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Abstract—This paper brings together cooperative control, 

reinforcement learning, and game theory to present a multi-

agent distributed formulation for graphical games. The notion 

of graphical games is developed for dynamical systems, where 

the dynamics and performance indices for each node depend 

only on local neighbor information. We propose a cooperative 

policy iteration algorithm for graphical games. This algorithm 

converges to the best response when the neighbors of each 

agent do not update their policies and to the �ash equilibrium 

when all agents update their policies simultaneously. It is also 

shown that the convergence of this algorithm is based on the 

speed of convergence of the neighbors of every player in the 

graph, graph topology, and user defined matrices in the 

performance index. This framework will be used to develop 

methods for online adaptive learning solutions of graphical 

games in real time. 

Index Terms—cooperative Hamilton-Jacobi equations, 

Policy Iteration, �ash-equilibrium, best response, graphical 

games.  

I. INTRODUCTION 

Distributed networks have received much attention in the 

last year because of their flexibility and computational 

performance. The ability to coordinate agents is important in 

many real-world tasks where it is necessary for agents to 

exchange information with each other. Synchronization 

behavior among agents is found in flocking of birds, 

schooling of fish, and other natural systems. Work has been 

done to develop cooperative control methods for consensus 

and synchronization [7], [11], [22], [23], [24], [25], [26] 

[31]. See [21], [24] for surveys. Leaderless consensus results 

in all nodes converging to common value that cannot 

generally be controlled. We call this the cooperative 

regulator problem.  

On the other hand the problem of cooperative tracking 

requires that all nodes synchronize to a leader or control 

node [9], [19], [27], [36].  This has been called pinning 

control or control with a virtual leader. Consensus has been 

studied for systems on communication graphs with fixed or 

varying topologies and communication delays.  

Game theory provides an ideal environment in which to 

study multi-player decision and control problems, and offers 

a wide range of challenging and engaging problems. Game 
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theory [30] has been successful in modeling strategic 

behavior, where the outcome for each player depends on the 

actions of himself and all the other players. Every player 

chooses a control to minimize independently from the others 

his own performance objective. Multi player cooperative 

games rely on solving coupled Hamilton-Jacobi (HJ) 

equations, which in the linear quadratic case reduce to the 

coupled algebraic Riccati equations ([2], [8], [10]). Solution 

methods are generally offline and generate fixed control 

policies that are then implemented in online controllers in 

real time. These coupled equations are difficult to solve. 

Reinforcement learning (RL) is a sub-area of machine 

learning concerned with how to methodically modify the 

actions of an agent (player) based on observed responses 

from its environment [29]. RL methods have allowed control 

systems researchers to develop algorithms to learn online in 

real time the solutions to optimal control problems for 

dynamic systems that are described by difference or ordinary 

differential equations. These involve a computational 

intelligence technique known as Policy Iteration (PI) [3], 

which refers to a class of algorithms with two steps, policy 

evaluation and policy improvement. PI has primarily been 

developed for discrete-time systems, and online 

implementation for control systems has been developed 

through approximation of the value function [3], [37], [37]. 

PI provides effective means of learning solutions to HJ 

equations online.  In control theoretic terms, the PI algorithm 

amounts to learning the solution to a nonlinear Lyapunov 

equation, and then updating the policy through minimizing a 

Hamiltonian function.  Policy Iteration techniques have been 

developed for continuous-time systems in [34]. 

RL methods have been used to solve multiplayer games 

for finite-state systems in [5], [20].  RL methods have been 

applied to learn online in real-time the solutions for optimal 

control problems for dynamic systems and differential 

games in [6], [12], [32], [33]. 

This paper brings together cooperative control, 

reinforcement learning, and game theory to solve multi-

player differential games on communication graph 

topologies. There are three main contributions in this paper. 

The first involves the formulation of a graphical game for 

dynamical systems networked by a communication graph.  

The dynamics and value function of each node depend only 

on the actions of that node and its neighbors. This graphical 

game allows for synchronization as well as Nash equilibrium 

solutions among neighbors. The second contribution is the 

derivation of coupled Riccati equations for solution of 

graphical games. The third contribution is a Policy Iteration 

algorithm for solution of graphical games that relies only on 
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local information from neighbor nodes. It is shown that this 

algorithm converges to the best response policy of a node if 

its neighbors have fixed policies and to the Nash solution if 

all nodes update their policies.   

The paper is organized as follows.  Section 2 reviews 

synchronization in graphs and derives an error dynamics for 

each node that is influenced by its own actions and those of 

its neighbors. Section 3 introduces differential graphical 

games. Coupled Riccati equations are developed and 

stability and solution for Nash equilibrium are proven. 

Section 4 proposes a policy iteration algorithm for the 

solution of graphical games and gives proofs of 

convergence.  

II. SYNCHRONIZATION AND NODE ERROR 

DYNAMICS 

A. Graphs 

Consider a graph ( , )G V= Ε  with a nonempty finite set of � 

nodes 1{ , , }�V v v= ⋯  and a set of edges or arcs V VΕ ⊆ × .  

We assume the graph is simple, e.g. no repeated edges and 

( , ) ,i iv v E i∉ ∀  no self loops.  Denote the connectivity 

matrix as [ ]ijE e=  with 0 ( , )ij j ie if v v> ∈Ε  and 0ije =  

otherwise.  Note 0iie = .  The set of neighbors of a node iv  

is { : ( , ) }i j j i� v v v= ∈Ε , i.e. the set of nodes with arcs 

incoming to iv .  Define the in-degree matrix as a diagonal 

matrix [ ]iD d=  with 

i

i ij

j �

d e

∈

= ∑  the weighted in-degree of 

node i  (i.e. i -th row sum of E).  Define the graph Laplacian 

matrix as L D E= − , which has all row sums equal to zero. 

A directed path is a sequence of nodes 0 1, , , rv v v⋯  such 

that 1( , ) , {0,1, , 1}i iv v E i r+ ∈ ∈ −⋯ .  A directed graph is 

strongly connected if there is a directed path from iv  to jv  

for all distinct nodes ,i jv v V∈ .  A (directed) tree is a 

connected digraph where every node except one, called the 

root, has in-degree equal to one.  A graph is said to have a 

spanning tree if a subset of the edges forms a directed tree.  

A strongly connected digraph contains a spanning tree. 

General directed graphs with fixed topology are 

considered in this paper.   

B. Synchronization and �ode Error Dynamics 

Consider the � systems or agents distributed on 

communication graph Gr with node dynamics 

 i i i ix Ax B u= +ɺ          (1) 

where ( ) n
ix t ∈ℝ  is the state of node i, ( ) im

iu t ∈ℝ  its 

control input.  Cooperative team objectives may be 

prescribed in terms of the local neighborhood tracking error 
n

iδ ∈ℝ  [15]) as 

 0( ) ( )

i

i ij i j i i

j �

e x x g x xδ
∈

= − + −∑      (2) 

The pinning gain 0ig ≥  is nonzero for a small number of 

nodes i that are coupled directly to the leader or control node 

0x , and 0ig >  for at least one i  [19].  We refer to the 

nodes i for which 0ig ≠  as the pinned or controlled nodes.  

Note that iδ  represents the information available to node i 

for state feedback purposes as dictated by the graph 

structure. 

The state of the control or target node is 0 ( ) nx t ∈ℝ  which 

satisfies the dynamics  

 0 0x Ax=ɺ  (3) 

Note that this is in fact a command generator [18] and we 

seek to design a cooperative control command generator 

tracker.  Note that the trajectory generator A may not be 

stable. 

The Synchronization control design problem is to 

design local control protocols for all the nodes in G to 

synchronize to the state of the control node, i.e. one requires 

0( ) ( ),ix t x t i→ ∀ .  

From (2), the overall error vector for network Gr  is given 

by 

      
( )( )( ) ( )( )0n nL G I x x L G Iδ ζ= + ⊗ − = + ⊗

 
 (4) 

where 1 2

T
T T T n�

�δ δ δ δ = ∈ ⋯ ℝ  and 

 0 0
n�x Ix= ∈ℝ , with 1 n� n

nI I R ×= ⊗ ∈  and 1  the �-

vector of ones.  The Kronecker product is ⊗ .  � �G R ×∈  is 

a diagonal matrix with diagonal entries equal to the pinning 

gains ig .  The (global) consensus or synchronization error 

(e.g. the disagreement vector in [22]) is 

( )0
n�x xζ = − ∈ℝ    (5) 

The communication digraph is assumed to be strongly 

connected.  Then, if 0ig ≠  for at least one i , ( )L G+  is 

nonsingular with all eigenvalues having positive real parts 

[15].  The next result therefore follows from (4) and the 

Cauchy Schwartz inequality and the properties of the 

Kronecker product [4].  

Lemma 1.  Let the graph be strongly connected and 

0G ≠ .   Then the synchronization error is bounded by 

 / ( )L Gζ δ σ≤ +  (6) 

with ( )L Gσ +  the minimum singular value of ( )L G+ , and 

( ) 0tδ ≡  if and only if the nodes synchronize, that is 

0( ) ( )x t Ix t=  (7) 

  ■ 

Our objective now shall be to make small the local 

neighborhood tracking errors ( )i tδ , which in view of Lemma 

1 will guarantee synchronization.   

To find the dynamics of the local neighborhood tracking 

error, write  

 

0( ) ( )

i

i ij i j i i

j �

e x x g x xδ
∈

= − + −∑ɺ ɺ ɺ ɺ ɺ

 0

( ( ))

( )

i

i ij i i i j j j

j �

i i i i

e Ax B u Ax B u

g Ax B u Ax

δ
∈

= + − +

+ + −

∑ɺ
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( )

i

i i i i i i ij j j

j �

A d g B u e B uδ δ
∈

= + + − ∑ɺ

   

(8) 

with , ,imn
i iu iδ ∈ ∈ ∀ℝ ℝ . 

This is a dynamical system with multiple control inputs, 

from node i and all of its neighbors. 

III. COOPERATIVE MULTI-PLAYER GAMES ON 

GRAPHS 

We wish to achieve synchronization while simultaneously 

optimizing some performance specifications on the agents.  

To capture this, we intend to use the machinery of multi-

player games [2].   

A. Cooperative Performance Index 

Define the local performance indices  

1
2

0

( (0), , ) ( )

i

T T T
i i i i i ii i i ii i j ij j

j �

J u u Q u R u u R u dtδ δ δ
∞

−
∈

= + + ∑∫

               1
2

0

( ( ), ( ), ( ))i i i iL t u t u t dtδ
∞

−≡ ∫      (9) 

where ( )iu t−  is the vector of the control inputs { : }j iu j �∈  

of the neighbors of node i, and iu−  denotes { ( ) : 0 }iu t t− ≤ . 

All weighting matrices are constant and symmetric with 

0, 0, 0ii ii ijQ R R> > ≥ . Note that the i-th performance index 

includes only information about the inputs of node i and its 

neighbors.  

For dynamics (8) with performance objectives (9), 

introduce the associated Hamiltonians 

( , , , ) ( )

i

T
i i i i i i i i i i i ij j j

j �

H p u u p A d g B u e B uδ δ−
∈

 
 ≡ + + −
 
 

∑
1 1 1
2 2 2

0

i

T T T
i ii i i ii i j ij j

j �

Q u R u u R uδ δ
∈

+ + + =∑
 

(10)

 
where ip is the co-state variable. 

Necessary conditions [17] for a minimum of (9) are (1) 

and  

                    

Ti
i i ii i

i

H
p A p Q δ

δ
∂

− = ≡ +
∂

ɺ

      

(11)

   
1

0 ( )
Ti

i i i ii i i
i

H
u d g R B p

u

−∂
= ⇒ = − +

∂
    

(12)

 

B. Graphical Games and �ash Equilibrium 

Interpreting the control inputs ,i ju u  as state dependent 

policies or strategies, the value function for node i 

corresponding to those policies is 

1
2

( ( )) ( )

i

T T T
i i i ii i i ii i j ij j

j �t

V t Q u R u u R u dtδ δ δ
∞

∈

= + + ∑∫
 

(13) 

Definition 1. Control policies ,iu i∀  are defined as 

admissible if iu  are continuous, (0) 0iu = , iu  stabilize 

system (8) locally, and values (13) are finite. 

When iV  is finite, using Leibniz’ formula, a differential 

equivalent to this is given in terms of the Hamiltonian 

function by the Bellman equation 

( , , , ) ( )

i

T
i i

i i i i i i i i i ij j j
i i j �

V V
H u u A d g B u e B uδ δ

δ δ−
∈

 ∂ ∂  ≡ + + −
 ∂ ∂
 

∑
1 1 1
2 2 2

0

i

T T T
i ii i i ii i j ij j

j �

Q u R u u R uδ δ
∈

+ + + =∑
              

(14) 

with boundary condition (0) 0iV = .  (The gradient is 

disabused here as a column vector.)  That is, solution of 

equation (14) serves as an alternative to evaluating the 

infinite integral (13) for finding the value associated to the 

current feedback policies.  It is shown in the Proof of 

Theorem 1 that (14) is a Lyapunov equation.  According to 

(13) and (10) one equates /i i ip V δ= ∂ ∂ . 

The control objective of agent i is to determine 

* 1
2

( ( )) min ( )
i

i

T T T
i i i ii i i ii i j ij j

u
j �t

V t Q u R u u R u dtδ δ δ
∞

∈

= + + ∑∫
 

(15) 

which corresponds to Nash equilibrium.   

Definition 2. [2] (Global Nash equilibrium) An �-tuple of 

policies { }* * *
1 2, ,...,u u uΝ  is said to constitute a global Nash 

equilibrium solution for an � player game if for all i �∈  
* * * * * * * *

1 2 1 2( , ,..., ,..., ) ( , ,..., ,..., )i i i i iJ J u u u u J u u u uΝ Ν≤≜ (16) 

The �-tuple of game values { }* * *
1 2, ,...,J J JΝ is known as a 

Nash equilibrium outcome of the �-player game. 

The distributed multiplayer game with local dynamics (8)

and local performance indices (9) should be contrasted with 

standard multiplayer games [1], [2] which have centralized 

dynamics 

1

�

i i

i

z Az B u

=

= +∑ɺ  (17) 

where nz ∈ℝ  is the state, ( ) im
iu t ∈ℝ  is the control input 

for every player, and where the performance index of each 

player depends on the control inputs of all other players.  In 

the graphical games, by contrast, each node dynamics and 

performance index only depends on its own state, its control, 

and the controls of its immediate neighbors. 

 We want to study the distributed game on a graph 

defined by (15) with distributed dynamics (8).  It is not clear 

in this scenario how global Nash equilibrium is to be 

achieved. 

 Graphical games have been studied in the 

computational intelligence community [13], [14], [28]. A 

(nondynamic) graphical game has been defined there as a 

tuple ( , , )G U v  with ( , )G V E=  a graph with � nodes, 

action set 1 �U U U= × ×⋯  with iU  the set of actions 

available to node i, and 1

T

�v v v=   ⋯ a payoff vector, 

with ( ,{ : })i i j iv U U j � R∈ ∈ the payoff function of node i. 

It is important to note that the payoff of node i only depends 

on its own action and those of its immediate neighbors. The 
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work on graphical games has focused on developing 

algorithms to find standard Nash equilibria for payoffs 

generally given in terms of matrices. Such algorithms are 

simplified in that they only have complexity on the order of 

the maximum node degree in the graph, not on the order of 

the number of players �. Undirected graphs are studied, and 

it is assumed that the graph is connected. 

Our intention in this paper is to provide algorithms for 

solving differential graphical games that are distributed in 

nature.  That is, the control protocols and adaptive 

algorithms of each node are allowed to depend only on 

information about itself and its neighbors.  Moreover, as the 

game solution is being learned, all node dynamics are 

required to be stable, until finally all the nodes synchronize 

to the state of the control node. 

The following notions are needed in the study of 

differential graphical games.  Define { : }i j iu u j �− = ∈  as 

the set of policies of the neighbors of node i.  

Definition 3. [28] Agent i’s best response to fixed policies 

iu−  of his neighbors is the policy *
iu  such that 

*( , ) ( , )i i i i i iJ u u J u u− −≤   (18) 

for all policies iu  of agent i. 

For centralized multi-agent games, where the dynamics is 

given by (17) and the performance index of each agent 

depends on the actions of all other agents, an alternative 

definition of Nash equilibrium is that each agent is in best 

response to all other agents.  However, in Definition 3 each 

node i is only in best response to all his neighbors.   

C. Stability and Solution of Graphical Games 

According to the results just established, the following 

assumptions are made. 

Assumptions 1.  

a. The graph is strongly connected and at least one 

pinning gain ig  is nonzero.  Then ( )L G+  is 

nonsingular. 
The game is well-formed in the sense that:  

b. 0j ijB e E≠ ∈⇌ . 

c. 0ij ijR e E≠ ∈⇌ .  

Employing the stationarity condition (12) [17] one obtains 

the control policies  

 
1

( ) ( ) ( )
T i

i i i i i ii i i i
i

V
u u V d g R B h p

δ
− ∂

= ≡ − + ≡ −
∂

  (19) 

Substituting into (14) yields the coupled cooperative game 

Hamilton-Jacobi (HJ) equations 

2 11 1
2 2

2 1 11
2

( )

( ) 0,

i

T T
c T Ti i i
i i ii i i i i ii i

i i i

T
j jT

j j j jj ij jj j
j jj �

V V V
A Q d g B R B

V V
d g B R R R B i �

δ δ
δ δ δ

δ δ

−

− −

∈

∂ ∂ ∂
+ + +

∂ ∂ ∂

∂ ∂
+ + = ∈

∂ ∂∑

 
 (20)

where the closed-loop matrix is 

2 1
( )

c T i
i i i i i ii i

i

V
A A d g B R Bδ

δ
− ∂

= − +
∂

 

1
( ) ,

i

jT
ij j j j jj j

jj �

V
e d g B R B i �

δ
−

∈

∂
+ + ∈

∂∑  (21) 

For a given iV , define * ( )i i iu u V=  as (19) given in terms 

of  iV .  Then HJ equations (20) can be written as 

* *
( , , , ) 0i

i i i i
i

V
H u uδ

δ −
∂

=
∂

 (22) 

There is one coupled HJ equation corresponding to each 

node, so solution of this �-player game problem is blocked 

by requiring a solution to � coupled partial differential 

equations.  In the next section we show how to solve this �-

player cooperative game online in a distributed fashion at 

each node, requiring only measurements from neighbor 

nodes, by using techniques from reinforcement learning.   

For the global state δ  given in (4) we can write the 

dynamics as 

( ) ( )( )� i nI A diag B L G I uδ δ= ⊗ + + ⊗ɺ      (23) 

where u is the control given by 

  

( )1( ) ( )T
ii i nu diag R B D G I p−= − + ⊗     (24) 

where (.)diag denotes diagonal matrix of appropriate 

dimensions.  Furthermore the global co-state dynamics are 

( ) ( )T
� ii

H
p I A p diag Q δ

δ
∂

− = ≡ ⊗ +
∂

ɺ     (25) 

This is a set of coupled dynamic equations reminiscent of 

standard multi-player games [2] or single agent optimal 

control [17]. Therefore the solution can be written without 

any loss of generality as  

p Pδ=  (26) 

for some matrix 0P > n�xn�∈ℝ . 

Lemma 2. HJ equations (20) are equivalent to the coupled 

Riccati equations 
1 1
2 2

0T T T T T T T
i i i iP A P B P Q P R Pδ δ δ δ δ δ δ δ− + + = (27) 

or equivalently 

( ) 0T T T
ic ic i iP A A P Q P R P+ + + =

 

(28) 

where P is defined by (26), and 

[ ]

0

0

0

i ii
A

A

 
 
 =  
 
  

 

( )
1

0

(( ) )

0

T
ii iji i i i ii i

i i n ij n

B diag d g B R B
d g I a I

−

 
 
 

= + 
   + −     

  

ic i iA A B P= −  
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0

0

0

i ii

ii

Q
Q

 
 
 =     
  

, 

1

1

1

(( ) )

(( ) )

i

ij

i i i i ii

ii

i�

T
i i ii i

R

R
R diag d g B R

R

R

diag d g R B

−

−

 
 
 
 

= +  
 
 
 
  

+

⋱

⋱   

where [ ]ij denotes the position of the element in the block 

matrix. 

Proof: 

Take (14) and write it with respect to the global state and 

co-state as 

1

1
0

0

0

T

i ii

�

�

V

H
A

V

δ

δ

δ

∂ 
   ∂   
   ≡    

     
 ∂    
∂  

⋮

⋮

( )

1

1 1 1
0 0 0

0

0 0 0

T

ii ij

i ii i n ij n

� ��

�

V

B u

B ud g I a I

B uV

δ

δ

∂ 
  ∂                 +          + −              ∂           ∂  

⋯

⋮ ⋮ ⋮
⋱ ⋮⋮

⋮ ⋮ ⋮

⋯

11 1

1 1
2 2

0

0
0

0

T
i

ijT
ii

i iiiii

� �i�

Ru u

R

u uRQ

u uR

δ δ

      
      
      + + =              
           

⋮ ⋮

  (29) 

By definition of the co-state one has 

  

1

1

�

�

V

p P

V

δ

δ

δ

∂ 
 ∂ 
 

≡ = 
 
 ∂
 
∂  

⋮

⋮
               (30) 

From the control policies (19), (29) becomes (27), which can 

be written in closed-loop form as (28). 
  ■ 

Theorem 1. Stability and Solution for �ash 

Equilibrium.  

Let 10 ,iV C i �> ∈ ∈ be smooth solutions to HJ equations 

(20) and control policies *
iu , i �∈  be given by (19) in 

terms of these solutions iV . Then 

a. Systems (8) are asymptotically stable. 

b. * *,i iu u− are in Nash equilibrium and the 

corresponding game values are 
*( (0)) ,i i iJ V i �δ = ∈

 

(31)

 Proof: 

a. If 0iV >  satisfies (20) then it also satisfies (14). Take 

the time derivative to obtain  

( )

i

T T
i i

i i i i i i i ij j j
i i j �

V V
V A d g B u e B uδ δ

δ δ
∈

 ∂ ∂  = = + + −
 ∂ ∂
 

∑ɺɺ  

1
2

i

T T T
i ii i i ii i j ij j

j �

Q u R u u R uδ δ
∈

 
 = − + +
 
 

∑   (32) 

which is negative definite since 0iiQ > . Therefore iV  is a 

Lyapunov function for iδ  and systems (8) are 

asymptotically stable. 

 

b. According to part a, ( ) 0i tδ →  for the selected control 

policies.  For any smooth functions ( ),i iV i �δ ∈ , such that 

(0) 0iV = , setting ( ( )) 0i iV δ ∞ =  one can write (9) as  

1
2

0

0

( (0), , ) ( )

( (0))

i

T T T
i i i i i ii i i ii i j ij j

j �

i i i

J u u Q u R u u R u dt

V V dt

δ δ δ

δ

∞

−
∈

∞

= + +

+ +

∑∫

∫ ɺ

or 

1
2

0

0

( (0), , ) ( )

( (0)) ( ( ) )

i

i

T T T
i i i i i ii i i ii i j ij j

j �

T

i
i i i i i i i ij j j

i j �

J u u Q u R u u R u dt

V
V A d g B u e B u dt

δ δ δ

δ δ
δ

∞

−
∈

∞

∈

= + +

∂
+ + + + −

∂

∑∫

∑∫
 

Now let iV  satisfy (20) and * *,i iu u−  be the optimal 

controls given by (19).  By completing the squares one has 

* * * *1 1
2 2

0

* * *

( (0), , ) ( (0))

( ( ) ( ) ( ) ( )

( ) ( ))

i

i i

i i i i i i

T T
j j ij j j i i ii i i

j �

T
Ti

ij j j j j ij j j
i j � j �

J u u V

u u R u u u u R u u

V
e B u u u R u u dt

δ δ

δ

−

∞

∈

∈ ∈

=

+ − − + − −

∂
− − + −

∂

∑∫

∑ ∑
 

At the equilibrium point *
i iu u= and 

*
j ju u= so  

 * * *( (0), , ) ( (0))i i i i i iJ u u Vδ δ− =  

Define 
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* * *1
2

0

( , ) ( (0)) ( ) ( )
T

i i i i i i i ii i iJ u u V u u R u u dtδ
∞

− = + − −∫  

and * ( (0))i i iJ V δ= .  Then clearly *
iJ and *( , )i i iJ u u− satisfy 

(16).                                                                                      

 ■ 

IV. POLICY ITERATION SOLUTION FOR 

COOPERATIVE MULTI PLAYER GAMES 

Reinforcement learning (RL) techniques have been used to 

solve the single-player optimal control problem online using 

adaptive learning techniques to determine the optimal value 

function. Especially effective are the approximate dynamic 

programming (ADP) methods [37], [37].  RL techniques 

have also been applied for multiplayer games with 

centralized dynamics (17). See for example [5], [34].  Most 

applications of RL for solving optimal control problems or 

games online have been to finite-state systems or discrete-

time dynamical systems. In this section is given a policy 

iteration algorithm for solving continuous-time differential 

games on graphs.   

A. Best Response 

Theorem 1 reveals that the systems are in Nash equilibrium 

if, for all i �∈  node i selects his best response policy to his 

neighbors policies and the graph is strongly connected.  

Define the best response HJ equation as the Bellman 

equation (14) with control *
i iu u=  given by (19) and 

arbitrary policies { : }i j iu u j �− = ∈  

* 1
2

2 11 1
2 2

0 ( , , , )

( )

i

T
c Ti i

i i i i i i ii i
i i

T
T Ti i

i i i ii i j ij j
i i j �

V V
H u u A Q

V V
d g B R B u R u

δ δ δ
δ δ

δ δ

−

−

∈

∂ ∂
= ≡ +

∂ ∂

∂ ∂
+ + +

∂ ∂ ∑

 

(33) 

where the closed-loop matrix is 

2 1
( )

i

c T i
i i i i i ii i ij j j

i j �

V
A A d g B R B e B uδ

δ
−

∈

∂
= − + −

∂ ∑  (34) 

Theorem 2. Solution for Best Response Policy  

Given fixed neighbor policies { : }i j iu u j �− = ∈ , assume 

there is an admissible policy iu . Let 10iV C> ∈ be a smooth 

solution to the best response HJ equation (33) and let control 

policy *
iu  be given by (19) in terms of this solution iV . Then 

a. System (8) is asymptotically stable. 

b. *
iu  is the best response to the fixed policies iu−  of 

its neighbors. 

Proof: 

a. 0iV >  satisfies (33). Proof follows Theorem 1, part a.  

b. According to part a, ( ) 0i tδ →  for the selected control 

policies.  For any smooth functions ( ),i iV i �δ ∈ , such that 

(0) 0iV = , setting ( ( )) 0i iV δ ∞ =  one can write (9) as  

1
2

0

0

( (0), , ) ( )

( (0)) ( ( ) )

i

i

T T T
i i i i i ii i i ii i j ij j

j �

T

i
i i i i i i i ij j j

i j �

J u u Q u R u u R u dt

V
V A d g B u e B u dt

δ δ δ

δ δ
δ

∞

−
∈

∞

∈

= + +

∂
+ + + + −

∂

∑∫

∑∫
    Now let iV  satisfy (33), *

iu  be the optimal controls given 

by (19) and iu−  be arbitrary policies.  By completing the 

squares one has 

* *1
2

0

( (0), , ) ( (0)) ( ) ( )
T

i i i i i i i i ii i iJ u u V u u R u u dtδ δ
∞

− = + − −∫
   The agents are in best response to fixed policies iu− when 

*
i iu u=  so  

  *( (0), , ) ( (0))i i i i i iJ u u Vδ δ− =  

Then clearly ( (0), , )i i i iJ u uδ − and *( (0), , )i i i iJ u uδ − satisfy 

(18).  

 ■ 

B. Policy Iteration for Solution of Graphical games 

The following algorithm for the �-player distributed games 

is motivated by the structure of policy iteration algorithms in 

reinforcement learning [3], [29], which rely on repeated 

policy evaluation (e.g. solution of (14)) and policy 

improvement (solution of (19)). These two steps are repeated 

until the policy improvement step no longer changes the 

present policy.  If the algorithm converges for every i , then 

it converges to the solution to HJ equations (20), and hence 

provides the distributed Nash equilibrium. One must note 

that the costs can be evaluated only in the case of admissible 

control policies, admissibility being a condition for the 

control policy which initializes the algorithm. 

Algorithm 1. Policy Iteration (PI) Solution for �-

player distributed games. 

Step 0: Start with admissible initial policies 0 ,iu i∀ .  

Step 1: (Policy Evaluation) Solve for k
iV  using (14) 

( , , , ) 0

k
k ki

i i i i
i

V
H u uδ

δ −
∂

=
∂

, 1, ,i �∀ = …  (35) 

Step 2: (Policy Improvement) Update the �-tuple of 

control policies using 

 1 arg min ( , , , ), 1, ,
i

k
k ki
i i i i i

u i

V
u H u u i �δ

δ
+

−
∂

= ∀ =
∂

…  

which explicitly is  

1 1( )

k
k T i
i i i ii i

i

V
u d g R B

δ
+ − ∂

= − +
∂

, 1, ,i �∀ = … . (36) 

Go to step 1. 

On convergence   End  

 ■ 

The following two theorems prove convergence of the 

policy iteration algorithm for graphical games for two 
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different cases. The two cases considered are the following, 

i) only agent i updates its policy and ii) all the agents update 

their policies. 

Theorem 3. Convergence of Policy Iteration algorithm 

when only i
th

 agent updates its policy and all players 

iu− in the neighborhood do not change. Given fixed 

neighbors policies iu− , assume there exists an admissible 

policy iu . Assume that agent i performs Algorithm 1 and its 

neighbors do not update their control policies. Then the 

algorithm converges to the best response iu  to policies iu−  

of the neighbors and to the solution iV  to the best response 

HJ equation (33). 

Proof: 

It is clear that  

1

( , , )

min ( , , , ) ( , , , )
i

k
o ki
i i i

i

k k
k k k ki i

i i i i i i i i
u

i i

V
H u

V V
H u u H u u

δ
δ

δ δ
δ δ

−

+
− −

∂

∂

∂ ∂
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∂ ∂
 

 

(37) 

Let ( , , , ) 0

k
k ki

i i i i
i

V
H u uδ

δ −
∂

=
∂

from (35) then according to 

(37) it is clear that  

 ( , , ) 0
k

o ki
i i i

i

V
H uδ

δ −
∂

≤
∂

  (38) 

Using the next control policy 1k
iu +  and the current policies 

k
iu−  one has the orbital derivative [16] 
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k

k k k k ki
i i i i i i i i i

i
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δ
+ +
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From (37) and (38)  one has 
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Because only agent i update its control it is true that 

1k k
i iu u+

− −=  and 
1

1( , , , ) 0
k

k ki
i i i i

i

V
H u uδ

δ

+
+

−
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=
∂

.  

But since 1 1 1( , , )k k k
i i i i iV L u uδ+ + +

−= −ɺ , from (39) one has  
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(40)
 

So that 1k k
i iV V +≤ɺ ɺ and by integration it follows that 

1k k
i iV V+ ≤         (41) 

Since * k
i iV V≤ , the algorithm converges, to *

iV , to the 

best response HJ equation (33).  

  ■ 

The next result concerns the case where all nodes update 

their policies at each step of the algorithm.  Define the 

relative control weighting as 
1

( )ij jj ijR Rρ σ −= , where 

1
( )jj ijR Rσ −

is the maximum singular value of 
1

jj ijR R
−

. 

Theorem 4. Convergence of Policy Iteration algorithm 

when all agents update their policies. Assume all nodes i 

update their policies at each iteration of PI.  Then for small 

enough edge weights ije  and ijρ , iµ  converges to the 

global Nash equilibrium and for all i , and the values 

converge to the optimal game values *k
i iV V→ . 

Proof: 

It is clear that 
1 1
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and so 
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Therefore, 
1 1 11

2

1
1 1

( ) ( )

( ) ( )

i

i i

k k k k T k k
i i j j ij j j

j �

k T
k k kT k ki

ij j j j j ij j j
i j � j �

V V u u R u u

V
e B u u R u uµ

δ

+ + +

∈

+
+ +

∈ ∈

≤ − − −

∂
+ − − −

∂

∑

∑ ∑

ɺ ɺ

 

A sufficient condition for 1k k
i iV V +≤ɺ ɺ  is  
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2
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T k T kT
j ij j i ij j j j ij ju R u p e B u u R u
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and after taking norms one has 

    

1 11
2

( ) ( )k k
ij j ij i j j j ij j jR u e p B d g p Bσ ρ+ −∆ > ⋅ + + ⋅

 
where 

1
( )

k k
j j ju u u

+∆ = − , ip the co-state and ( )ijRσ is the 

minimum singular value of ijR .

 This holds if 0, 0ij ije ρ= = .  By continuity, it holds for 

small values of  ,ij ije ρ . 

                                                                           ■ 

This proof indicates that for the PI algorithm to converge, 

the neighbors’ controls should not unduly influence the i-th 

node dynamics (8), and the j-th node should weight its own 

control ju  in its performance index jJ  relatively more than 
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node i weights ju  in iJ .  These requirements are consistent 

with selecting the weighting matrices to obtain proper 

performance. An alternative condition for convergence in 

Theorem 4 is that the norm jB  should be small.  This is 

similar to the case of weakly coupled dynamics in multi-

player games in [2]. 

V. CONCLUSION 

In this paper we have developed a multi-agent distributed 

formulation for graphical games, where the dynamics and 

value function of each node depend only on the actions of 

that node and its neighbors. This graphical game allows for 

synchronization as well as Nash equilibrium solutions 

among neighbors. A policy iteration algorithm is proposed. 

This algorithm converges to the best response given fixed 

policies for the neighbors and to the Nash equilibrium given 

that all the agents update their policies simultaneously. 

Convergence depends on graph topology and user defined 

matrices. 
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