thereafter to

remain on it. Moreover, ∀w ∈W2, the sliding manifold s = 0

is UFTES w.r.t initial conditions (t0,x0) and every trajectory

reaches it before

Tstc =
6

κ3

1

µ
1
6

ss

+
2

κ1

ln

(

κ2

κ1

µ
1
2

ss + 1

)

(16)

where

κ1 = µ2
1 ε/2(λmax{P}+C2)

1
2 , κ2 = µ2ε/(λmax{P}+C2) ,

κ3 = (1/2)
1
14 vminC3/(λmax{P}+C2)

7
6 ,

(17)

and µss is the positive real root of

µ
1
2

ss +(κ1/κ2) = (κ3/κ2)µ
2
3

ss . (18)

The SOUEC enforces the sliding mode for every trajectory

of the system (2), taking into account their respective un-

certainties/disturbances. Moreover, all the system trajectories

achieve an arbitrary ball Bµ (µ > 0) in prescribed time. First,

the sliding motion is enforced in a time Tstc, which is a

scalar constant. Once in the sliding motion, the trajectories

converge in a time Tµ to an arbitrary neighborhood of the
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origin of radius µ > 0. All the trajectories converge to Bµ

before a time which has a constant value, if they start out

the ball Bµ , i.e., the system driven by the SOUEC is UES

w.r.t. initial conditions.

A. A Lyapunov based approach

We propose a Lyapunov method to show the uniform

exact convergence of the system trajectories from any initial

condition to the nonlinear sliding surface. Consider the

continuous function

W (s,ς) =V1(ζ )+V2(s,ς), (19)

like a candidate Lyapunov function. The function V1(ζ ) =

ζ T Pζ is quadratic in the vector ζ =
[

φ1(s) ς
]T

and P =
PT > 0 is a definite positive symmetric matrix, which is

solution of a Linear Matrix Inequality (LMI)
[

AT P+PA+R+ εI PB

BT P −Θ

]

< 0, (20)

where R = (θ1ρ2
1 +θ2ρ2

2 )C
TC, C =

[

1 0
]T

and

A =

[

−k1 1

−k2 0

]

, B =

[

1 0

0 1

]

, Θ =

[

θ1 0

0 θ2

]

, (21)

∀θ1,θ2 ≥ 0 and being ε > 0. The function V2 (s,ς) =

δk2|φ1(s)|
2 −|φ1(s)|

2
3 sign(s) |ς |

4
3 sign(ς)+δ |ς |2 and δ is a

positive constant which satisfies

δ > (4/27k2)
1
3 ,

7δk2(k1 −ρ1)> 4(3)
3
2 ρ

7
4

2 δ
7
4 + k̃

7
3
1 + 4k̃

7
6
2 ,

(22)

where k̃1 = k1 + ρ1 and k̃2 = k2 +ρ2. The following result

shows that the subsystem (s,ζ ) of (15) is robust against

uncertainties/disturbances w ∈ W2, when the gains (k1,k2)

and δ are selected properly.

Proposition 5: The Lyapunov function (19) is a

strong,robust Lyapunov function for the subsystem (s,ς) of

(15). Moreover, the derivative Ẇ of the Lyapunov function

taken along the trajectories of the subsystem satisfies the

differential inequality

Ẇ (s,ς)≤−κ1W
1
2 (s,ς)−κ2W (s,ς)−κ3W

7
6 (s,ς) , (23)

where κ3,κ2,κ1 are as in (17).

Proof: To show positive definiteness of V2(s,ς). Since

|φ1(s)|
2
3 sign(s) |ς |

4
3 sign(ς) ≤ |φ1(s)|

2
3 |ς |

4
3 , from Lemma 6

(see Appendix), let γ00 and γ01 be constants which satisfy

|φ1(s)|
2
3 |ς |

4
3 ≤ γ3

0i |φ1(s)|
2 /3+ 2γ

− 3
2

0i |ς |2 /3,

∀γ0i > 0 , i = 0,1. Therefore, ∀(s,ς), the function

V2 can be bounded as α1(γ00)|φ1(s)|
2 + α2(γ00) |ς |

2 ≤
V2 (s,ς) ≤ α2(γ01)|φ1(s)|

2 + α4(γ01) |ς |
2
, where α1(γ00) =

(

δk2 − γ3
00/3

)

,α2(γ00) = (δ − 2γ
− 3

2
00 /3) ,α3(γ01) = (δk2 +

γ3
01/3) and α4(γ01) = (δ +2γ

− 3
2

01 /3). Also, V2(s,ς) is positive

definite if and only if α1(γ00) > 0 and α2(γ00) > 0, it is

always possible if δ satisfies (22). Moreover, V2 can be

bounded as

C1‖ζ‖2
2 ≤V2 (s,ς)≤C2‖ζ‖2

2, (24)

where C1 = δk2 − z2
m/3 and C2 = δk2 + z2

M/3 are positive

constants. And zm = γ
2
3

00 is the positive real root of 2 +

3δ (k2 − 1)zm = z3
m, and zM = γ

2
3

01 is the positive real root of

2+ 3δ (1− k2)zM = z3
M . Since the uncertainties/disturbances

term w ∈ W2, the time derivative of V2 is given by

V̇2 ≤−|φ1(s)|
−1
3 φ ′

1(s){2δk2(k1 − g1)|φ1(s)|
7
3

−2g2δ |φ1(s)|
4
3 ς − 2

3
(k1 + g1)φ1(s)|ς |

4
3 sign(ς)

− 4
3
(k2 + g2)|φ1(s)|

2|ς |
1
3 + 2

3
|ς |

7
3 }.

Using the following inequalities derived from Lemma (6)

|φ1(s)|
4
3 |ς | ≤ 4γ

7
4

1 |φ1(s)|
7
3 /7+ 3γ

− 7
3

1 |ς |
7
3 /7 ,∀γ1 > 0 ,

|φ1(s)||ς |
4
3 ≤ 3γ

7
3

2 |φ1(s)|
7
3 /7+ 4γ

− 7
4

2 |ς |
7
3 /7 ,∀γ2 = k̃

4
7
1 > 0,

|φ1(s)|
2|ς |

1
3 ≤ 6γ

7
6

3 |φ1(s)|
7
3 /7+ γ−7

3 |ς |
7
3 /7,∀γ3 = k̃

1
7
2 > 0,

we obtain

V̇2 (s,ς) =−|φ1(s)|
−1
3 φ ′

1(s)
(

ψ1|φ1(s)|
7
3 +ψ2|ς |

7
3

)

,

where ψ1 = 2(ϒ1 − 4ρ2δγ
7
4

1 /7), ψ2 = 2(1− 9ρ2δγ
− 7

3
1 )/21,

ϒ1 = δk2(k1 −ρ1)− k̃
7
3
1 /7−4k̃

7
6
2 /7 and γ1 always exits iff it

satisties (7ϒ1/8ρ2δ )
4
7 > γ1 > (9ρ2δ )

3
7 . For negative definite-

ness of V̇2 is required that ψ1,ψ2 > 0, it is always possible

if (22) is satisfied. Note that for any s ∈ R, the function

v1(s) =−
φ ′

1(s)

|φ1(s)|
1
3

=

(

1
2

µ1 |s|
−1
2 + µ2 +

3
2

µ3 |s|
1
2

)

(µ1 |s|
1
2 + µ2|s|+ µ3 |s|

3
2 )

1
3

has a minimum. Since v1(s)> 0 ,∀s

lim
|s|→∞

v(s) =
3

2
µ

2
3

3 , lim
|s|→0

v(s) =
3
2

µ
2
3

1

|s|
2
3

= ∞ ,

we immediately establish that the minimum of vmin =
mins∈R v(s) exists and is positive. Then, it leads to

V̇2 (s,ς) ≤−vmin(x)C3

(

|φ1(s)|
7
3 + |ς |

7
3

)

where C3 = 2(1− 9ρ2δ/ym)/21 and ym = γ
7
3

1 is the positive

real root of 3ρ2δ + 7(ϒ1 − 1/21)ym = 4ρ2δy
7
4
m. Using the

following standard inequality [7, Thm. 16, Section 2.9]

(α|x1|
s +(1−α)|x2|

s)
1
s ≤ (α|x1|

r +(1−α)|x2|
r)

1
r , (25)

0 ≤ α ≤ 1∀x ∈ R2 ,s < r, clearly, we can find that

(1/2)
1
14 (|φ1(s)|

2 + |ς |2)
7
6 ≤ (|φ1(s)|

7
3 + |ς |

7
3 ). Finally, from

this inequality and using the inequality (24), we find that

V̇2 ≤−(1/2)
1

14 vminC3(|φ1(s)|
2 + |ς |2)

7
6

≤−(1/2)
1

14 vminC3(‖ζ‖2
2)

7
6 .

On other hand, using the vector ζ , the subsystem (15) can

be written as ζ̇ = φ ′
1 (s) (Aζ +Bρ̃) , with A and B as in (21)

and

ρ̃(t,ζ ) =

[

g1 (x1,x2, t)
d
dt

g2(x1,x2,t)

φ ′
1(s)

]

s=φ−1(ζ )

4619



To take into account a bigger variety of disturbances, it

will be assumed that the components of the (transformed)

uncertainties/disturbances term ρ̃(t,ζ ) satisfy the sector con-

ditions (for i = 1,2 and ∀t ≥ 0 and ∀ζ ∈ R2)

ωi(ρ̃i,ζ ) =−ρ̃2
i (t,ζ )+ρ2

i ζ 2
1 = ϖT

i

[

−1 0

0 Ri

]

ϖi ≥ 0

where ϖT
i =

[

ρ̃i ζi

]T
, Ri = ρ2

i CTC and C is defined in (21).

It means that the class of uncertainty/disturbance W2 can be

expressed as a sector condition (in the ζ coordinates), i.e,

in the original variables, |ρ̃i(t,ζ )| ≤ ρi|φi(s)|, is equivalent

to |ρ̃i(t,ζ )| ≤ ρi|ζi|, with ρi > 0, in the transformed coordi-

nates. It follows that ω(ρ̃ ,ζ ) = θ1ω1(ρ̃1,ζ )+θ2ω2(ρ̃2,ζ )≥
0,∀θ1,θ2 ≥ 0, hence

ω(ρ̃,ζ ) =

[

ρ̃(t,ζ )
ζ

]T [
−Θ 0

0 R

][

ρ̃(t,ζ )
ζ

]

, (26)

with Θ and R as in (21). The derivative of the Lyapunov

function V1 (ζ ) is

V̇1 = φ ′
1

[

ζ
ρ̃

]T [
AT P+PA PB

BT P 0

][

ζ
ρ̃

]

≤ φ ′
1

{

[

ζ
ρ̃

]T [
AT P+PA PB

BT P 0

][

ζ
ρ̃

]

+ω(ρ̃,ζ )

}

= φ ′
1

[

ζ
ρ̃

]T [
AT P+PA+R PB

BT P −Θ

][

ζ
ρ̃

]

≤−φ ′
1ε‖ζ‖2

2.

And for negative definiteness of V̇1 is required the feasi-

bility of the LMI (20). Recall the standard inequality from

the quadratic forms λmin{P}‖ζ‖2
2 ≤ ζ T Pζ ≤ λmax {P}‖ζ‖2

2,

where ‖ζ‖2
2 = φ2

1 (s) + ς2 = µ2
2 |s|

2 + µ2
3 |s|

3 + 2µ2µ3|s|
5
2 +

µ2
1 |s|+ 2µ1µ2|s|

3
2 + 2µ1µ3|s|

2 + ς2
2 is the Euclidean norm

of ζ . From this, we can see that (µ1 |s|
1
2 )−1 ≤ (‖ζ‖2)

−1

is always satisfied. Then, as φ ′
1 = µ1

2|s|
1
2

+ µ2 +
3µ3

2
|s|

1
2 , we

immediately establish

V̇1 ≤−
1

2
µ2

1 ε ‖ζ‖2 − µ2ε‖ζ‖2
2 −

3

2
µ3ε|s|

1
2 ‖ζ‖2

2 .

Thanks to the negative definiteness of V̇1(ζ ) and V̇2 (s,ς),

Ẇ (s,ς) = V̇1 + V̇2

≤−µ2
1

1

2
ε ‖ζ‖2 − µ2ε‖ζ‖2

2 − (1/2)
1

14 vminC3(‖ζ‖2)
7
3 .

As both Lyapunov functions satisfy λmin{P}‖ζ‖2
2 ≤V1(ζ )≤

λmax{P}‖ζ‖2
2 and C1‖ζ‖2

2 ≤V2 (s,ς)≤C2‖ζ‖2
2, the function

W (s,ς) can be upper bounded as W (s,ς) ≤ (λmax{P}+
C2)‖ζ‖2

2, it allows us to obtain (23).

It is clear to see that every trajectory converges to zero

in finite time. The proof of the uniform exact convergence

follows immediately from Proposition 5. Since W satis-

fies both differential inequalities Ẇ (s,ς) ≤ −κ1W
1
2 (s,ς)−

κ2W (s,ς) and Ẇ (s,ς) ≤ −κ3W
7
6 (s,ς), the value of

W (t) is below the solution of any of both inequalities.

Then, for W0 = W (s(x0),ς(x0)) the solution W (t) satisfies

W (t)≤ min{W1 ,W2} , where

W1 = exp(− 1
2
κ2t)

[

W
1
2

0 − κ1
κ2

[

exp( 1
2
κ2t)− 1

]

]2

,

W2 =

(

W
− 1

6
0 +

(

1
6

)

κ3t

)−6

.

This expression allows to estimate the convergence time.

First, an upper bound T1(x0,µss) of the convergence time

of a trajectory starting at point x0 at an energy level

W0 at which it reaches the level set W (s,ς) = µss (for

some 0 < µss < W0), can be calculated from W2 = µss as

T1(x0,µss) = 6

(

µ
− 1

6
ss −W

− 1
6

0

)

/κ3. After, an upper bound

T2(µss) at which s = 0 is reached (starting from this level

set W ′
0 = µss), can be calculated from W1 = 0 as T2(µss) =

2ln

(

κ2
κ1

µ
1
2

ss + 1

)

/κ1. Then, every trajectory reaches the slid-

ing surface in a time T (x0,µss) = T1(x0,µss)+T2(µss). More-

over, the convergence time T (x0,µss) is uniformly upper

bounded by a constant, i.e., T (x0,µss) ≤ Tstc, with Tstc as

in (16). Choose µss as in (18) to ensure the best estimation

of the prescribed time Tstc.

IV. SIMULATION: ACADEMIC EXAMPLE

Consider the following hybrid linear system modeled by

the equations ẋ = Aqx + b(u +w(t)), where x ∈ R2 is the

continuous state, q ∈ [1,2] is the discrete state that indexes

the subsystems

A1 =

[

0 1

2 −1

]

, A2 =

[

1 0

2 1

]

,

both A1 and A2 are unstable, b =
[

0 1
]T

, w(t) =
0.5sin(2t) + 0.5cos(5t) and the control input u is defined

by (7). The control objective is to stabilize the system in

x = 0 with convergence time of every trajectory of the

system to the sliding mode upper bounded by a constant.

The dynamic system changes every 4 seconds. Without lost

of generality we will suppose all state measured but for the

simulation the action control will start one second later of

each switching takes place. The sliding surfaces for each

system are designed as sA1
= x2 + x1 +0.5|x1|

3
2 sign(x1) and

sA2
= x2 + 2x1 + |x1|

3
2 sign(x1) and the initial conditions for

the system x(0) =
[

1 1.5
]T

and the sampling time τ =
0.001. We compare the controller (7) with:

1) v = −M0 sign(s), the first-order sliding controller

(FOSC), with M0 = 4.

2) v = −k1φ1 (s)− k2

∫ t
0 φ2 (s)dt, the super-twisting uni-

form exact controller (SOUEC), with µ1 = 2,µ2 =
1,µ3 = 0.5.

Note that with the SOUEC the disturbance w ∈ W2 = {w :

|g1 (x1,s, t)| ≤ ρ1 |φ1 (s)| , |ẇ| =
∣

∣

d
dt

g2 (x1, t)
∣

∣ ≤ ρ2 |φ2 (s)|},

with ρ1 = 0 and ρ2 = 1. For this case, when ρ1 = 0 (see [13]),

the gains k1 and k2 are selected in the set κ = {(k1,k2) ∈
R2|k2 > ρ2,k

2
1(k2 − 0.25k2

1) > ρ2
2}. We are choosing k1 = 2

and k2 = 4.
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Fig. 1. (a) and (b) shows the states x1 and x2 with the: FOSC (solid line)
and SOUEC (dotted line); (c) Sliding Surfaces and (d) Control input.

The results are shown in the Fig. 1. Only the SOUEC

enforces the sliding mode providing chattering alleviation.

Nevertheless, the transient response with the SOUEC is

increased enormously, see Fig. 1(d). It is a consequences

of the uniform convergence property. Actually, to attract the

system trajectories started from far away of the origin to

a neighborhood of the origin in prescribed time, the action

control has to be so stronger to do this. The Fig. 2(b) shows

a linear sliding surface and the uniform surfaces sA1
= 0 and

sA2
= 0, which are clearly nonlinear. Considering that the

control action starts since t = 0 at the first operation mode

during the first 4 seconds, the Fig. 2(a) puts in evidence that

the convergence time to the surfaces grows to infinity with

the growth of the initial conditions for the FOSC, while the

convergence time using the SOUEC is uniformly bounded

by a constant.

V. CONCLUSIONS

In this paper three notions of uniform convergence w.r.t

initial conditions and uncertainties/disturbances are intro-
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Fig. 2. (a) Convergence time to the sliding surface during the first operation
mode (b) a linear sliding surface sL = x2 + x1 and the uniform sliding
surfaces sA1

and sA2
.

duced. A nonlinear sliding surface has been suggested ensur-

ing during the sliding mode asymptotic convergence of the

system trajectories uniform w.r.t. initial conditions to any

arbitrary small vicinity of origin. An absolutely continuous

super-twisting based controller is suggested providing uni-

form finite-time exact convergence of the trajectories to the

sliding surface for a class of uncertainties/disturbances with

chattering alleviation. The uniform sliding surface and the

controller, guarantee the uniform exact convergence of all

the system trajectories.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support

from CONACyT, grant 56819 and 51244, Project 132125

and CVU 267513, FONCICyT, Project 93302, and PAPIIT-

UNAM, grant 17211 and IN117610.

REFERENCES

[1] BANDYOPADHYAY, B., DEEPAK, F. & KIM, K.S. (2009) Sliding
Mode Control Using Novel Sliding Surfaces, Lecture Notes in Control

and Information Sciences, 392, Springer-Verlag Berlin Heidelber, 138
p.

[2] BARTOSZEWICZ, A. & NOWACKA-LEVERTON, A. (2009) Time-
Varying SlidingModes for Second and Third Order Systems, Lecture

Notes in Control and Information Sciences, 382, Springer, Heidelberg,
200 p.

[3] CRUZ ZAVALA, E., MORENO, J.A. & FRIDMAN, (2010a) Uniform
Second-Order Sliding Mode Observer for Mechanical Systems, 11th

International Workshop on Variable Structure Systems, Mexico City,
pp. 14-19.

[4] CRUZ ZAVALA, E., MORENO, J.A. & FRIDMAN, L. (2010b) Uniform
Robust Exact Differentiator, 49th IEEE Conference on Decision and

Control, pp. 102 – 107.
[5] DAVILA, A.,MORENO, J.A. & FRIDMAN, L. (2010) Variable Gains

Super-Twisting Algorithm: A Lyapunov Based Design, American

Control Conference, ACC2010, pp. 968 – 973 .
[6] FILIPPOV, A.F. (1988) Differential equations with discontinuous right

hand side, Kluwer. Dordrecht, The Netherlands, 304 p.
[7] HARDY, G.H., LITTLEWOOD, J.E. & PÓLYA, G. (1951) Inequalities,
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APPENDIX

Lemma 6: For every real numbers a > 0, b > 0, c > 0,

p > 1, q > 1, with 1
p
+ 1

q
= 1 the following inequality is

satisfied

ab ≤ cpap/p+ c−qbq/q .
Proof: See [3].
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