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Abstract— There is much known on the port-Hamiltonian
theory of interconnection of Dirac structures through shared
variables. This interconnection is known as Composition of
Dirac structures. In this paper, we will show an alternative
interconnection of Dirac structures called Bowtie interconnec-
tion in the context of Lagrange-Dirac dynamical systems. In
particular, we try to illustrate the following two things: Firstly,
how composition of Dirac structures may be used in the
Lagrangian theory of LC-circuits. Secondly, how composition
of Dirac structures may be linked with bowtie interconnection.

I. INTRODUCTION

Dirac structures were first introduced in [?] and [?] to
generalize pre-symplectic and almost Poisson structures as
relations between tangent and cotangent bundles. It was soon
realized that many systems (including circuits) could be for-
mulated with Dirac structures and a well chosen Hamiltonian
[?], referred to as an implicit Hamiltonian system. Addition-
ally it was realized that power conserving interconnection
through the “shared variables” of two Dirac structures could
produce a new Dirac structure where the shared variables
are absent. This process is known as composition of Dirac
structures [?] and it has been shown that the composition of
Dirac structures is a powerful tool in the context of implicit
port-Hamiltonian systems.

In parallel, a Lagrangian analogue of was developed in [?],
[?]. The implicit port-Lagrangian system was also developed
in [?], [?], [?]. Subsequently, the bowtie–product has been
introduced in [?] as a means of using Dint and applied to
an LC-circuit in [?], where Dint = ∆int ⊕∆◦int denotes the
power conserving interconnection induced from a constraint
∆int (see [?]). However, the Lagrange-Dirac and Hamilton-
Dirac theories for the interconnection of Dirac structures
appear vastly different. In this paper, we attempt to shine
light on a link between the interconnection produced by
composition of Dirac structures and that produced by bowtie
interconnection as well as demonstrate how composition of
Dirac structures may be used in the Lagrange-Dirac theory
with an illustrative example of an LC–circuits.

II. BACKGROUND

We use the notation following [?] as well as [?], [?].

A. The Pontryagin Bundle

Consider a manifold M . We denote the tangent bundle of
M by TM with the fibration τM : TM → M ; (q, v) →
q, where (q, v) are the local coordinates for TM . The
sections of TM are the set of smooth vector field, X(M).
Additionally we denote the cotangent bundle by T ∗M with
the fibration πM : T ∗M → M ; (q, p) 7→ q, where (q, p)
are the local coordinates of T ∗M . Sections of the cotangent
bundle are the set of one-forms, Λ1(M). Let π1 : P1 →
B, π2 : P2 → B be two vector bundles over the same base-
manifold B. The Pontryagin bundle over M is the Whitney
sum bundle over M :

TM := TM ⊕ T ∗M
= {(v, α) ∈ TM × T ∗M |τM (v) = πM (α)}

Note that the sections of TM are simply elements of the
cartesian product X(M)×Λ1(M). Locally the coordinates of
TM may be expressed by (m, v, p) for m ∈M , v ∈ TmM
and p ∈ T ∗mM .

B. Dirac Structures

There exists a canonical inner-product:

�,�: TM ⊕ TM → R,

which is defined as:

� (v, α), (w, β)�= 〈β, v〉+ 〈α,w〉.

In the above, 〈, 〉 denotes the canonical pairing between TM
and T ∗M . A Dirac structure is a maximal isotropic sub-
bundle of TM with respect to�,�1. For the case in which
M has finite dimensions, one may think of a Dirac structure
Dm as a “smooth” dim(M) dimensional subspace on the
2 dim(M) dimensional fibers of TM at each m ∈ M such
that for any (X,α), (Y, β) ∈ Dm

� (X,α), (Y, β)�= 0.

1We simply mention a ’Dirac structure’ though this is an almost Dirac
structure [?].
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III. LAGRANGE–DIRAC SYSTEMS

Let us review Lagrange-Dirac systems as in [?]. Let Q
be a configuration manifold and let L : TQ → R be a
Lagrangian, possibly, degenerate. A partial vector field is a
map X : TQ→ TT ∗Q such that τT∗Q ◦X(q, v, p) = (q, p).
Define the generalized energy E : TQ→ R by

E(q, v, p) = 〈p, v〉 − L(q, v)

and recall that the stationary condition of E(q, v, p) asso-
ciated to the second component v implies the generalized
Legendre transformation (see [?], [?]). Additionally let ∆ ⊂
TQ be a velocity constraint. Let ∆T∗Q = Tπ−1

Q (∆). We
define an induced Dirac structure on T ∗Q by

D∆ = {(v, α) ∈ TT ∗Q : v ∈ ∆T∗Q,

Ω[
T∗Q(v)− α ∈ ∆◦T∗Q}.

Locally we have the canonical coordinates (q, p) on T ∗Q
and denote the coordinates on T(q,p)T

∗Q by (q̇, ṗ) and the
coordinates on T ∗(q,p)T

∗Q by (α,w). In local coordinates,
we have, for each (q, p) ∈ T ∗Q,

D∆(q, p) = {(q̇, ṗ, α, w) : q̇ = w ∈ ∆q, ṗ+ α ∈ ∆◦q}.
(1)

Note that locally we may write:

dE(q, v, p) = −∂L
∂q
dq +

(
p− ∂L

∂v

)
dv + vdp

and the restriction to P = FL(∆) ⊂ T ∗Q leads to

dE(q, v, p)|TP = −∂L
∂q
dq + vdp,

for all v ∈ ∆ ∈ T ∗P . Given a partial vector-field X : TQ→
TT ∗Q, the Lagrange-Dirac system is defined as

(X(q, v, p),dE(q, v, p)|TP ) ∈ D∆(q, p). (2)

The local expression of the Lagrange-Dirac system is given
by

q̇ = v ∈ ∆q, ṗ− ∂L

∂q
∈ ∆◦q , p =

∂L

∂v
∈ P (3)

Equations (??) are called the implicit Lagrange–
d’Alembert equations; let us denote it by ILDA equations
for brevity. It was shown in [?] that they are equivalent to
the Lagrange–d’Alembert –Pontryagin principle

δ

∫ b

a

〈p, q̇〉 − E(q, v, p)dt = 0

for v(t) ∈ ∆q(t) and variations δq(t) ∈ ∆q(t) and
δv(t), δp(t) arbitrary, where t ∈ [a, b] ⊂ R denote the time.

IV. LAGRANGE-DIRAC SYSTEMS FOR L-C CIRCUITS

Consider an LC–circuit consisting of nL inductors and
nC capacitors. The configuration manifold is Q = RnL ×
RnC referring to the charge associated to all the branches
(or components). This means v ∈ TQ denotes the current
through the components2.

Each inductor with inductance lj induces a Lagrangian
Llj : TQlj → R as

Llj (qlj , vlj ) =
li
2
v2
lj ,

where (qlj , vlj ) ∈ TQlj . Similarly, each capacitor ck carries
a Lagrangian Lck : TQck → R as

Lck(qck , vck) =
−1

2ck
q2
ck
.

Summing up the Lagrangians from the branches of the circuit
gives us the total Lagrangian as

L =

(
nL∑
i=1

li
2
q̇2
li

)
−

(
nC∑
k=1

1

2ck
q2
ck

)
.

Let ∆ ⊂ TQ be the constraint set of currents that satisfy the
Kirchhoff Circuit Law (KCL) and it follows P = FL(∆).
Recall the equations of motion may be given by (??). For
example consider a circuit consisting of a single inductor and
a single capacitor. This is known as the electric harmonic
oscillator, in which case Q = R×R and the KCL constraint
is given by q̇l = q̇c. so that the local coordinate expression
of (??) gives

q̇l = q̇c = vl = vc

ṗl = λ, −1

c
qc = λ

pl = lq̇l pc = 0,

where λ indicates the Lagrange multiplier to enforce the
KCL constraints. These equations reduce down to q̈c = −1

lc qc
, justifying the label “harmonic oscillator”.

V. COMPOSITION OF DIRAC STRUCTURES

The notion of “composition of Dirac structures” was
introduced in [?] as a means for interconnection of port-
Hamiltonian systems through Dirac structures. Let V1, V2, Vs
be vector spaces. Let D1 be a linear Dirac structure on
V1 ⊕ Vs and D2 be a linear Dirac stucture on Vs ⊕ V2. The
composition of D1 and D2 is:

D1||D2 = {(v1, v2, α1, α2) ∈ T(V1 × V2) :

∃(vs, αs) ∈ TVs, such that (v1, vs, α1, αs) ∈ D1,

(−vs, v2, αs, αs) ∈ D2}.

It was shown in [?] that the set D1||D2 is itself a Dirac
structure.

2In this paper, following [?], [?], v stands for a choice of current through
the branches of the circuit by analogy with ’velocity’ in mechanics. The
voltage is not addressed explicitly, however it may be analogously given as
’force’ is defined by a horizontal one-form in mechanics.
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A. Shared Variable Splittings

The composition developed in [?] is constructed on vector
spaces. So, we shall focus on the vector space case.

The configuration manifold for circuits is given by a vector
space Q1×Qs, where Qs is the total charge that has flowed
passed the interconnection port. Noting that the Lagrange-
Dirac system is performed on the cotangent bundle, the
shared variable splittings are given as follows:

T ∗(q1,qs)(Q1 ×Qs) ∼= Q∗1 ×Q∗s
and

T(q1,qs,p1,ps)T
∗(Q1 ×Qs) ∼= Q1 ×Qs ×Q∗1 ×Q∗s.

We may set Vs to be the Qs × Q∗s part on the fiber
T(q1,qs,p1,ps)T

∗(Q1 × Qs) and set V1 to be the Q1 × Q∗1
part. We note that Vs and V1 imply integrable distributions
over T ∗(Q1 × Qs). The same argument may be applied to
Qs ×Q2 to get the distribution V2.

B. Example: port-interconnection of LC-circuits

As in [?], the composition of Dirac structures is usually
performed on the Hamiltonian side. Here, we will show that
one can also work on the Lagrangian side.

Consider the L-C circuit depicted in Fig.??, where there
are two inductors l1 and l2 and a capacitor c1.

Fig. 1. A connected circuit

As in [?], [?], the L-C circuit can be formulated by using
an induced Dirac structure and its associated Lagrange-Dirac
dynamical systems. However, in this paper, we will consider
this circuit as an interconnected system of two disconnected
Lagrange-Dirac dynamical systems. To do this, let us split the
circuit into two disconnected systems as in Fig.??, where the
parts s1 and s2 are ports that are intended to be “connected”.
Let us call the parts s1 and s2 shared ports following [?].

Fig. 2. Two disconnected circuits

We first deal with the circuit on the left with the s1 part.
The configuration subspace is Q1 × Qs = R2 × R with
coordinates (ql1 , qc1 , qs1) or (q1, qs1) for short by setting
q1 := (ql1 , qc1). The Lagrangian on T (Q1 × Qs) is given
by

L1(q, v) =
l1
2
v2
l1 −

1

2c1
q2
c1 ,

which is degenerate and we have the primary constraints.

pc1 = 0, ps1 = 0 and pl1 = l1vl1 .

The KCL constraint distribution is denoted by

∆1 = {(vl1 , vc1, vs1) ∈ T(q1,qs1 )(Q1 ×Qs)

: vl1 + vs1 − vc1 = 0}
(4)

and its annihilator is given by

∆◦1 = {(λ,−λ, λ) ∈ T ∗(q1,qs1 )(Q1 ×Qs)}.

We may assemble the constraint induced Dirac structure

D1 = D∆1
∈ k(T ∗(Q1 ×Qs)).

Using the local representation given in (??), we can write
this Dirac structure, for each (q1, qs, p1, ps) ∈ T ∗(Q1×Qs),
as

D1(q1, qs, p1, ps) = {(X,Λ) ∈ T(q1,qs,p1,ps)T
∗(Q1 ×Qs) :

X = (q̇l1 , q̇c1 , q̇s1 , ṗl1 , ṗc1 , ṗs1),

Λ = (αl1 , αc1 , αs1 , wl1 , wc1 , ws1),

q̇c1 − q̇l1 = q̇s1 ,

q̇c1 = wc1 , q̇l1 = wl1 , q̇s1 = ws1 ,

ṗl1 + αl1 = −α, }.

In the above, note that ṗc1 = 0 and ṗs1 = 0 will be implied
by the consistency condition. Note that we have the splitting

T(q1,qs,p1,ps)T
∗(Q1 ×Qs) = V1 ⊕ Vs,

where

V1 = {(q̇l1 , q̇c1 , 0, ṗl1 , ṗc1 , 0)} ∼= T(q1,p1)T
∗Q1

and

Vs = {(0, 0, q̇s1 , 0, 0, ṗs1)} ∼= T(qs,ps)T
∗Qs

so that D1(q1, qs, p1, ps) ∈ k(V1 ⊕ Vs).

Next we deal with the circuit on the right with the s2

part. The configuration subpace is Qs × Q2 = R × R with
coordinates (qs2 , ql2). The Lagrangian on T (Qs × Q2) is
given by

L2(ql2 , vl2) =
l2
2
v2
l2 ,

which is degenerate and we have the primary constraints:

ṗs2 = 0 and pl2 = l2vl2 .

The KCL constraint distribution is given by

∆2(qs2 , ql2) = {(vs2 , vl2) : vs2 = vl2}

with its annihilator

∆◦2(qs2 , ql2) = {(δ,−δ) ∈ T ∗(qs2 ,ql2 )(Qs ×Q2)}.

Hence, we may assemble the Dirac structure D2 = D∆2 ∈
k(T ∗Q2). Using the local expressions given in (??), we
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can develop a Dirac structure, for each (qs2 , ql2 , ps2 , pl2) ∈
T ∗(Qs ×Q2), as

D2(qs2 , ql2 , ps2 , pl2) =

{(X,Λ) ∈ T(qs2 ,ql2 ,ps2 ,pl2
)T
∗(Qs ×Q2) :

X = (q̇s2 , q̇l2 , ṗs2 , ṗl2),

Λ = (αs2 , αl2 , ws2 , wl2),

q̇s2 = ws2 , q̇l2 = wl2 , q̇s2 = q̇l2 ,

ṗs2 + αs2 = −ṗl2 − αl2 , ṗs2 = 0}.

Again we have the splitting

T(qs2 ,ql2 ,ps2
,pl2

)T
∗(Qs ×Q2) = V ′s ⊕ V2,

where

V ′s = {(q̇s2 , 0, ṗs2 , 0)} ∼= {(q̇s2 , ṗs2)}
= T(qs2,ps2)T

∗Qs

= Vs

and

V2 = {(0, q̇l2 , 0, ṗl2)} ∼= {(q̇l2 , ṗl2} = T(ql2 ,pl2
)T
∗Q2

so that D2(qs2, ql2, ps2, pl2) ∈ k(Vs ⊕ V2).
With this splitting of TT ∗(Q1 ×Qs) and TT ∗(Qs ×Q2)

into the transverse distributions V1, Vs, V2, we may assemble
the Dirac structure D|| = D1||D2. We find that

(q̇1, q̇2, ṗ1, ṗ2, α1, α2, w1, w2) ∈ D||

if and only if there exist (q̇s, ṗs) ∈ Vs and (αs, ws) ∈ V ∗s
such that

(q̇l1 , q̇c1 , q̇s) = (wl1 , wc1 , ws) ∈ ∆1,

(−q̇s, q̇l2) = (−ws, wl2) ∈ ∆2,

(ṗl1 + αl1 , ṗc1 + αc1 , ṗs + αs) ∈ ∆◦1,

(−ṗs + αs, ṗl2 + αl2) ∈ ∆◦2.

We now invoke the ILDA equations using D||. As in (??),
if we restrict p ∈ P where P = F(L1 + L2), then we are
restricting ṗs = 0 as the consistency condition. Substituting
this into the local formulas, we obtain

(q̇l1 , q̇c1 , q̇s) = (wl1 , wc1 , ws) ∈ ∆1,

(−q̇s, q̇l2) = (−ws, wl2) ∈ ∆2,

(ṗl1 −
∂L1

∂ql1
, ṗc1 −

∂L1

∂qc1
, αs) ∈ ∆◦1,

(αs, ṗl2 −
∂L2

∂ql2
) ∈ ∆◦2,

which follows from ∆1 and ∆2 that we can eliminate the
variable q̇s and replace the first two conditions with the
condition (q̇1, q̇2) ∈ ∆, where

∆ = {(vl1 , vc1 , vl2) : vl1 − vc1 − vl2 = 0} ⊂ T (Q1 ×Q2).

Similarly we may eliminate the variable αs and use the
constraint

(ṗ1 + α1, ṗ2 + α2) ∈ ∆◦ ⊂ T ∗(Q1 ×Q2).

It is no coincidence that ∆ is the KCL distribution for the
connected circuit depicted in figure ??.

Thus, we can develop the ILDA equations

q̇l1 − q̇c1 − q̇l2 = 0,

l1q̈l1 =
1

c1
qc1 = l2q̈l2.

VI. BOWTIE INTERCONNECTION

The Dirac tensor product, �, was developed by Gaultieri
in [?] in the study of complex geometry 3. It was later
found in [?] and [?] that � could be used as an alternative
means of interconnecting Dirac structures, where we used
the symbol ./ instead, and called it the Bowtie product. The
interconnection appears rather different from composition in
that it comes from another Dirac structure that we call the
interconnection Dirac structure.

A. Direct Sums of Dirac Structures

Denote the set of Dirac structures on a manifold Mi by
k(Mi). Let D1 ∈ k(M1) and D2 ∈ k(M2) be Dirac
structures. Let M = M1 × M2 with the projections pri :
M → Mi. The tangent map is Tpri : TM → TMi and
T ∗pri : T ∗Mi → T ∗M its dual. Then, we can define the
Dirac direct sum of D1 and D2 by

D1 ⊕D2 = {((v1, v2), Λ̃1 + Λ̃2) ∈ TM1 ×M2 :

(X1,Λ1) ∈ D1, (X2,Λ2) ∈ D2,

Λ̃1 = T ∗pr1(Λ1), Λ̃2 = T ∗pr2(Λ2)}.

We state without proof that D1 ⊕D2 ∈ k(M). For the case
in which M1 and M2 are vector spaces, we may consider

T ∗mM
∼= T ∗m1

M1 × T ∗m2
M2

for each m = (m1,m2) ∈ M . The direct sum of D1 and
D2 may be written as

D1 ⊕D2 = {((X1, X2), (Λ1,Λ2)) ∈ TM :

(X1,Λ1) ∈ D1, (X2,Λ2) ∈ D2}.

B. The Bowtie Product

Note that D = D1 ⊕ D2 does not alter the dynamics
generated on M1 and M2 since these Dirac structures do not
intersect each other. To do this, we introduce another Dirac
structure Dint ∈ k(M) for interconnecting D1 and D2. The
bowtie product of D and Dint is given by

D ./ Dint = {(v, α) ∈ TM : ∃β ∈ T ∗M such that
(v, α+ β) ∈ D, (v,−β) ∈ Dint}.

If we let d : M ↪→ M ×M be the diagonal embedding,
then a more elegant definition of bowtie can be given as:

D ./ Dint = d∗(D ×Dint)

where d∗ denotes the pullback of k(M ×M) to k(M) as
in [?]. D ./ Dint is a Dirac structure if the set prTM (D ./
Dint) is a distribution with constant rank [?].

3We appreciate H. Bursztyn for pointing out this.
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C. Example: Port–Interconnection using ./

Consider again the circuits depicted in Fig. ??. We may
use the same configuration manifolds Q1, Qs, Q2, Dirac
structures D1 and D2 and Lagrangians L1 and L2 as in
Section ??. Let Q = Q1×Qs×Qs×Q2 and let ∆12 ⊂ TQ
be the distribution

∆12(q) = {(vl1 , vc1 , vs,−vs, vl2)}

for each q ∈ Q and we may lift ∆12 to be a distribution
∆int on T ∗Q

∆int(q, p) = Tπ−1
Q (∆12(q)),

where πQ : T ∗Q→ Q; (q, p) 7→ q. Set

Dint = ∆int ⊕∆◦int

and define
D./ = (D1 ⊕D2) ./ Dint.

Then the ILDA equations for L = L1 +L2 are given by for
(q, v, p) ∈ T(T ∗Q)

(X(q, v, p),dE(q, v, p)|TP ) ∈ D./(q, p),

where

X(q, v, p) = (q̇l1 , q̇c1 , q̇s1 , q̇s2 , q̇l2 , ṗl1 , ṗc1 , ṗs1 , ṗs2 , ṗl2)

and

dE(q, v, p)|TP = (0,
1

c1
qc1 , 0, 0, 0, vl1 , vc1 , vs1 , vs2 , vl2).

By the definition of ./, there exists β ∈ T ∗Q such that:

(X, dE|TP + β) ∈ D1 ⊕D2, (5)
(X,−β) ∈ Dint. (6)

By the structure of Dint, the second condition implies β is
of the form

β = (0, 0, βs, βs, 0, 0, 0, 0, 0, 0) ∈ ∆◦int

and

(q̇, ṗ) ∈ ∆int. (7)

Using this, equation (??) can be written locally as

(q̇l1 , q̇c1 , q̇s1) ∈ ∆1,

(q̇s2 , q̇l2) ∈ ∆2,

(ṗl1 , ṗc1 +
1

c1
qc1 , ṗs1 + βs) ∈ ∆◦1,

(ṗs2 + βs, ṗl2) ∈ ∆◦2,

(q̇l1 , q̇c1 , q̇s1 , q̇s2 , q̇l2) = (wl1 , wc1 , ws1 , ws2 , wl2).

Equation (??) implies q̇s1 = −q̇s2 . Recall the primary
constraint set

p ∈ P = FL(∆1 ⊕∆2)

induces the consistency conditions ṗs = ṗ′s = 0 and the local
expressions gives

q̇l1 − q̇c1 + q̇s1 = 0,

q̇l2 = q̇s2,

q̇s1 = −q̇s2,

l1q̈l1 =
1

c1
qc1 = β = l2q̈l2.

Eliminating q̇s1, q̇s2 and β, we can recover the same equa-
tions as in Section ??.

VII. COMPOSITION AS A PROJECTION OF THE BOWTIE
INTERCONNECTION

In this section we will show the link between the bowtie
interconnection and the composition of Dirac structures,
where we will focus on the case of linear Dirac structures on
vector spaces. Let V1, V2, Vs be vector spaces as in section
§??. Let V = V1 × Vs × Vs × V2 and V̄ = V1 × V2. Before
going into details, we establish an important fact on the
projection from V to V̄ .

Lemma 1: Given a natural projection Ψ : V → V̄ as
(v1, vs, v

′
s, v2) 7→ (v1, v2). The mapping Ψ† : V̄ ∗ → V ∗

dual to Ψ is given by

Ψ†(α1, α2) = (α1, 0, 0, α2) ∈ V ∗.
Proof: We have that:

〈Ψ†(α1, α2), (v1, vs, v
′
s, v2)〉 = 〈(α1, α2),Ψ(v1, vs, v

′
s, v2)〉

=〈(α1, α2), (v1, v2)〉
=〈α1, v1〉+ 〈α2, v2〉
=〈(α1, 0, 0, α2), (v1, vs, v

′
s, v2)〉

for arbitrary (v1, vs, v
′
s, v2) ∈ V

Next, we recall the push forward map associated to a Dirac
structure.

Definition 1: Let f : V → W be a linear map and let D
be a linear Dirac structure on V . The push forward of D to
W by f is the set

f∗D = {(f(v), α) ∈ TW : (v, f†(α)) ∈ D}
It is worth noting that the push forward of a Dirac structure

is itself a Dirac structure as in [?].
We are now ready to provide the link between the bowtie

product and the composition of Dirac structures.
Theorem 1: Let ∆int = {(v1, vs,−vs, v2) ∈ V } and let

Dint = ∆int⊕∆◦int. For linear Dirac structures D1 on V1×Vs
and D2 on Vs × V2, set

D./ = (D1 ⊕D2) ./ Dint

and set also
D|| = D1||D2.

Then, one has
D|| = Ψ∗D./.

Proof: First observe that ∆◦int = {(0, αs, αs, 0) ∈ V ∗}.
We also observe:

Ψ∗D./ = {(Ψ(v1, vs, v
′
s, v2), α1, α2) :

(v1, vs, v
′
s, v2,Ψ

†(α1, α2)) ∈ D./}
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Using the facts that Ψ(v1, vs, v
′
s, v2) = (v1, v2) and

Ψ†(α1, α2) = (α1, 0, 0, α2) ∈ V ∗, it follows

Ψ∗D./ ={(v1, v2, α1, α2) : ∃vs, v′s ∈ Vs such that
(v1, vs, v

′
s, v2, α1, 0, 0, α2) ∈ D./}.

By definition of the Bowtie product, it follows

Ψ∗D./ = {(v1, v2, α1, α2) : ∃vs, v′s ∈ Vs and
∃β ∈ V ∗ such that
(v1, vs, v

′
s, v2, α1 + β1, βs, β

′
s, α2 + β2) ∈ D1 ⊕D2,

(v1, vs, v
′
s, v2,−β1,−βs,−β′s,−β2) ∈ Dint}

Utilizing the fact that:

(v1, vs, v
′
s, v2,−β1,−βs,−β′s,−β2) ∈ Dint

if and only if vs = −v′s and βs = β′s, β1 = 0, β2 = 0, we
may restate the above as

Ψ∗D./ ={(v1, v2, α1, α2) : ∃vs ∈ Vs, αs ∈ V ∗s such that
(v1, vs,−vs, v2, α1, βs, βs, α2) ∈ D1 ⊕D2}.

Finally, we have

Ψ∗D./ ={(v1, v2, α1, α2) : ∃vs ∈ Vs, αs ∈ V ∗s such that
(v1, vs, α1, βs) ∈ D1, (−vs, v2, βs, α2) ∈ D2},

but this is nothing but the composed Dirac structure, D||.

VIII. CONCLUSIONS

In this paper, we have shown a link between the compo-
sition of Dirac structures and the bowtie interconnection of
Dirac structures. The bowtie product provides an alternative
to the composition since the latter may be obtained by
projecting out the shared variable component. However, for
the design of nonlinear control systems on manifolds, one
may need to observe some internal variables, which are given
by the shared variables. Additionally, an interconnection may
not easily manifest a shared variable splitting, yet be easily
representable as an interconnection Dirac structure. In such
cases, there exists some advantage to using the bowtie inter-
connection. Having established an inclusive correspondence
of composed Dirac structure as a projection of a bowtie
interconnected Dirac structure, we can claim that the bowtie
interconnection can at least solve the same problems as
interconnection by composition.

Additionally, much of the theory on stabilization and
achievable Casimers studied in [?] for port-Hamiltonian
systems using composition will be able to be applied in
the context of Lagrange-Dirac dynamical systems using the
bowtie-product.
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