
Supervisory Control of Concurrent Discrete-Event Systems

Rong Su

Abstract— Concurrency is a common feature in most indus-
trial systems, where several components can execute different
actions simultaneously. In this paper we first bring in a new
supervisory control map for a concurrent system, and subse-
quently a new concept of concurrent controllability, then we
show that the supremal concurrently controllable and normal
sublanguages exist, which can be computed by an algorithm
proposed in the paper.

Index Terms— discrete-event systems, concurrency, control-
lability, observability, normality, supervisory control

I. INTRODUCTION

Concurrency is a property of systems in which several

components may execute different actions simultaneously,

and potentially interacting with each other. The standard

language-based Ramadge-Wonham (RW) supervisory control

paradigm [4] [9] has been shown effective to derive proper

supervisors to enforce liveness and safety related logic con-

straints. Nevertheless, it assumes that a target system is asyn-

chronous with respect to different events. This assumption

has limited its applications to complex industrial systems,

where concurrency is commonly seen either due to the nature

of the system or due to some intentional setup to improve the

system’s performance. Facing this theoretical shortcoming, in

the past several researchers proposed different extensions to

the RW paradigm in order to address concurrency properly.

In [2] the authors propose a new concurrency product that

takes potential simultaneous executions of different events

into consideration, and a sufficient and necessary condition is

presented, which ensures that a well posed supervisor synthe-

sized based on an asynchronous model can deal with possible

concurrent behaviors. In some sense this work does not

intend to solve concurrent synthesis as a separate paradigm

but rather to restrict a system’s asynchronous behaviors in

such a way that the presence of concurrency will not affect

the supervisor’s asynchronous control capability. The authors

in [7] extend the idea of concurrency product from [2] and

the language-based concurrent supervisory control paradigm

in [6]. By adopting the same concepts of controllability and

observability as those in the RW asynchronous case, and

introducing a new concept called concurrent well-posedness

(CWP), the authors show that the supremal sublanguages

usually do not exist. Thus, we need to pursue either the

infimal or the maximal prefix closed sublanguages. The work

in [7] suggests that such a negative result about supremal

sublanguages is due to the usage of CWP and observability.

Thus, even when we replace observability with normality, the

Rong Su is affiliated with Division of Control and Instrumentation, School
of Electrical and Electronic Engineering, Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798. Email: rsu@ntu.edu.sg

negative result still holds because of CWP, as a contrast to the

existence of supremal controllable and normal sublanguages

in the RW asynchronous case. Although their work is valid

within their formalism, we will indirectly show in this paper

that the CWP is not the fundamental reason for the non-

existence of supremal sublanguages when normality is used.

In addition, their concurrent synchronous product is defined

over asynchronous components, thus, not suitable for a sys-

tem consisting of concurrent subsystems. In [5] the authors

propose a new paradigm called multiagent product systems.

In this paradigm all components must fire (possibly empty)

events at the same time. Besides the different representing

formats for compound events, where in [5] event vectors

are used in contrast with event subsets used in [2] [7], the

concurrent product in [5] is different from those in [2] and [7]

in terms of how to deal with shared events. More explicitly,

in [2] and [7] an event must be fired simultaneously in all

components containing this event, which is not necessarily

true in [5]. The work in [5] also deals with only prefix closed

languages as that in [7], and the supremal (MA) controllable

sublanguages do not exist in general. Partial observation is

not considered in [5].

In this paper we adopt the same way of defining a

compound event as a set of atomic events as used in [2]

and [7]. But unlike [2] and [7], all subsequent develop-

ments in this paper such as controllability, observability,

normality and supervisory control maps are all defined over

the compound event alphabet. In particular, a concurrent

composition operation is defined, which is conceptually

similar to the synchronous product defined in [1], and a novel

concept called concurrent controllability is introduced, which

describes not only the unstoppable natural of uncontrollable

events (as manifested in the standard controllability concept

in the RW paradigm) but also the collateral event enabling

and disabling phenomena due to the usage of compound

events. It turns out that the concept of CWP in [7] is

related to the phenomenon of collateral event enabling under

the full concurrency circumstance, but it is not necessarily

needed for cases where partial concurrency presents. We

show that supremal concurrently controllable normal sub-

languages exist and a concrete algorithm is provided. This

result makes our paper different from previous papers, and

indicates that the concurrent case can be treated similar to the

RW asynchronous case in the centralized setup. In this sense

we believe our work shed some light on the fundamentals of

supervisory control for concurrent systems.

This paper is organized as follows. In Section II we

introduce a formal setup of a concurrent system, then show

in Section III the supervisor existence and supremal synthesis

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 1811

results. Conclusions are drawn in Section IV.

II. A CONCURRENT SYSTEM

Let Σ be a finite alphabet and Σ∗ be the free monoid

on Σ, where the unit element is the empty string ǫ and the

monoid operation is the concatenation. Given two strings

s, t ∈ Σ∗, s is called a prefix substring of t, written as s ≤ t,
if there exists s′ ∈ Σ∗ such that ss′ = t, where ss′ denotes

the concatenation of s and s′. For all string s ∈ Σ∗, ǫs =
sǫ = s. A subset L ⊆ Σ∗ is called a language. We call

L = {s ∈ Σ∗|(∃t ∈ L) s ≤ t} ⊆ Σ∗ the prefix closure of L.

Given two languages L,L′ ⊆ Σ∗, let LL′ := {ss′ ∈ Σ∗|s ∈
L ∧ s′ ∈ L′} be the concatenation of L and L′. Given a set

S, we use |S| to denote its size and 2S for its power set.

Given an alphabet Σ, each element σ ∈ Σ is called an

atomic event denoting a physical action, e.g., “turn on a

valve”, ”pick up a workpiece” or “start a job” etc. We call

σ controllable if the corresponding physical action can be

disabled whenever needed; otherwise, it is uncontrollable.

We call σ observable if the occurrence of the corresponding

physical action can be detected by a sensor; otherwise,

it is unobservable. Let the disjoint sets Σc and Σuc be

the collections of controllable and uncontrollable events

respectively, and the disjoint sets Σo and Σuo the collections

of observable and unobservable events respectively. We have

Σ = Σc ∪ Σuc = Σo ∪ Σuo.

A compound event with respect to Σ is a nonempty subset

ς ⊆ Σ, whose firing denotes the simultaneous occurrence

of atomic events contained in ς . We call ς controllable if

ς ∩ Σc 6= ∅, and observable if ς ⊆ Σo. Let f(Σ) ⊆ 2Σ

be a set of compound events. A typical compound event set

can be defined as f(Σ) := 2Σ, which allows full concurrency

among all events, or f(Σ) := 2Σuc∪
⋃

σ∈Σc
2Σuc∪{σ}, which

allows full concurrency among only uncontrollable events. If

we set f(Σ) := {{σ}|σ ∈ Σ}, then no concurrency among

any atomic events is allowed, which is equivalent to the RW

asynchronous case. The construction of f(Σ) is done by a

user, which must reflect the true concurrent nature of atomic

events. We use fc(Σ) and fuc(Σ) to denote the collections

of controllable and uncontrollable compound events, and

fo(Σ) and fuo(Σ) for the collections of observable and

unobservable compound events. A subset L ⊆ f(Σ)∗ is

called a concurrent language with respect to f(Σ).
Let Σ′ ⊆ Σ. A map ψ : f(Σ)∗ → f(Σ′)∗ is called the

concurrent projection with respect to (f(Σ), f(Σ′)), if

1) ψ(ǫ) = ǫ

2) (∀ς ∈ f(Σ))ψ(ς) :=

{

{σ ∈ Σ′} if ς ∩ Σ′ 6= ∅

ǫ otherwise
3) (∀sς ∈ f(Σ)∗)ψ(sς) = ψ(s)ψ(ς)

Given a concurrent language L ⊆ f(Σ)∗, ψ(L) := {ψ(s) ∈
f(Σ′)∗|s ∈ L}. The inverse image map of ψ is

ψ−1 : 2f(Σ
′)∗ → 2f(Σ)∗ : L′ 7→ ψ−1(L′) := {s ∈

f(Σ)∗|ψ(s) ∈ L′}

Given L1 ⊆ f(Σ1)
∗ and L2 ⊆ f(Σ2)

∗, the concurrent

synchronous product of L1 and L2 is defined as L1||CL2 :=
ψ−1
1 (L1) ∩ ψ−1

2 (L2), where ψ1 : f(Σ1 ∪ Σ2)
∗ → f(Σ1)

∗

and ψ2 : f(Σ1 ∪ Σ2)
∗ → f(Σ2)

∗ are natural projections.

Synchronous product is commutative and associative.

A finite-state concurrent automaton (FSCA) with respect

to Σ is G = (X, f(Σ), ξ, x0, Xm), where X is the state set,

f(Σ) the alphabet, x0 the initial state, Xm ⊆ X the marker

state set, and ξ : X × f(Σ) → X the (partial) transition

function, which is extended to X×f(Σ)∗. For all x ∈ X and

ς ∈ f(Σ), we use ξ(x, ς)! to denote that the transition ξ(x, ς)
is defined. Let L(G) := {s ∈ f(Σ)∗|ξ(x0, s)!} be the closed

behavior of G and Lm(G) := {s ∈ L(G)|ξ(x0, s) ∈ Xm}
be the marked behavior of G. We say G is nonblocking if

L(G) = Lm(G). Let φ(Σ) denote the set of all well posed

FSCA, whose alphabets are f(Σ).
The composition of two FSCA is specified by the

following product operation. Given two FSCA Gi =
(Xi, f(Σi), ξi, xi,0, Xi,m) (i = 1, 2), the concurrent product

of G1 and G2, written as G1 × G2, is a FSCA G =
(X, f(Σ), ξ, x0, Xm), where X := X1×X2, Σ := Σ1 ∪Σ2,

x0 := (x1,0, x2,0), Xm := X1,m ×X2,m and ξ : X1 ×X2 ×
f(Σ) → X1 ×X2 is defined as follows,

ξ(x1, x2, ς) :=






























(ξ1(x1, ς), x2) if ς ⊆ Σ1 − Σ2 ∧ ξ1(x1, ς)!
(x1, ξ2(x2, ς)) if ς ⊆ Σ2 − Σ1 ∧ ξ2(x2, ς)!
(ξ1(x1, ς1), ξ2(x2, ς2)) if ς = ς1 ∪ ς2 ∧ ς1 ∩ Σ2 ⊆ ς2

∧ ς2 ∩ Σ1 ⊆ ς1 ∧ ξ1(x1, ς1)!
∧ ξ2(x2, ς2)!

undefined otherwise

The reason why we require ς1∩Σ2 ⊆ ς2 and ς2∩Σ1 ⊆ ς1
is that shared atomic events, i.e., events in Σ1∩Σ2, must be

fired simultaneously in both G1 and G2. If Σ1 = Σ2 or f(Σ)
is restricted to singleton sets, i.e., f(Σ) := {{σ}|σ ∈ Σ} then

the concurrent product becomes the synchronous product in

the RW asynchronous case. This matches our expectation

that asynchrony is a special case of concurrency. It is worth

to point it out the concept of compound events bears some

similarity to the concept of synchronization vectors [1],

except that we assign the attributes of controllability and

observability to each compound event. The corresponding

concurrent product is closely related to the synchronous

product defined in [1], where each synchronization constraint

is specified as a vector in which an event shared by different

components must be fired in them simultaneously.

Proposition 1: The concurrent product is well defined. �

Proposition 2: Let G1 ∈ φ(Σ1), G2 ∈ φ(Σ2). Then

Lm(G1)||CLm(G2) = Lm(G1 ×G2). �

In the RW asynchronous case language synchronous prod-

uct is computable by automaton synchronous product. Prop.

2 shows that a similar result holds for the concurrent case,

where language concurrent synchronous product is com-

putable by automaton concurrent product.

Definition 1: A concurrent system is a finite collection

of FSCA G = {Gi ∈ φ(Σi)|i ∈ I}, whose compositional

behaviors are captured by their concurrent product. �

To illustrate the aforementioned concepts and operations,

suppose G = {G1 ∈ φ(Σ), G2 ∈ φ(Σ)}, which is

depicted in Figure 1, where Σ1 = {a, b, c} and Σ2 =

1812

{a,b}

{c}

G1

{b,d}

{e}

G2

{a,b,d}

{e}

G1xG2

{c}

{c,e}

{e} {c}

{a,b},{a,b,d}

{a,b,e},{a,b,d,e}

A1

{c},{c,d}

{c,e},{c,d,e}

{d},{e},{d,e}{d},{e},{d,e}

{b,d},{a,b,d}

{b,c,d},{a,b,c,d}

A2

{e},{a,e}

{c,e},{a,c,e}

{a},{c},{a,c}{a},{c},{a,c}

Fig. 1. Example 1

{b, d, e}. Assume that full concurrency among all atomic

events are considered. Thus, f(Σ1) = 2Σ1 , f(Σ2) =
2Σ2 and f(Σ1 ∪ Σ2) = 2Σ1∪Σ2 . The concurrent product

G1 × G2 is depicted in Figure 1. By Prop. 2 we know

that Lm(G1)||CLm(G2) = Lm(G1 × G2). On the other

hand, to compute Lm(G1)||CLm(G2) we can first compute

ψ−1
i (Lm(Gi)) (i = 1, 2), where ψi : f(Σ1∪Σ2)

∗ → f(Σi)
∗

is the concurrent projection. The corresponding recognizer

Ai, i.e., Lm(Ai) = ψ−1
i (Lm(Gi)), is depicted in Figure

1. it is not difficult to show that Lm(A1) ∩ Lm(A2) =
Lm(A1×A2) = Lm(G1×G2). Since the alphabet for A1 is

equal to the alphabet of A2, we can check that the concurrent

product A1 ×A2 is equal to the synchronous product in the

RW asynchronous case.

III. SUPERVISORY CONTROL OF A CONCURRENT SYSTEM

Let Γ := {γ ⊆ 2f(Σ)|(∀ς ∈ γ)Σuc ⊆ ς}. Each γ ∈ Γ is

called a control pattern, which consists of several compound

events all containing the uncontrollable alphabet Σuc. Given

a FSCA G ∈ φ(Σ), we define a supervisory control map

V : ψo(L(G)) → Γ, where ψo : f(Σ)∗ → f(Σo)
∗ is the

concurrent projection. Compared with a supervisory control

map for an asynchronous case in the RW paradigm, we

simply replace each atomic event with a compound event.

The control mechanism works in a similar way: based on

the current observation s ∈ ψo(L(G)), the control map V (s)
describes all possible compound events that can be fired at

the current state. An internal mechanism will (nondeterminis-

tically) choose which compound event to be fired. The closed

behavior of G under V is defined as follows:

1) ǫ ∈ L(V/G),
2) (∀s ∈ L(V/G))(∀ς ∈ f(Σ))(∃ς ′ ∈ V (Po(s))) sς ∈

L(G) ∧ ς ⊆ ς ′ ⇒ sς ∈ L(V/G),
3) all strings in L(V/G) are obtained in Steps (1),(2).

The marked behavior of G under V is defined as

Lm(V/G) := L(V/G) ∩ Lm(G). We say V is nonblocking

if Lm(V/G) = L(V/G). The definition of the closed and

marked behaviors of supervised system V/G indicates that

the supervisor can disable and enable any controllable atomic

events, but cannot force any enabled atomic events to fire si-

multaneously. The latter is the main reason for including the

condition (2) in the definition, which says that any subset of

enabled atomic events may occur during an actual execution.

In some sense, the definition of the supervisory control map

V describes the observation and control mechanisms in a

discrete-event system, which determines the corresponding

control theory. With such an interpretation of supervisory

control in a concurrent setup we will show below that

(almost) every important result for the RW asynchronous

case has a counterpart for the concurrent case. The first result

is about the existence of a supervisory control map for a

given concurrent sublanguage.

Problem 1: Given a plant G ∈ φ(Σ), let K ⊆ Lm(G).
Under what conditions does there exist a control map V
such that Lm(V/G) = K and L(V/G) = Lm(V/G)? �

Recall that to solve a similar problem in the RW asyn-

chronous case we need two important concepts: controllabil-

ity and observability. In the following we will show that we

also need similar concepts to solve the concurrent version.

Definition 2: K ⊆ Lm(G) is concurrently controllable

with respect to G if

1) Kfuc(Σ) ∩ L(G) ⊆ K
2) (∀s ∈ K)(∀ς ∈ f(Σ)) sς ∈ K ⇒ (∀ς ′ ∈ f(Σ) ∩

2ς) [sς ′ ∈ L(G) ⇒ sς ′ ∈ K]
3) (∀s ∈ K)(∀ς ∈ f(Σ)) sς /∈ K ⇒ (∀ς ′ ∈ f(Σ))[ς ∩

Σc ⊆ ς ′ ∩ Σc ⇒ sς ′ /∈ K] �

The concept of concurrent controllability is used to de-

scribe the existence of an event disabling mechanism that

achieves K . So the fist condition is quite natural - no

uncontrollable compound event can be disabled because all

atomic events in it are uncontrollable. The second condi-

tion is used to capture the phenomenon of collateral even

enabling, namely to enable a compound event ς all atomic

events in ς are allowed, which means any compound event

consisting of some atomic events of ς must be allowed as

well. This condition matches the supervisory control map V
proposed above. The third condition is used to capture the

phenomenon of collateral event disabling, namely to disable

1813

a compound event ς by disabling the controllable atomic

event in ς we must disable every compound event, which

contains all controllable atomic events in ς .
Proposition 3: Let K1,K2 ⊆ Lm(G) be concurrently

controllable with respect to G. Then K1∪K2 is concurrently

controllable with respect to G. �

Prop. 3 indicates that concurrent controllability is closed

under set union, just like controllability is closed under set

union in the RW asynchronous case.

Definition 3: Let ψo : f(Σ)∗ → f(Σo)
∗ be the concurrent

projection. Then K ⊆ Lm(G) is observable with respect to

(G,ψo) if for all s, s′ ∈ K and ς, ς ′ ∈ f(Σ) with ς ′ ⊆ ς ,
sς ∈ K ∧ s′ς ′ ∈ L(G) ∧ ψo(s) = ψo(s

′) ⇒ s′ς ′ ∈ K �

The concept of observability is extended from its counter-

part in the RW asynchronous case [3] to cope with compound

events instead of atomic events.

Theorem 1: Given G ∈ φ(Σ), let K ⊆ Lm(G). Then

a nonblocking supervisory control map V exists such that

Lm(V/G) = K iff K is concurrently controllable with

respect to G, observable with respect to (G,ψo), and K ∩
Lm(G) = K . �

Theorem 1 allows us to solve the control problem, i.e.,

to find an appropriate supervisory control map V to realize

K , by checking whether K satisfies those aforementioned

conditions. In many practical applications such a concurrent

sublanguage is not explicitly given. Instead, a requirement

E ⊆ f(Σ′)∗ with Σ′ ⊆ Σ is given. We need to solve the

following synthesis problem.

Problem 2: Given a plant G ∈ φ(Σ) and a requirement

E ⊆ f(Σ′)∗ with Σ′ ⊆ Σ, how to find a concurrent

sublanguage K ⊆ Lm(G)||CE satisfying the first two

conditions in Theorem 1? �

The last condition of Theorem 1 is not considered here

because it is not directly related to the nonblocking control.

To solve Problem 2 we need to construct a formal synthesis

procedure. To this end we adopt the same strategy as used in

the RW asynchronous case - that is to come up with a concept

of supremal sublanguage with respect to controllability and

observability. As we know, observability is not closed under

set union. Therefore, we adopt the concept of normality.

Definition 4: K ⊆ Lm(G) is normal with respect to

(G,ψo) if K = L(G) ∩ ψ−1
o (ψo(K)). �

By using a similar argument as in the RW asynchronous

case we can show that K is normal with respect to (G,ψo)
implies that K is observable. Let

C(G,E) :=
{K ⊆ Lm(G)||CE|K is concurrently controllable w.r.t. G}

and

N (G,E) := {K ⊆ Lm(G)||CE|K is normal w.r.t. (G,ψo)},

we define CN (G,E) := C(G,E) ∩ N (G,E).
Proposition 4: There exists K∗ ∈ CN (G,E) such that

for all K ∈ CN (G,E) we have K ⊆ K∗. �

We call K∗ the supremal concurrently controllable and

normal sublanguage of G with respect to E, denoted as

supCN (G,E). Because of the similarity between normalities

in the concurrent case and in the RW asynchronous case,

we can easily show that supN (G,E) can be computed by

an algorithm shown in [8]. We use the following simple

procedure to compute supC(G,E).
Proc. C:

1) Input: G = (X, f(Σ), ξ, x0, Xm) and A =
(Y, f(Σ), η, y0, Ym) with Lm(A) = E.

2) Let G0 := G × A = (Z0 := X × Y, f(Σ), ζ0 :=
ξ × η, z0 := (x0, y0), Z

0
m := Xm × Ym).

3) Let

B(G0) := {(x, y) ∈ Z0|[(∃ς ∈ fuc(Σ))ξ(x, ς)! ∧
¬η(y, ς)!] ∨ [(∀s ∈ f(Σ)∗)ζ0(x, y, s) /∈ Z0

m]}

4) Iterate on k = 1, 2, · · · ,
4.a) h(B(Gk−1)) := {z ∈ Zk−1|(∃s ∈
fuc(Σ)

∗) ζk−1(z, s) ∈ B(Gk−1)}.

4.b) Let Ĝk = (Ẑk := Zk−1 − h(B(Gk−1)),
f(Σ), ζ̂k, z0, Ẑ

k
m := Zk−1

m ∩ Zk), where

ζ̂k(z, ς)! ⇐⇒ ζ̂k−1(z, ς)! ∧ (∀ς ′ ∈
f(Σ))[ζ̂k−1(z, ς ′) ∈ h(B(Gk−1)) ⇒ ς ∩Σc ⊂ ς ′∩Σc]

4.c) G̃k := (Ẑk, f(Σ), ζ̃k, z0, Ẑ
k
m), where

ζ̃k(z, ς)! ⇐⇒ (∀ς ′ ∈ f(Σ) ∩ 2ς) ζ̂k(z, ς ′)!

4.d) Gk := (Zk ⊆ Ẑk, f(Σ), ζk := ζ̃k|Zk , z0, Z
k
m :=

Zk∩Ẑk
m) is the largest trimmed automaton of G̃k, i.e.,

ζk is the restriction of ζ̃k over Zk, where

(∀z ∈ Ẑk) z ∈ Zk ⇐⇒ (∃s ∈ f(Σ)∗) ζ̃(z0, s) =
z ∧ (∃s′ ∈ f(Σ)∗) ζ̃k(z, s′) ∈ Ẑm

4.e) If for each z ∈ Zk there exists s ∈ f(Σ)∗ such that

ζk(z, s) ∈ Zk
m, then terminate and output Lm(Gk). �

Proc. C can be explained as follows. In step (2) we first

construct the concurrent product G0 of G and A, where A
is a recognizer of E. Then in step (3) we construct the set

B(G0) of all “bad” states, each of which, say state z, either

violates the controllability property in the sense that some

uncontrollable compound event is defined in G but is not

allowed in E, or violates the nonblocking property in the

sense that from z no marker state can be reached. In step

(4) we remove bad states in an iterative way. We first in step

(4.a) compute all states that can reach some bad states in

B(Gk−1) via some uncontrollable paths, thus, those states

become bad as well. Then in step (4.b) we separate these

bad states from good ones by removing the corresponding

transitions, and we also remove all collaterally disabled

events (which is aimed to satisfy condition (3) of concurrent

controllability). In step (4.c) we want to make sure that

condition (2) of concurrent controllability holds. Finally, in

step (4.d) we remove those unreachable and uncoreachable

states so that the outcome is a trimmed automaton Gk . If

Gk contains no bad states (as tested in step (4.e)), then the

algorithm terminates and outputs the marked behavior of the

last trimmed automaton Gk. Otherwise, the whole process

of step (4) is repeated. Notice that in each step we remove

some states and/or transitions from the last automaton, it is

clear that the algorithm terminates.

Proposition 5: Proc. C terminates to supC(G,E). �

1814

If f(Σ) := {{σ}|σ ∈ Σ}, namely all events are asyn-

chronous, then Procedure C is reduced to an algorithm for

the supremal controllable sublanguage of G with respect to

E in the RW asynchronous case. We can show that their

complexities are also similar. Because we have concrete

procedures to compute supC(G,E) and supN (G,E), we are

ready to present an algorithm for supCN (G,E).
Proc. CN:

1) Input: a plant G ∈ φ(Σ), a requirement E0 ⊆ f(Σ)∗.

2) Iterate on k = 1, 2, · · · ,

a) Compute Ek := supN (G, supC(G,Ek−1)).
b) If Ek = Ek−1 then terminate and output Ek. �

Proc. CN is self explained: in each round k we compute

the supremal concurrently controllable sublanguage first,

then the supremal normal sublanguage. If the outcome is

the same as the outcome of the previous round, then a fixed

point is reached, i.e., Ek is concurrently controllable and

normal. Otherwise, we continue the iteration.

Theorem 2: Proc. CN terminates to supCN (G,E). �

The complexity of Proc. CN is exponential and close

to the complexity of computing the supremal controllable

and normal sublanguage [8]. To illustrate the synthesis

procedure we go through a simple example, which consists

of two robots, Robot1 and Robot2, one 3-slot Buffer and

one Machine. Robots can fill the buffer one slot per each

action, which are denoted as 1F and 2F respectively. The

machine picks an item and clear a buffer slot (denoted by P),

then either outputs a good product (denoted as O) or returns

a defective product back to the buffer for rework (denoted

as R). The system is depicted in Figure 2. The component

Robot1

Robot2

Buffer Machine
1F

2F

P O

R

Fig. 2. Example 3: A simple manufacturing system

models are depicted in Figure 3, where ΣRobot1 = {1F},

ΣRobot2 = {2F} and ΣMachine = {P,O,R}. The overall

alphabet Σ is the union of all component alphabets. We

have Σo = Σ, namely all events are observable (for the

illustration purpose), and Σc = {1F, 2F, P}. We consider

full concurrency among all atomic events. The plant model

G, which is the concurrent product of all component models,

is also depicted in Figure 2. The requirement SPEC is

depicted in Figure 4, which specifies the following goals: (1)

the buffer cannot overflow; (2) the buffer cannot underflow;

(3) the machine cannot pick when the buffer is empty,

even though some robot may place an item simultaneously.

The final supremal concurrently controllable and normal

sublanguage CN (G,SPEC) is depicted in Figure 5, which

reveals the following control actions:

• When Buffer contains one item and Machine has picked

one item, {1F, 2F},{O, 1F, 2F},{R, 1F, 2F} shall not

occur, i.e., 1F , 2F shouldn’t be enabled simultaneously.

• When Buffer contains two items and Machine has

picked one item, only {O} and {R} shall happen, i.e.,

1F and 2F should be disabled simultaneously.

• When Buffer contains two items and Machine has not

picked one item, {1F, 2F},{P, 1F, 2F} shall not occur,

i.e., 1F and 2F shouldn’t be enabled simultaneously.

• When Buffer contains three items and Machine has not

picked one item yet, only {P} shall happen, i.e., 1F
and 2F should be disabled simultaneously.

If we use M(Buffer) to denote the number of occupied slots,

M(Machine)=1 or 0 to denote whether Machine holds an

item and T (iF)=1 or 0 (i = 1, 2) to denote whether atomic

event iF is enabled, then the above control actions can be

described in the following expressions:

M(Buffer) +M(Machine) = 2 ⇒ T (1F) + T (2F) ≤ 1

M(Buffer) +M(Machine) = 3 ⇒ T (1F) + T (2F) = 0

At this point we can see that there is clearly a one-to-one

correspondence between concepts for the concurrent case

and concepts for the well known RW asynchronous case.

The deep impact of replacing atomic events with compound

events is reflected in the concept of concurrent controllability,

which describes not only the well known unstoppable nature

of uncontrollable events but also the collateral event enabling

and disabling phenomena that only appear when compound

events are used. Bearing such a correspondence in mind we

have shown in Theorem 1 and Theorem 2 that concurrency

does not affect the centralized supervisor existence and

supervisory synthesis results.

IV. CONCLUSIONS

In this paper we have introduced the concept of compound

events to address the possibly unavoidable concurrent behav-

iors among atomic events. Then we have shown that relevant

concepts such as controllability, observability (normality)

and the supervisory control map can all be extended to

the concurrent case, and similar results about existence of

a supervisory control map and feasibility of synthesizing

supremal concurrently controllable and normal sublanguages

as those for the RW asynchronous case can be derived.

A concrete computational procedure has been provided to

compute such a supremal sublanguage.

REFERENCES

[1] A. Arnold. Finite transition systems: semantics of communicating
systems. Univ. Bordeaux-I, France, 1994.

[2] Y. Li, W. M. Wonham. On supervisory control of real-time discrete-
event systems. Information Sciences, 46(3):159-183, 1988.

[3] F. Lin, W. M. Wonham. On observability of discrete-event systems.
Information Sciences, 44(3):173-198, 1988.

[4] P.J. Ramadge, W.M. Wonham. Supervisory control of a class of
discrete event systems. SIAM J. Control and Optimization, 25(1):206–
230, 1987.

[5] I. Romanovski, P.E. Caines. On the supervisory control of multiagent
product systems. IEEE Trans. Autom. Control, 51(5):794-799, 2006.

[6] S. Takai, T. Ushio. Supervisory control of a class of concurrent discrete
event systems. IEICE Trans. Fundam., E87-A(3):850-855, 2004.

1815

{1F}

GRobot1

{R}

{P}

GMachine

{2F}

GRobot2

{1F},{2F},{1F,2F}{1F},{2F},{1F,2F}

{O}

{P},{P,1F},{P,2F},{P,1F,2F}

{O},{O,1F},{O,2F},{O,1F,2F}

{R},{R,1F},{R,2F},{R,1F,2F}

G=GRobot1xGRobot2xGMachine

Fig. 3. Example 3: Component models

{1F},{2F},{R} {1F},{2F},{R},{1F,2F,P} {1F},{2F},{R},{1F,2F,P}

{P} {P} {P}

{R,1F,2F}

{R,1F},{R,2F},{1F,2F} {R,1F},{R,2F},{1F,2F}

{P,1F},{P,2F} {P,1F},{P,2F} {P,1F},{P,2F}

Fig. 4. Example 3: Requirement SPEC

{1F},{2F} {1F},{2F} {1F},{2F}

{1F,2F} {1F,2F}

{P}
{P,1F},{P,2F}

{1F},{2F} {1F},{2F}

{O}

{O,1F},{O,2F},{R}

{1F,2F}

{R,1F,2F}

{R,1F},{R,2F},{O,1F,2F}

{O}

{O,1F},{O,2F},{R}

{R,1F},{R,2F}

{P,1F,2F}

{P}

{P,1F},{P,2F}

{O} {P}

Fig. 5. Example 3: CN (G, SPEC)

[7] S. Takai, T. Ushio. Supervisory control of a class of concurrent discrete
event systems under partial observation. JDEDS, 15(1):7-32, 2005.

[8] W. M. Wonham. Supervisory Control of Discrete-Event Systems.
Systems Control Group, Dept. of ECE, University of Toronto. URL:
www.control.utoronto.ca/DES, 2007.

[9] W.M. Wonham, P.J. Ramadge. On the supremal controllable sub-
language of a given language. SIAM J. Control and Optimization,
25(3):637–659, 1987.

1816

