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Abstract— We investigate the problem of estimating a con-
stant based on noisy observations via a binary sensor. This
problem is well-studied for the case when the noise charac-
teristics are known, for example, the noise is i.i.d. and we
have access to its cumulative distribution function (CDF). Here,
we try to reduce the assumptions on the noise to a minimum
and, for example, assume only that the noise is symmetrically
distributed about zero in each time step, but otherwise the
CDF is unknown. We neither assume that the noise variables
are independent nor that they are stationary. They may also not
have densities. We do assume, however, that the threshold of the
binary sensor can be controlled. Based on the setting that the
threshold can be set to any value or only to some predefined
ones, we suggest solutions based on stochastic approximation
(SA) and active learning (AL). In the former case, we provide
a strongly consistent estimator, while in the latter case we give
a probably approximately correct (PAC) algorithm. Finally, we
present numerical experiments to support the results.

I. INTRODUCTION

Estimating a parameter of a system based on noisy obser-

vations is one of the basic problems of statistics and system

identification [7], [9]. In some situations, however, the output

of the system is only available through quantization due

to, for example, limited sensor capacities or signal coding.

Quantized variants of system identification problems are

well-studied [1], [2], [5], [14], but, with some exceptions [4],

[15], only for the case when the characteristics of the noise

are known, for example, the noise is i.i.d., its cumulative

distribution function (CDF) is invertible and known to the

user and its density function is continuously differentiable.

However, making strong assumptions on the noise is unde-

sirable as the noise characteristics are often unknown.

In this paper we try to reduce the assumed knowledge on

the noise to a minimum and assume basically that we know

the CDFs of the noise terms in just one point. For example,

we may only know that the noise is always symmetrically

distributed about zero. We do not assume knowledge of the

particular noise distributions, nor that the noise variables

are independent or uncorrelated. They may also not have

densities. Furthermore, the noise terms may be nonstationary

and their conditional CDFs may change in each time step.

However, we make the assumption that the threshold of the

binary sensor is under our control, either totally or partially.
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In the first case, we have total control over the threshold:

we can set it to any possible value. We will show that we can

formulate this binary identification problem as a stochastic

root finding problem [6], [12] and by applying stochastic

approximation (SA) algorithms we can obtain a strongly

consistent estimator, i.e., the parameter estimates converge

to the true parameter value with probability one.

We also present a convergence result for the case when

the thresholds are restricted to an interval and the estimates

are projected back to this interval after each iteration.

Finally, we investigate the case when we have only partial

control over the threshold: we can only set it to some finitely

many predefined values. We will show that, if the noise is

i.i.d. and symmetric about zero, this problem can be cast into

the framework of multi-armed bandit systems [10] and by

applying an active learning (AL) algorithm we can obtain a

probably approximately correct (PAC) solution.

II. PRELIMINARIES

In this section we introduce the basic problem setting

and briefly present a standard solution method. During this

section we will assume, for simplicity, that the noise is i.i.d.

A. Problem Setting

Let us consider the problem of identifying a constant in

noise based on quantized, binary observations,

Xt , θ∗ +Nt, (1)

Yt , I(Xt ≤ c), (2)

where θ∗ ∈ R is a constant, (Nt)t∈T , where T = {0, 1, . . . },

is an i.i.d. noise sequence and I denotes the indicator

function, namely, its value is 1 if its argument is true

and 0 otherwise. The process (Xt)t∈T is observed via a

binary sensor with threshold c. The user has access to the

observations (Yt)t∈T and threshold c, which is assumed to

be fixed in this first setting. The aim is to estimate θ∗.

B. Standard Solution

It is known that if the cumulative distribution function, F ,

of the noise, (Nt)t, is known and its density function f(x) 6=
0, for all x ∈ R, as well as it is continuously differentiable,

the constant θ∗ can be estimated as follows [14].

First, if p , P(Yt = 1) = F (c − θ∗) and F is invertible,

which follows from the assumptions, then θ∗ satisfies

θ∗ = c− F−1(p). (3)

Therefore, if P̂ is an estimate of p, then a natural estimate

of θ∗ based on P̂ is θ̂ , c−F−1(P̂ ). Note that an estimate
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of p can be obtained by simply taking the sample average

of the observations up to time t− 1, Y0, . . . , Yt−1, that is

P̂t ,
1

t

t−1∑

i=0

Yi. (4)

Since P̂t converges w.p.1 to the true probability p by the

strong law of large numbers, we also have that

θ̂t , c− F−1(P̂t) (5)

converges almost surely to θ∗. Therefore, in this setting we

can obtain a strongly consistent estimator sequence.

Additionally, it can be shown that θ̂t also converges to the

parameter θ∗ in the mean-square sense [14], that is

lim
t→∞

E

[√
t(θ̂t − θ∗)

]2
=

F (c− θ∗)(1− F (c− θ∗))

f2(c− θ∗)
, (6)

moreover, it can be proved, as well, that the term

F (c− θ∗)(1− F (c− θ∗))

t f2(c− θ∗)
, (7)

is the Cramér-Rao lower bound, consequently, this method is

asymptotically efficient. Though, the results above are proved

for the case of an i.i.d. noise process, they could be slightly

generalized to the case of dependent noise, as long as the

dependence is asymptotically diminishing [14].

This basic setting is fundamental for system identifica-

tion with quantized observations, since more complicated

settings, such as FIR systems, rational systems, Wiener and

Hammerstein systems, can often be reduced to a finite set

of identification problems of this type. Moreover, strong

consistency and asymptotic efficiency of identification of a

constant carry over to the more complicated settings [14].

C. Adjustable Threshold

A practical disadvantage of the above described approach

is that it makes strong assumptions on the noise, for example,

it requires the complete knowledge of the CDF which must

be invertible. In practice, however, we often only have very

limited knowledge of the noise. Here we investigate the

problem when the assumptions on the noise are considerably

reduced, for example, we may only know that it is always

symmetrically distributed about zero, but we can set the

threshold of the binary sensor for every observation,

Yt , I(Xt ≤ θt), (8)

where the threshold θt is under the control of the user, and it

can depend on all previous observations, Y0, . . . , Yt−1, past

threshold values, θ0, . . . , θt−1 and extra randomization.

We will analyze two versions of the problem. First, we will

assume that the threshold of the sensor can be set to arbitrary

values and give a strongly consistent estimator based on

stochastic approximation. Then, we will assume that θt can

only take one of finitely many pre-defined values and apply

a multi-armed bandit formulation with an active learning

method to get a probably approximately correct solution.

III. STOCHASTIC APPROXIMATION

First, we assume that we can set the threshold θt to any

value and measure the corresponding binary output Yt.

Let (Ω,F ,P) be the underlying probability space, where

Ω is the sample space, F is the σ-algebra of events and P is

the measure. We denote the σ-algebra generated by the past

of the process up to time t ∈ T by Ft ⊆ F . More precisely,

Ft , σ {N0, . . . , Nt, θ0, . . . , θt} , (9)

where (Ft)t∈T is a filtration, viz., a nondecreasing sequence

of σ-fields. Note that random variables (Yk)k≤t are Ft

measurable and we only need to include (θt)t>0 in (9) if want

to apply some additional randomization for the thresholds.

The conditional distribution function of the noise term at

time t ∈ T is denoted by Ft(·), which is therefore

Ft(x) , P(Nt ≤ x | Ft−1). (10)

Note that, in our case, Ft(x) is a random variable, since we

applied conditional probability w.r.t. a σ-algebra.

A. Basic Assumptions

Initially, we will apply the following two assumptions:

Assumption 1: ∀ t ∈ T : Ft(0) = 1/2 (P-a.s.).

Assumption 2: ∃ δ : R → R : ∀x 6= 0 : δ(x) · x > 0 and

δ(0) = 0, such that we have (P-a.s.)

∀ t ∈ T : ∀x > 0 : Ft(x)− δ(x) ≥ 1/2,

∀ t ∈ T : ∀x < 0 : Ft(x)− δ(x) ≤ 1/2.

We can always choose δ to be monotone nondecreasing,

and henceforth we will assume, w.l.o.g., that this holds.

Assumption 1 is very mild, since it only requires that the

(conditional) median of each noise term is zero, which is,

e.g., the case if they are symmetric about zero. Many stan-

dard distributions (with zero mean), e.g., Gaussian, Laplace,

Cauchy-Lorentz, Bernoulli, Binomial, Student’s t, uniform

and even several multimodal distributions have this property.

Assumption 2 guarantees that for all time t, zero is almost

surely the only x that satisfies Ft(x) = 1/2. The introduction

of δ rules out, for example, that a subsequence of (Ft(x))t∈T ,

converges (with nonzero probability) to 1/2 for an x 6= 0.

Note that every sequence of i.i.d. random variables with

continuous and symmetric distribution satisfies both of these

assumptions. Moreover, the assumptions are also satisfied for

a sequence of independent random variables which have zero

medians and there is a neighbourhood of the origin on which

every variable has a density uniformly bounded away from

zero. Furthermore, in general, independence is not necessary.

B. Unconstrained Algorithm

We can observe that Yt can be interpreted as the noisy

observation of Ft(θt − θ∗), the CDF of θt − θ∗ at time t,

Yt = E [Yt | Ft−1] +Wt = (11)

= P (θ∗ +Nt ≤ θt | Ft−1) +Wt = (12)

= Ft(θt − θ∗) +Wt, (13)
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where Wt = Yt−Ft(θt−θ∗) is a zero-mean, bounded noise

with |Wt| ≤ 1. Now, let us define function gt (for all t) by

gt(x) , Ft(x− θ∗)− 1/2, (14)

which reformulates our estimation problem as a root finding

problem, since we know that for all t ∈ T , gt(θ
∗) = 0.

Let us a define a new function g(x) , δ(x − θ∗), where

δ is the function introduced in Assumption 2. Then, g is

obviously bounded and its only root is also located at θ∗.

Since the function g is monotone nondecreasing, if we

could measure its values, which corresponds to the case

without noise, the root could be found by simple bisection.

Alternatively, if g was known and continuously differen-

tiable, the problem could also be solved by Newton’s method.

However, in our case, we do not have access to functions g
and (gt)t∈T , only noisy observations are available,

Gt(θt) , gt(θt) +Wt = Yt − 1/2, (15)

where the noise term, Wt, is the same as before.

Nevertheless, the above problem can be interpreted as

stochastic root finding and can be solved by a Robbins-Monro

type stochastic approximation algorithm, which is a Newton-

like iterative method. In our case, we can define a stochastic

approximation scheme for setting the thresholds, as

θt+1 , θt − αt Gt(θt) = θt + αt [ 1/2− Yt ] , (16)

where θ0 ∈ R is an arbitrary constant or, if it is random, we

assume E[|θ0|] < ∞, and αt are (possibly randomized) step-

size parameters satisfying the assumptions below (P-a.s.):

Assumption 3:
∑∞

t=0
αt = ∞

Assumption 4:
∑∞

t=0
α2
t < ∞

Assumption 5: ∀ t ≥ 0 : αt ≥ 0

Assumption 4 could be weakened [8] to limt→∞ αt = 0
and an archetypical choice of step-sizes is αt = 1/t.

The convergence of iteration (16) would easily follow if

the noise terms, (Wt)t∈T , in (13) were mutually independent.

This is not the case, since, for example, threshold θt depends

on the past observations (Yi)i<t and on the initial θ0.

However, they still have a martingale difference property,

which is enough for proving the almost sure convergence of

the algorithm [8]. To see this, note that (16) can be rewritten

θt+1 = θt − αt gt(θt) + αt [ gt(θt) + 1/2− Yt ] , (17)

where the “deterministic” part, θt − αt gt(θt), mimics New-

ton’s recursion more closely, while the “stochastic” part,

αt [ gt(θt) + 1/2− Yt ], introduces noise to the iteration [11].

If we could show that the stochastic part (the “noise”) is a

martingale difference sequence with bounded variance, then

they would “average to zero” and therefore have no effect

on the asymptotic behavior of the algorithm [8].

Lemma 1: The terms (Wt)t∈T form a martingale differ-

ence sequence with conditional variances bounded by 1.

Proof. First, we will compute their conditional expectation

E [Wt | Ft−1 ] = E [Yt − 1/2− gt(θt) | Ft−1 ] = 0, (18)

This holds indeed, since, as we have seen in (13), Yt can be

treated as a noisy observation of Ft(θt − θ∗) and, hence,

E [Yt | Ft−1 ] = E [ gt(θt) | Ft−1 ] + 1/2 that, using the

linearity of conditional expectation, immediately proves (18).

Thus, the noise on gt is a martingale difference sequence.

It is also easy to see that, because of the quantization, the

new noise terms have bounded variances, more precisely

E
[
W 2

t | Ft−1

]
= E

[
(gt(θt) + 1/2− Yt)

2 | Ft−1

]
≤ 1, (19)

since, we have that |1/2−Yt| = 1/2 and |gt(θt)| ≤ 1/2. �

Note that the original noise process (Nt)t∈T may not be a

martingale difference sequence (MDS), moreover, being an

MDS is neither sufficient nor necessary to satisfy Assump-

tions 1 and 2. As a special case, a continuous MDS which

is also a mediangale, i.e., its terms have zero conditional

medians, and have densities that are uniformly bounded away

from 0 on a neighbourhood of 0 satisfies the assumptions.

The main result of this section can be stated as

Theorem 1: Under Assumptions 1-5, the sequence gener-

ated by iteration (16) converges almost surely to the true

parameter θ∗ from any initial parameter estimate θ0 ∈ R.

Note that if gt is time-invariant, namely, (Nt)
∞
t=0 is i.i.d.,

the almost sure convergence of iteration (16) to θ∗ follows

from the Robbins-Monro theorem [12], [8] given below.

Theorem 2: Under Assumptions 3-5 and the ones below,

θt+1 = θt − αkHt(θt) (20)

converges with probability one to constant θ∗ from any θ0.

C1: Ht(θt) = h(θt) +Dt(θt), h(·) is deterministic

C2: h(θ∗) = 0, ∀x 6= θ∗ : h(x)(x− θ∗) > 0,

C3: ∃ c : ∀x : |h(x)| ≤ c (|x− θ∗|+ 1),
C4: ∀ δ1, δ2 satisfying 0 < δ1 < δ2 < ∞, we have

inf
δ1≤|x−θ∗|≤δ2

|h(x)| > 0, (21)

C5: E[Dt+1 | Ft ] = 0, E[D2
t+1 | Ft ] ≤ σ2 < ∞

Theorem 2 can be applied to prove Theorem 1, in case

(Nt)
∞
t=0 is i.i.d. and hence ∀ t ∈ T : gt = g, as follows.

The step-size conditions of Theorem 2 are the same as

of Theorem 1. Condition C1 holds because of the definition

of Gt(·) and our additional assumption that gt = g, for all

t. Condition C2 is satisfied because of Assumptions 1 and

2. The growth-rate condition, C3, is trivially satisfied, since

g is bounded. Condition C4 holds because g is monotone

nondecreasing and θ∗ is its only root. Finally, we know from

Lemma 1 that the noise sequence (Wt)t∈T is an MDS and

all of their conditional variances are bounded by 1, which

assure condition C5. Thus, (θt)t∈T converges (P-a.s.) to θ∗.

In the general case, however, each function gt is random

and may change at every time t, consequently, Theorem 2 is

no longer applicable. In this case, Theorem 1 can be proved

by the Robbins-Siegmund theorem, a.k.a. the nonnegative

almost supermartingale convergence theorem [7].

Theorem 3: Let (Vt)
∞
t=0 be a sequence of nonnegative

random variables adapted to a filtration (Ft)
∞
t=0. If (a.s.)

E[Vt+1 | Ft ] ≤ (1 + µt)Vt − λt + γt, (22)
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for all t, where λt ≥ 0, γt ≥ 0; E[V0 ] < ∞ and (a.s.)

∞∑

t=0

|µt|+ γt < ∞, (23)

then sequence (Vt)
∞
t=0 converges almost surely to a finite

random variable and
∑∞

t=0
λt < ∞ almost surely.

Proof of Theorem 1. We are going to apply Theorem 3 to

Vt , (θt − θ∗)2. First, let us check whether (22) holds

E[ (θt+1 − θ∗)2 | Ft ] = E
[
θ2t+1 + θ∗2− 2 θt+1θ

∗ | Ft

]
=

= E
[
(θt − αtGt(θt))

2 + θ∗2− 2 (θt − αtGt(θt))θ
∗ | Ft

]
=

= E
[
θ2t + α2

tG
2
t (θt)− 2 θtαtGt(θt) + θ∗2 − 2 θtθ

∗−
− 2αtGt(θt))θ

∗ | Ft ] = θ2t + θ∗2 − 2 θtθ
∗+

+α2
t g

2
t (θt)− 2 θtαtgt(θt)− 2αtgt(θt))θ

∗ =

= (θt − θ∗)2 + α2
t g

2
t (θt)− 2αtgt(θt)(θ

∗ − θt)

Then by setting µt , 0, λt , 2αtgt(θt)(θt − θ∗) and γt ,
α2
t g

2
t (θt) the conditions of Theorem 3 are satisfied, because,

e.g., γt is nonnegative and square summable, since g2t is

bounded and Assumption 4. Its also easy to see that because

of Assumptions 1, 2 and 5, λt is (P-a.s.) nonnegative.

Consequently, we know that (θt − θ∗)2 converges (P-a.s.)

to a finite random variable and, moreover, (P-a.s.)

∞∑

t=0

αt gt(θt)(θt − θ∗) < ∞, (24)

We want to prove that (θt − θ∗)2 converges (P-a.s.) to 0.

We prove this by contradiction and assume indirectly that

(θt−θ∗)2 converges (P-a.s.) to another finite random variable

Z that is not equal zero with some positive probability. Then,

|θt(ω)− θ∗| → Z(ω) > 0 as t → ∞ (25)

for all ω ∈ A ⊆ Ω, and we have P(A) > 0. It means that

∃ ε : 0 < ε < Z(ω) : ∃ t0 : ∀ t ≥ t0 : |θt(ω)−θ∗| > ε, (26)

for all ω ∈ A; note that ε, t0 and αt may also depend on

ω, but for simplicity, we will not denote these dependencies

explicitly. Let us introduce a new random variable B as

B(ω) , min {|g(θ∗ + Z(ω)− ε)|, |g(θ∗ − Z(ω) + ε)|}
Using (26) and the construction of g and B, we have

∀ t ≥ t0 : 0 < B(ω) ≤ |g(θt(ω))| ≤ |gt(θt(ω))|, (27)

for all ω ∈ A0 ⊆ A ⊆ Ω, such that P(A0) = P(A) > 0.

Using the results above and Assumption 3, we have

∞∑

t=t0

αt|g(θt(ω))||θ̃t(ω)| ≥ B(ω) ε
∞∑

t=t0

αt = ∞, (28)

for all ω ∈ A0, where θ̃t(ω) , θt(ω)−θ∗. But, we also have

∞∑

t=t0

αt|g(θt(ω))||θ̃t(ω)| ≤
∞∑

t=t0

αt gt(θt(ω))θ̃t(ω) < ∞,

for all ω ∈ A1 ⊆ Ω, and we know that P(A1) = 1, which is

a contradiction, thus, |θt − θ∗| converges (P-a.s.) to 0. �

C. Relaxed Assumptions and Generalizations

There are some immediate generalizations of the theory.

We can easily modify the results, e.g., to the case where the

CDF of the noise in 0 at time t is known, Ft(0) = qt 6= 0,

but not necessary 1/2. In that case, the SA takes the form

θt+1 = θt + αt [ qt − Yt ] , (29)

and a straightforward modification of the results (e.g., the

bound in Lemma 1 changes to 4) shows the (P-a.s.) conver-

gence of this method, as well. Obviously, we can also allow

the violation of Assumptions 1 and 2 for finitely many terms.

The binary identification of a finite impulse response (FIR)

system can be traced back to finitely many instances of

problem (1) by using a periodic input signal [14], thus, the

presented SA scheme can also be applied for that problem.

D. Constrained Algorithm

In many applications the threshold cannot be set to an

arbitrary real-number because of the limitations of the sensor.

In this subsection, we will assume that the threshold can only

take values from an interval Θ = [a, b]. Then, we apply a

truncated stochastic approximation scheme as follows

θt+1 = ΠΘ(θt + αt [ 1/2− Yt ]) , (30)

where ΠΘ : R → Θ is the projection mapping defined as

follows: ∀x ∈ [a, b] : ΠΘ(x) = x, ∀x < a : ΠΘ(x) = a and

∀x > b : ΠΘ(x) = b. We will apply another assumption:

Assumption 6: The true parameter θ∗ ∈ (a, b).

Then we can claim the (P-a.s.) convergence of (30) as

Theorem 4: Under Assumptions 1-6, the sequence gener-

ated by iteration (30) converges almost surely to the true

parameter θ∗ from any initial parameter estimate θ0 ∈ Θ.

Proof. We will show that the (P-a.s.) convergence of (30)

can be traced back to (P-a.s.) convergence of (16). We will

construct an unconstrained algorithm that behaves the same

way as (30) in case we remove those elements from the

trajectories that are outside of Θ. The new algorithm also

starts from θ0 ∈ Θ and proceeds according to (16), but,

if it leaves Θ, we introduce a “correction” step as follows.

Assume that θt+αt[1/2−Yt] > b, then we introduce a new

time index t < t′ < t+1 and let θt′ , θt+αt[1/2−Yt]. Then,

we use a noise at t′ that is uniform in [θ∗ − b, b− θ∗], thus,

Ft′(θt′ − θ∗) = 1 (the noise can depend on the available

information) and apply step-size αt′ , 2 (θt′ − b). Then,

this step corrects the error and we will (P-a.s.) have θt+1 =
θt′ + αt′ [1/2− Yt′ ] = b. The case when θt′ < a is similar.

The new algorithm works on the index set T ′ and if we

consider only those elements that have indexes in T , the

behavior of the constructed algorithm is the same as the

behavior of the projected one. In the worst-case, we have

a correction step between each t and t+1, but (αt)t∈T ′ still

satisfies Assumptions 3-5, since for all t′: 0 < αt′ ≤ αt.

Additionally, the corrective noise terms satisfy Assumption

1 and 2, consequently, the new algorithm converges (P-a.s.)

to θ∗, hence, the projected original one also does. �
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IV. ACTIVE LEARNING

Now, let us consider the problem which arises if the

threshold θ of the binary sensor can only be set to one of

finitely many values from a given set Θ0 = {θ1, . . . , θm}. In

this section we will work with the following assumptions:

Assumption 7: The noise (Nt)t∈T is i.i.d. and its CDF is

symmetric about zero: F (x) = 1− F (−x), for all x ∈ R.

Assumption 8: For all i 6= j: F (θi − θ∗) 6= F (θj − θ∗).

The nature of this problem is a bit different than the one we

investigated in the previous section. For example, in general,

unless we assume the full knowledge of the CDF, we cannot

expect to identify the parameter θ∗ asymptotically, since a

consistent estimator may not exist. We can only hope to find

a threshold from Θ0 that is the “closest” to the parameter

θ∗. This relaxed task is, however, too easy if we can make

unlimited observations, since we could simply measure Yt(θ)
periodically for each θ ∈ Θ0 and maintain the sample mean,

P̂t(θ), cf. equation (4), of all θ ∈ Θ0. Then, as before,

P̂t(θ) → F (θ − θ∗) almost surely as t → ∞ and the best

threshold is simply the one with F (θ − θ∗) closest to 1/2.

A. Multi-Armed Bandit Setting

As we saw, allowing unlimited number of measurements

makes the problem easy. Here we take a different route

and try to identify the best candidate threshold as soon

as possible, using only finite number of observations. We

will show that this can be reformulated as a multi-armed

bandit problem and a probably approximately correct (PAC)

solution can be given with an active learning method.

An m-armed bandit problem can be defined by m distribu-

tions ν1, . . . , νm. In each step the decision-maker can select

a distributions and sample it. This procedure is called taking

an action. The obtained value is referred to as the immediate-

reward and, in the classical setup, the aim is to maximize

the expected total rewards or minimize the regret, which is

the difference between the accumulated rewards and the total

payoff based on the complete knowledge of the distributions

[13]. In the PAC setting of active learning [10], however,

the goal is to find a stopping rule for the identification of an

(ε, δ)-optimal arm. That is a distribution νi with

P ( |µi − µ∗ | ≤ ε ) ≥ 1− δ, (31)

where µi is the expected value of νi and µ∗ = maxj µj .

The binary identification problem with finitely many

thresholds can be reformulated as an active learning problem

as follows. We define an action, aθ, for each threshold

θ ∈ Θ0. The result of performing action aθ is that we take

two consecutive measurements with θ. Let us denote the

resulting observations by Y0(θ) and Y1(θ). Then, we define

the immediate-reward of action aθ, denoted by R(θ), as

R(θ) ,

{
1 if Y0(θ) 6= Y1(θ),
0 otherwise.

(32)

The intuition behind this definition is that if threshold θ is

“close” to θ∗, then the observations are 0 and 1 with “almost”

equal probability. We have the following result.

Lemma 2: Under Assumptions 7 and 8, the best action aθ
in the above defined multi-armed bandit problem corresponds

to a threshold θ ∈ Θ0 whose distance from θ∗ is minimal.

Proof. The expected immediate-reward of action aθ is

E [R(θ) ] = E [Y0 (1− Y1) + (1− Y0)Y1 | θ ] =
= E [ I(X0 ≤ θ) I(X1 > θ) + I(X0 > θ) I(X1 ≤ θ) | θ ] =

= P ( θ∗ +N0 ≤ θ | θ) (1− P ( θ∗ +N1 ≤ θ | θ))+
+ (1− P ( θ∗ +N0 ≤ θ | θ))P ( θ∗ +N1 ≤ θ | θ) =

= 2
(
F (θ − θ∗)− F (θ − θ∗)2

)

Now, let z , F (θ− θ∗), then 2 (z− z2) is a parabola which

has its maximum at 1/2, when θ = θ∗. Using that function

F is nondecreasing and its range is [0, 1] as well as the

two assumptions, namely that F is symmetric and different

thresholds have different expected rewards, we have that if

| θ0 − θ∗ | < | θ1 − θ∗ | for θ0, θ1 ∈ Θ0, then we also have

that E [R(θ1) ] < E [R(θ0) ] ≤ E [R(θ∗) ] = 1/2 and if

| θ0 − θ∗ | = | θ1 − θ∗ |, then E [R(θ1) ] = E [R(θ0) ]. �

B. Probably Approximately Correct Algorithm

An efficient algorithm to find an (ε, δ)-optimal PAC solu-

tion of the active learning problem is the method of median

elimination [3]. The idea of the algorithm is to eliminate the

“worst” half of the actions iteratively, until only one arm

remains. An action is in the “worst” half if its estimated

mean reward is less than the median of the estimated mean

rewards. Naturally, we cannot expect to identify the optimal

arm in this way, but we are satisfied with a PAC solution.

In order to find a guaranteed (ε, δ)-optimal solution, the

median elimination algorithm requires Θ((m/ε2) log(1/δ))
trials, where f(n) ∈ Θ(h(n)) if and only if ∃ k1, k2, n0,

with k1 h(n) ≤ f(n) ≤ k2 h(n), for all n ≥ n0. It can be

proven that for the general multi-armed bandit active learning

problem this bound is asymptotically tight, i.e., the bound on

the number of trials is both sufficient and necessary [10].

Given the bandit formulation of the binary identification

problem, this algorithm can be applied to get a PAC estimate

of the threshold closest to θ∗, while noting that sampling an

arm corresponds to making two observations with the sensor.

THE MEDIAN ELIMINATION ALGORITHM

Input: ε, maximum tolerated error, δ, confidence probability

1. t := 0 ; k := 0 ; S0 := Θ0 ; Q0 := 0 ;

2. ε0 := ε/4 ; δ0 := δ/2 ;

3. Repeat

4. Repeat
[

1/(εk/2)
2 log(3/δk)

]

times

5. For each θ ∈ Sk do

6. Apply action aθ and observe reward Rt(θ) ;

7. Qt+1(θ) := (Rt(θ) + tQt(θ))/(t+ 1) ;

8. End loop

9. t := t+ 1 ;

10. End loop

11. Sk+1 := { θ ∈ Sk : Qt(θ) ≥ Median(Qt) } ;

12. εk+1 := 3/4 εk ; δk+1 := δk/2 ; k := k + 1 ;

13. Until |Sk| = 1

Output: θ, the only remaining threshold in Sk
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V. EXPERIMENTAL RESULTS

The projected stochastic approximation based solution was

tested with different noises. In this experiment the noise was

i.i.d. with 3 distributions: Gaussian (0, 1), Laplacian (0, 2)
and Uniform (−10,−10). The parameters were as follows:

αt = 2/t, θ0 = 7 and θ∗ =
√
2. The iterations were

projected back to Θ = [1, 7] according to (30). In Figure

1 the average trajectories, the standard deviation areas and a

particular trajectory realization for each case are presented.

It was made by averaging 100 trajectories of 103 iterations.

In agreement with the theory, the estimates converge to the

parameter θ∗ and the closer the CDF of the noise is to 1/2
in an interval around the origin, the slower the convergence.
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Stochastic Approximation for Various Noises

comparing the trajectories of 100 trials with 3 noise distributions

θ* − the true parameter

Standard deviation areas

Average trajectories

Trajectory realizations

Gaussian noise (0, 1), std.dev. = 1

Laplacian noise (0, 2), std.dev. ~ 2.83

Uniform noise (−10, 10), std.dev. ~ 5.77

Fig. 1. Stochastic approximation trajectories of binary identification for
three kinds of noise sequences: Gaussian, Laplacian and uniform.

The active learning approach to find a PAC solution for

the finite binary identification problem was tested with an

i.i.d. standard normal noise sequence and a 32-armed bandit.

Figure 2 shows the arm elimination process when the true

parameter θ∗ was 1 and the thresholds formed an equidistant

grid in [0, 2]. The unit of the figure is 105 trials of all non-

eliminated arms (each such trial needs 2 binary observations).

In this test a (0.1, 0.05)-optimal PAC solution was the aim.

The grey bars correspond to the thresholds and indicate the

presence or absence of them in the maintained set, Sk. At the

end, only two thresholds remained and the algorithm found

the best solution (illustrated by the dark grey part).
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Median Elimination for Binary Identification

Fig. 2. Identifying a PAC threshold with median elimination.

VI. CONCLUDING REMARKS

The problem of estimating a constant parameter based on

noisy observations from a binary sensor has been analyzed.

There are standard strongly consistent and asymptotically

efficient solutions to this problem, but only under strong

assumptions on the noise, for example, that it is i.i.d. and

its cumulative distribution function is known and invertible.

We investigated a modified version of the original problem,

where the threshold of the sensor is under our control, but

where the statistical assumptions on the noise are signifi-

cantly reduced, e.g., their distributions can be unknown apart

from one point, the noise terms can be dependent, they can

be nonstationary and they may not have densities.

We suggested two types of solutions depending on whether

the threshold can be set to any value or only to a finite set of

pre-defined values. In the first case, we showed that we can

apply a stochastic approximation scheme and we proved that

this method results in a strongly consistent estimator. In the

second case, we proved, under the additional assumption that

the noise is i.i.d. and symmetric about zero, that this problem

can be formulated as a multi-armed bandit problem. We gave

a probably approximately correct solution with the help of

a successive elimination type active learning algorithm.

The theory immediately generalizes to FIR systems and a

future direction is to extend it to other dynamical systems.
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