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Abstract— A control problem is formulated for a linear
stochastic system with noisy, partial observations of the state
and a cost that is a quadratic functional of the state and
the control. Both the system noise and the observation noise
can be fractional Brownian motions. An optimal control is
explicitly described and this control is compared to the well
known optimal control where the state and the observation
noises are Brownian motions.
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I. INTRODUCTION

The linear-quadratic Gaussian (LQG) control problem

for the control of a completely observed linear stochastic

system with a Brownian motion (white Gaussian noise) and a

quadratic cost functional of the state and the control (e.g. [6])

is the most well known and basic solvable stochastic control

problem for stochastic systems with continuous sample paths.

Similarly the linear-quadratic Gaussian control problem for

the control of a partially observed linear stochastic (state)

equation with a Brownian motion, linear observations with

an additive Brownian motion (white Gaussian noise) and a

quadratic cost functional of the state and the control is the

most well known, solvable partially observed control problem

for stochastic systems with continuous sample paths. The

noise or perturbations of a system are typically modeled

by a Brownian motion because such a process is Gauss-

Markov and has independent increments. However empirical

data from many physical phenomena suggest that Brownian

motion is often inappropriate to use in the mathematical

models of these phenomena. A family of processes that
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has empirical evidence of wide physical applicability is the

collection of fractional Brownian motions. This collection

of fractional Brownian motions is a family of Gaussian

processes that was defined by Kolmogorov [10] in his study of

turbulence. While this family of processes includes Brownian

motion, it also includes other processes that describe behavior

that is bursty or has a long range dependence. All of the

processes in this family except Brownian motion are neither

Markov nor semimartingales. The first empirical evidence

of the usefulness of these latter processes was provided by

Hurst [7] in his statistical analysis of rainfall in the Nile

Basin. Subsequently empirical justifications for modeling

with fractional Brownian motions have been noted for a wide

variety of physical phenomena, such as economic data, flicker

noise in electronic devices, turbulence, internet traffic, biology,

and medicine.

Since fractional Brownian motions (FBMs) have a wide

variety of potential applications, it is natural to consider the

control of a linear stochastic system with an FBM and a

quadratic cost functional. It is natural to call such problems,

linear-quadratic fractional Gaussian (LQFG) control. Some

initial work has been done on these problems. Kleptsyna,

Le Breton and Viot [8] consider a scalar linear stochastic

system with the index (Hurst parameter) for the FBMs

restricted to (1/2,1) instead of the full family with index

set (0,1). Duncan and Pasik-Duncan [3], [4] consider a

multidimensional linear stochastic system with an FBM

having an arbitrary Hurst parameter. Duncan, Maslowski,

and Pasik-Duncan [2] consider a linear-quadratic control
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problem for systems in an infinite dimensional Hilbert space

with fractional Brownian motions with the Hurst parameter

in ( 1
2 ,1). These latter systems can model controlled linear

stochastic partial differential equations in particular where

the noise or the control can be restricted to the boundary

of the domain or to discrete points in the domain. All of

these aforementioned results on control assume that complete

observations of the state are available to the controller.

Kleptsyna, Le Breton and Viot [9] solved a control problem

for a scalar partially observed linear stochastic system with

a fractional Brownian motion having the Hurst parameter

H ∈ ( 1
2 ,1).

In this paper a linear-quadratic control problem is for-

mulated and solved where the linear stochastic system is

driven by a fractional Brownian motion and only noisy partial

observations are available for the controller. This problem is

solved by giving an explicit description of an optimal control.

The approach to solving the control problem initially finds

an optimal control that is not adapted to the observations or

the state and then the constraint of the control being adapted

to the observations is introduced.

A brief outline of the paper is given now. In Section II some

information on the family of fractional Brownian motions

is given that includes some elementary stochastic calculus

for these processes. Furthermore the controlled linear system,

the partial observations, the quadratic cost functional, and

the family of admissible controls are given. In Section III

the main result for an optimal control is given for the case

of a fractional Brownian motion and the optimal cost is also

given. A generalization to other noise processes is noted. In

Section IV some concluding remarks are made.

II. PRELIMINARIES

The collection of fractional Brownian motions (FBMs) is

a family of Gaussian processes that is indexed by the Hurst

parameter H ∈ (0,1). Initially the definition for an FBM is

given.

Definition 1: Let (Ω ,F ,P) be a complete probability

space and let H ∈ (0,1) be fixed. On this probability space a

real-valued standard fractional Brownian motion, (B(t), t ≥ 0),

with Hurst parameter H is a Gaussian process with continuous

sample paths such that

E [B(t)] = 0

E [B(s)B(t)] =
1
2

(
t2H + s2H −|t− s|2H

)
for all s, t ∈R+.

An Rn-valued standard fractional Brownian motion,

(B(t), t ≥ 0), with Hurst parameter H is an n-vector of

independent real-valued standard fractional Brownian motions

with the same Hurst parameter H. If B is an FBM with

H = 1/2 then B is a Brownian motion.

Fix H ∈ ( 1
2 ,1) and let f :→ Rn be a Borel measurable

function such that

< f , f >H=
∫ T

0

∫ T

0
f (s) f (r)φH(s− r)drds < ∞ (II.1)

where φH(s) = H(2H − 1)|s|2H−2. Then
∫ T

0 f dB is a zero

mean Gaussian random variable with second moment

E|
∫ T

0
f dB|2 =< f , f >H (II.2)

Consider the control system given by the following con-

trolled linear stochastic differential equation with a fractional

Brownian motion

dX(t) = (AX(t)+CU(t))dt +dB(t) (II.3)

X(0) = X0

where X0 is an N(0,Σ) Rn-valued random variable, X(t) ∈

Rn,U(t) ∈Rm,A ∈ L(Rn,Rn),C ∈ L(Rm,Rn) and (B(t), t ≥

0) is an Rn-valued standard fractional Brownian motion

whose components (B1, ...,Bn) are independent real-valued

standard fractional Brownian motions each with the Hurst

parameter H̄ ∈ ( 1
2 ,1). The (normal) N(0,Σ)-random vector

X0 and the process B are independent and are defined on the

complete probability space (Ω ,F ,P).
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The observation process (Y (t), t ∈ [0,T ]) satisfies the

following stochastic equation

dY (t) = FX(t)dt +dV (t) (II.4)

Y (0) = 0 (II.5)

where F ∈ L(Rn,Rp) and (V (t), t ≥ 0) is an RP-valued

standard fractional Brownian motion whose components

(V1, ...,Vp) are independent real-valued fractional Brownian

motions each with the Hurst parameter Ĥ ∈ ( 1
2 ,1) and are

also defined on (Ω ,F ,P). It is assumed that X0,B, and V

are independent. The quadratic cost functional J is

J(U) =
1
2

E[
∫ T

0
< QX(s),X(s)>+< RU(s),U(s)> ds]

+
1
2

E < MX(T ),X(T )> (II.6)

where Q > 0,R > 0, and M ≥ 0 are symmetric linear transfor-

mations, T > 0 is fixed, and <,> is the standard inner product

on the appropriate Euclidean space. Let (G (t), t ∈ [0,T ]) be

the filtration for the observations (Y (t), t ∈ [0,T ]) so that

G (t) is the P completion of σ(Y (s),s ∈ [0, t]). This filtration

for the observations (G (t), t ∈ [0,T ]) can be defined for the

control U ≡ 0. The equality of this observation filtration

and the observation filtration for the optimal control can be

verified because the equation is linear ([5], [11]). The family

of admissible controls U is defined as

U = {U : U is an Rm-valued process adapted to

(G (t), t ∈ [0,T ]) such that U ∈ L2([0,T ]) a.s}

III. MAIN RESULT

The following theorem provides a solution to the control

problem (II.3), (II.4), and (II.6). It generalizes the result in [9]

by solving the problem for multidimensional linear systems,

by using more direct methods to find an optimal control and

the associated optimal cost and by being applicable to other

continuous processes.

Theorem 1: For the control problem described by (II.3),

(II.4), and (II.6), there is an optimal control (U∗(t), t ∈ [0,T ])

in U that is given by

U∗(t) =−R−1CT (P(t)X̂(t|t)+ φ̂(t|t)) (III.1)

where (P(t), t ∈ [0,T ]) is the unique, symmetric, positive

definite solution of the Riccati equation

dP
dt

=−PA−AT P+PCR−1CT P−Q (III.2)

P(T ) = M

and

X̂(t|t) = E[X(t)|G (t)] (III.3)

φ(t) =
∫ T

t
ΦP(s, t)P(s)dB(s) (III.4)

φ̂(t|t) = E[φ(t)|G (t)] (III.5)

and ΦP satisfies the following equation

dΦP(s, t)
dt

= −(AT −P(t)CR−1CT )ΦP(s, t) (III.6)

Φ(s,s) = I (III.7)

The optimal cost is

J(U∗) =
1
2
E

∫ T

0
|R−1CT (P(t)X̃(t|t)+ φ̃(t|t)|2dt (III.8)

+
∫ T

0

∫ s

0
tr(P(s)ΦT

P (s,r))φH̄(s− r)drds

+
1
2

tr(P(0)Σ)− 1
2
E

∫ T

0
|R−

1
2 CT

φ |2dt

where φH̄(s) = H̄(2H̄−1)|s|2H̄−2, X̃(t|t) = X(t)− X̂(t|t), and

φ̃(t|t) = φ(t)− φ̂(t|t).

Proof: (Sketch). The following presentation describes

the major ideas of the proof. Let (B(t), t ≥ 0) be the

Rn-valued standard fractional Brownian motion in (II.3).

For each n ∈N, let Tn = {t(n)j , j ∈ {0, ...,n}} be a partition

of [0,T ] such that 0 = t(n)0 < t(n)1 , .... < t(n)n = T . Assume

that Tn+1 ⊃ Tn for each n ∈ N and that the sequence

(Tn,n ∈ N) becomes dense in [0,T ]. For each n ∈ N, let

(Bn(t), t ∈ [0,T ]) be the piecewise linear process obtained

from (B(t), t ∈ [0,T ]) and Tn as follows

Bn(t) = [B(t(n)j )+
B(t(n)j+1)−B(t(n)j )

t(n)j+1− t(n)j

(t− t(n)j )]1
[t(n)j ,t(n)j+1)

(t)
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Initially a ”nonadapted” control problem for the controlled

system (II.3) with (B(t), t ∈ [0,T ]) replaced by (Bn(t), t ∈

[0,T ],n ∈N) is solved for almost all sample paths of Bn and

the solution of (II.3) with Bn is considered as a translation

of the deterministic linear system without Bn.

Let (Bn(t), t ∈ [0,T ],n ∈N) be the sequence of processes

above that converges uniformly almost surely to (B(t), t ∈

[0,T ]). Fix n ∈ N and consider a sample path of Bn. For

this sample path the dependence on ω ∈Ω is suppressed for

notational convenience.

Let (φn(t), t ∈ [0,T ]) be the solution of the linear differen-

tial equation

dφn

dt
= −[(AT −P(t)CR−1CT )φn(t) (III.9)

+ P(t)
dBn

dt
]

φn(T ) = 0

φn(t) =
∫ T

t
ΦP(s, t)P(s)dBn(s) (III.10)

This differential equation is defined for almost all t and its

solution is well defined from the results for linear ordinary

differential equations.

By a completion of squares method for deterministic affine

systems (e.g. [12]) it can be shown that

J0
n (U)− 1

2
< P(0)X0,X0 >−< φn(0),X0 >

=
1
2
[
∫ T

0
(< RU,U >+< PCR−1CT PXn,Xn >

+ 2 <CT PXn,U >+2 < PCR−1CT
φn,Xn >

+ 2 < φn,CU >)dt +
∫ T

0
2 < φn,dBn >]

=
1
2

∫ T

0
[(|R−1/2[RU +CT PXn +CT

φn]|2

−|R−1/2CT
φn|2)dt +2 < φn,dBn >] (III.11)

=
1
2
[
∫ T

0
(< R−1/2(RU +CT PXn +CT

φn),R−1/2(RU

+CT PXn +CT
φn)>

−< R−1/2CT
φn,R−1/2CT

φn >)dt +2 < φn,dBn >]

where

J0
n (U) =

1
2

∫ T

0
< QXn(s),Xn(s)>+< RU(s),U(s)> ds

+
1
2
< MXn(T ),Xn(T )>

Since the arbitrary control U only appears in the first term of

(III.11) and this term is quadratic, an optimal control U∗n is

U∗n (t) =−R−1(CT P(t)Xn(t)+CT
φn(t)) (III.12)

This optimal control is satisfied for almost all ω ∈Ω .

Letting n→ ∞ in (III.11) it can be shown that (Û(t), t ∈

[0,T ]) is an optimal, nonadapted control for (II.3), (II.6)

where

Û(t) = R−1CT (P(t)X(t)+φ(t)) (III.13)

Now it is shown that (U∗(t), t ∈ [0,T ]) is an optimal control

in U where

U∗(t) = −R−1CT (P(t)X̂(t|t)+ φ̂(t|t)) (III.14)

X̂(t|t) = E[X(t)|G (t)] (III.15)

φ̂(t|t) = E[φ(t)|G (t)] (III.16)

It follows that

lim
t→∞

EJ0
n (U) (III.17)

=
1
2

tr(P(0)Σ)+
1
2
E

∫ T

0
[(|R−1/2[RU +CT PX +CT

φ ]|2

−|R−1/2CT
φ |2)dt]+ lim

n→∞
E

∫ T

0
< φn,dBn >

It follows from the relation between stochastic integrals of Ito-

type and Statonovich-type for a fractional Brownian motion

[1] that

lim
n→∞

E

∫ T

0
φndBn (III.18)

=
∫ T

0

∫ s

0
tr(P(s)ΦT

P (s,r))φH̄(s− r)drds

where

φH̄(s) = H̄(2H̄−1)|s|2H̄−2 (III.19)
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Let Π be the orthogonal projection given by

Π : L2([0,T ]×Ω ,Rm)→ L2
G (R

m) (III.20)

where L2
G (R

m) is the family of Rm-valued (G (t), t ∈ [0,T ])

adapted (predictable) processes and let Π⊥ = I −Π be

the complementary orthogonal projection. By the result for

nonadapted controls it follows that

J(U)− 1
2
E< P(0)X0,X0 > (III.21)

=
1
2
E

∫ T

0
[|R−

1
2 (RU +ΠCT PX +ΠCT

φ |2

+|Π⊥(R−1CT PX +R−1CT
φ |2]dt

+
∫ T

0

∫ s

0
tr(P(s)ΦP(s,r))φH̄(s− r)drds

−1
2
E

∫ T

0
|R−

1
2 CT

φ |2dt

Clearly the RHS of (III.21) is minimized in L2
G (R

m) by

choosing the control

U∗(t) = R−1CT P(t)ΠX(t)−R−1CT
Πφ(t)

= R−1CT P(t)X̂(t|t)−R−1CT
φ̂(t|t) (III.22)

because the family of orthogonal projections is conditional

expectation with respect to (G (t), t ∈ [0,T ]). The optimal cost

follows directly from (III.21) as

J(U∗) =
1
2
E

∫ T

0
|R−1CT (P(t)X̃(t|t)+ φ̃(t|t)|2dt (III.23)

+
∫ T

0

∫ s

0
tr(P(s)ΦT

P (s,r))φH(s− r)drds

+
1
2

tr(P(0)Σ)− 1
2
E

∫ T

0
|R−

1
2 CT

φ |2dt

Remark 1: The optimal control (III.21) has a similar

structure as the case of complete observations for the control

of a linear system with a fractional Brownian motion [3], [4],

that is, the optimal control is the sum of two terms, one is

the well known linear feedback control and the other is a

prediction of the response of the adjoint system to the future

fractional noise. On the other hand, the optimal control has

a similar structure as the case for the control of partially

observed linear stochastic systems with Brownian motions,

that is, an estimate of the state, the conditional mean, is used

to replace the state of the system in the optimal feedback

control and the other term arises because the increments of

the fractional Brownian motion are correlated.

IV. CONCLUDING REMARKS

The optimal control for the partially observed linear-

quadratic control problem (II.3), (II.4), (II.6) has a natural

intuitive structure as a sum of the linear state feedback for

the case of Brownian motions and a prediction of the optimal

adjoint system response to the future noise based on the

noisy observations. This result shows that the requirement

of Markov processes for stochastic control can be relaxed

and that an explicit solution for an optimal control of a

partially observed linear system can be obtained as a natural

generalization of the corresponding completely observed prob-

lem. The generalization to a vector of real-valued fractional

Brownian motions with different Hurst parameters in ( 1
2 ,1)

follows directly. Using some other methods, the results can be

extended to arbitrary standard fractional Brownian motions,

that is, H ∈ (0,1). Furthermore these results can be extended

to other noise processes with continuous sample paths. The

numerical studies of the computation of the conditional mean

for the optimal control and the response of the optimal system

apparently have not been investigated but are important for

future study.
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