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Abstract— Synthesis of optimal controllers achieving finite-
time consensus for a network of multiple agents described by a
fixed connectivity graph is considered. The solution procedure
involves posing a partially nested decentralized control problem
and converting it to a constrained convex optimization problem
invoking quadratic invariance. The dynamic feedback controller
thus synthesized optimizes a transient performance measure
and guarantees consensus within a minimal number of steps.

I. INTRODUCTION

Distributed coordination and consensus problems for

multi-agent systems have attracted a lot of attention from

the scientific community in recent years, mainly due to

their applications in several fields such as vehicle formation

control, study of flocking theory, and sensor networks [1].

Indeed, various conditions for asymptotic consensus under

fixed and time-varying networks have been developed [2]–

[6]. However, it was shown in [7] that, under noiseless

situations, a network with a fixed connectivity graph can in

fact achieve consensus to any function of the initial states of

the agents in a finite number of steps, and that this number

can be taken to be no larger than the number of agents in the

network and no smaller than a connectivity graph–specific

lower bound. In this paper, we focus on time-invariant

networks, and develop an optimal synthesis procedure for

linear dynamic feedback controllers that guarantee consensus

within the same number of steps as the least achievable

bound presented in [7].

Controller synthesis problems for multi-agent networks

under a fixed communication topology has been considered

in, e.g., [8]–[10] as well as [7]. In [8], sufficient conditions

for the convex but conservative synthesis of time-invariant

state feedback controllers guaranteeing asymptotic consensus

and minimizing the H2-norm of the closed-loop system were

formulated in the continuous-time domain. In [9], a linear

iteration scheme was proposed to achieve asymptotic consen-

sus under noiseless situations; it was also shown that the rate

of convergence can be maximized by solving a semidefinite

program minimizing the magnitude of the second largest

eigenvalue of the state matrix. In [10], finite-time consensus

was analyzed based on a continuous-time protocol. While

the results in [8], [9] are about asymptotic consensus, those

in [7], [10] deal with finite-time consensus. None of these

results, however, optimizes a transient performance measure

subject to time-optimal finite-time consensus.

In this paper, we first pose a finite-horizon stochastic

control problem for a network of agents described by a
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fixed connectivity graph under noiseless situations. While we

assume no disturbance inputs and no measurement noise, this

problem is stochastic because the initial states of the agents

are considered random. Then we present a convex solution

procedure to obtain a decentralized dynamic feedback con-

troller that guarantees finite-time consensus. The significance

of the presented synthesis procedure is twofold:

• The procedure guarantees finite-time, time-optimal con-

sensus to any linear function of the agents’ initial states;

• The procedure optimizes a transient performance mea-

sure given by the expected square sum of the deviation

of the agents’ states from the desired function of the

agents’ initial states on the way to consensus.

Due to the decentralization of information within the

network, synthesis of optimal controllers is potentially in-

tractable. It was shown in [11] that, for a very simple de-

centralized control problem under the linear-quadratic frame-

work, a nonlinear controller achieves better performance than

any linear controller and no tractable solution is known

in general. To guarantee the existence of a linear optimal

controller and convexity (and hence tractability) of the syn-

thesis problem, we endow a multi-agent network with a

partially nested information structure [12]. It is shown in [13]

that, as far as finite-horizon problems are concerned, partial

nestedness is equivalent to quadratic invariance [14], which

enables a change of variables that simplifies the problem

and yet preserves convexity and the underlying constraint on

information flow. Our results are obtained by exploiting the

link between these team-theoretic requirements and graph-

theoretic considerations.

Notation. The set of real numbers is denoted by R and the

set of nonnegative integers by N0. The Euclidean norm of

a vector x ∈ R
n is ‖x‖ =

√
xT x. The Frobenius norm of

a matrix A ∈ R
m×n is given by ‖A‖F =

√
trace(AAT),

where trace(·) denotes the sum of the entries on the diagonal.

If A = [a1 · · · an], where ai ∈ R
m for each i, then the vec-

torization of A is given by vec(A) = [aT
1 · · · aT

n ]T ∈ R
mn.

For Σ ∈ R
n×n, we write Σ > 0 to mean that Σ is symmetric

and positive definite. For matrices A and B of appropriate

dimensions, their Kronecker product and Hadamard product

(i.e., entry-wise multiplication) are denoted by A ⊗ B and

A ◦ B, respectively. If A1, . . . , Ak are arbitrary matrices,

then denoted by diag(A1, . . . ,Ak) is the block diagonal

matrix whose block (i, i) is Ai for i = 1, . . . , k. Denoted by

1m ∈ R
m is the vector with all its m entries equal to 1. The

n-by-n identity matrix is denoted by In, or simply by I if

its dimension is understood; similarly, m-by-n zero matrix

is denoted by 0m×n or simply by 0.
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II. PROBLEM FORMULATION

A. Information Structure

A network of agents with its communication topology

represented by a directed graph is a decentralized system

with a constraint on the information flow within the network.

In this subsection, we first present some ideas related to

directed graphs and their connectedness. Then we discuss

the information structural considerations that form the basis

of this work within the framework of sequential teams.

A directed graph G is defined as a pair (V, E), where V =
{1, . . . , n} denotes the set of nodes in G and E ⊂ V × V
denotes the set of directed edges in G, so that (i, j) ∈ E if

and only if there is a directed edge from node i to node j
in G. Whenever (i, j) ∈ E, node i is called the parent of

node j and node j a child of node i. For simplicity, we

assume (i, i) ∈ E for all i ∈ V . In the context of multi-agent

network, a node i ∈ V denotes agent i in the network, and

a directed edge (i, j) ∈ E indicates that agent i conveys its

decision and/or information to agent j in a unit time step.

The set of parents of a node j in G is called the set of

neighbors of agent j and is denoted by Nj . By assumption,

we have j ∈ Nj for all j ∈ V .

A node (or agent) i is said to be connected to node (or

agent) j in G if there is a directed path (i0, . . . , iK) ∈ V K+1

such that i0 = i, iK = j, and (ik, ik+1) ∈ E for every

k ∈ {0, . . . , K − 1}. The directed graph G is said to be

connected from node i ∈ V if node i is connected to all

other nodes in G or, equivalently, there is a subset of edges

Ẽ ⊂ E such that (V, Ẽ) forms a spanning tree with its

root at node i. The graph G is said to be connected if it is

connected from some node in G. If there is a unique i∗ ∈ V
such that G is connected from i∗, then agent i∗ is called the

leader and all the other agents the followers in the context of

leader-follower networks [2], [4], [6]. On the other hand, if

every agent has at least one neighbor aside from itself (i.e.,

Nj \ {j} 6= ∅ for each j ∈ V ), then the network is said to

be leaderless.

To guarantee our synthesis problem is convex and hence

potentially tractable, we endow a multi-agent network repre-

sented by a directed graph with a partially nested information

structure [12]. This implies that a parent must convey all

the information it has to its children at each time step. For

finite-horizon problems, partial nestedness is equivalent to

the quadratic invariance condition [13], [14], which imposes

a constraint on the interconnections between the sensors and

actuators that the agents are equipped with. As we will

see later, quadratic invariance enables a change of variables

which simplifies the problem and yet preserves its convexity

and the underlying constraint on information flow.

B. State-Space Model

In this subsection, we give a state-space model of a multi-

agent network whose communication topology is defined by

a fixed directed graph G = (V, E). For t ∈ N0 and (i, j)
∈ E, denoted by uji(t) ∈ R is the decision of agent i at

time t that affects the state of agent j at time t + 1. Then

the state xj(t) ∈ R of agent j at time t evolves to the next

state xj(t + 1) at time t + 1 according to

xj(t + 1) =
∑

i∈Nj

uji(t), t ∈ N0. (1)

Note again that j ∈ Nj for all j ∈ V . Let Ii = {i1, . . . , imi
}

denote the set of children of node i; that is, Ii is the set of

agents whose states are directly affected by the decision of

agent i. Note that i ∈ Ii for all i ∈ V by (1), and that mi is

the number of the children of node i. Assuming i1 < i2 <
· · · < imi

for i ∈ V and denoting m =
∑n

i=1
mi, define

u(t) = [u111(t) · · · u1m1
1(t)

· · · un1n(t) · · · unmnn(t)]T ∈ R
m.

Then, with

x(t) =
[
x1(t) · · · xn(t)

]T ∈ R
n,

we may write the state equation (1) as

x(t + 1) = Bu(t), (2)

where B = [bji] ∈ {0, 1}n×m is an appropriate binary

matrix. The initial state x(0) ∈ R
n is considered to be a

random vector with E[x(0)] = 0 and E
[
x(0)x(0)T

]
> 0.

The zero mean assumption simplifies the proof of the main

result and its relaxation is presented as a corollary to the

main result.

We consider dynamic feedback controllers of the form

xK(t + 1) = AK(t)xK(t) + BK(t)x(t),

u(t) = CK(t)xK(t) + DK(t)x(t),
(3)

where the matrices AK ∈ R
nK×nK , BK ∈ R

nK×n, CK ∈
R

m×nK , and DK ∈ R
m×n must respect the constraint

on information flow as dictated by the directed graph G.

However, to impose partially nested information structure,

we do not restrict the controller order nK and allow any

information about the overall state x(t) to be passed on from

agent i to agent j whenever the decision of agent i directly

affects the state of agent j (i.e., whenever the appropriate

entry in the jth row of B equals 1).

C. Problem Statement

Our notion of finite-time consensus is defined as follows:

The multi-agent network (2) with a random initial state x(0)
is said to achieve finite-time consensus at time N ∈ N0 if

there exists a function xf : R
n → R such that

x(t) = xf

(
x(0)

)
1n, t = N, N + 1, . . . ,

with probability one. The transient performance measure that

will be minimized subject to finite-time consensus over all

controllers K of the form (3) is given by

J(K) =

T−1∑

t=0

E ‖z(t)‖2
, (4a)
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where T is the control horizon, E(·) denotes the expectation

with respect to the probabilistic distribution of the initial

state x(0), and the error output z(t) takes the form of

z(t) = Bu(t) + Fx(0) = x(t + 1) + Fx(0) (4b)

for some matrix F ∈ R
n×n.

For the purpose of achieving consensus, we restrict our

attention to matrices F having same rows; that is, we have

F = [−α11n · · · −αn1n] for some α1, . . . , αn ∈ R.

Depending on whether the network is of leaderless or leader-

follower type, an additional condition needs to be imposed

on F. That is, if i ∈ V is not the root of any spanning tree

in G, then we must have αi = 0. This is because information

about xi(0) cannot be conveyed to every agent in the network

and consensus to a function of xi(0) is impossible in this

case. In particular, if agent i∗ is the leader in a leader-

follower network, then αi 6= 0 if and only if i = i∗. If

finite-time consensus is achieved at time N , then we have

x(t) = −Fx(0) =

(
n∑

i=1

αixi(0)

)
1n

for all t ≥ N , which means that z(t) = 0 for all t ≥
N − 1 (with probability one). Also, the directed graph G
is necessarily connected for this to hold for any F satisfying

the above condition.

Problem Statement. For a decentralized multi-agent net-

work (2) whose communication topology is described by a

connected directed graph, our objective is to synthesize a

controller K of the form (3), which minimizes the transient

performance measure (4) subject to finite-time consensus at

some time N ≤ T .

III. MAIN RESULT

In this section we present the main result with the sketch

of its proof postponed to the next section. Let G = (V, E) be

a directed graph, where V = {1, . . . , n}. Define the indicator

matrix M(G) = [m(G)ij ] ∈ R
n×n of G by

m(G)ij =

{
1 if (j, i) ∈ E;

0 if (j, i) /∈ E.

Since we assume each node in G has a self-loop, we have

that all the entries on the diagonal of M(G) equal one, and

that M(G) is the adjacency matrix of G.

Similarly, for any matrix A = [aij ], the indicator matrix

M(A) = [m(A)ij ] is defined by

m(A)ij =

{
1 if aij 6= 0;

0 if aij = 0.

Throughout the paper, we will use the abuse of nota-

tion m(G)t
ij to denote entry (i, j) of M(G)t.

For binary matrices A = [aij ] ∈ {0, 1}n×n, define

G(A) ∈ {0, 1}n2
×n as

G(A) =
[
G1 · · · Gn

]T
,

where each block Gi = [gi
jk] ∈ {0, 1}n×n is diagonal with

gi
jj = aij . Also, for binary matrices A = [aij ] ∈ {0, 1}n×n,

we define the matrix H(A) ∈ {0, 1}n2
×n2

as

H(A) =



H11 · · · H1n

...
...

Hn1 · · · Hnn


 ,

where each block Hij ∈ {0, 1}n×n is given by

Hij =

{
In if aij = 1;

0 if aij = 0.

Theorem 1: Consider the state-space model (2) of an n-

agent network, whose communication topology is defined

by a connected directed graph G = (V, E) with V =
{1, . . . , n}. Suppose the initial state x(0) ∈ R

n is a random

vector with E[x(0)] = 0 and E
[
x(0)x(0)T

]
= Σ > 0.

Suppose the matrix F in (4b) satisfies the following:

1) For each j ∈ V , the jth column of F is equal to −αj1n

for some αj ∈ R;

2) If j ∈ V is not the root of any spanning tree in G,

then αj = 0.

Let matrices Kt+1 ∈ R
m×n minimize

∥∥(F + BKt+1)Σ
1/2
∥∥2

F
(5)

subject to the convex sparsity constraints

M
(
Kt+1

)

= M
(
Kt+1

)
◦M

(
diag(1m1

, . . . ,1mn
)M(G)t) (6)

for t = 0, . . . , T − 1 separately. For each t, partition Kt+1

into Ki
t+1 ∈ R

mi×n, i ∈ V , so that

Kt+1 =
[
(K1

t+1)
T · · · (Kn

t+1)
T
]T

.

Then, whenever the control horizon T ≥ n, a decentralized

dynamic output feedback controller K that minimizes the

transient performance measure (4a) subject to finite-time

consensus at some time N ≤ n − 1 is given by (3) with

xK(0) = 0, and

AK(t) = H(M(G)), (7a)

BK(t) =

{
G(M(G)), t = 0;

0, t > 0,
(7b)

CK(t) = diag
(
K̃1

t+1, . . . , K̃
n
t+1

)
, (7c)

DK(t) =

{
K1, t = 0;

0, t > 0,
(7d)

where the jth column of K̃i
t+1, denoted by (K̃i

t+1)j , is

related to the jth column of Ki
t+1, denoted by (Ki

t+1)j ,

as follows:

(K̃i
t+1)j =





1

m(G)t
ij

(Ki
t+1)j , m(G)t

ij 6= 0;

0, m(G)t
ij = 0

for i, j ∈ V and for t = 0, . . . , T − 1.
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The sparsity constraint (6) guarantees that the commu-

nication topology defined by the graph G is respected by

the controller. The order of the controller in Theorem 1 is

equal to the square of the number of agents. This means that

the controller state xK(t) is partitioned into n subvectors of

length n for all t, and that the jth agent has direct access

to the jth subvector of xK(t) for each t and j. On the

other hand, the first agent generates the first m1 components

of u(t) for each t, the second agent the next m2 components

of u(t) for each t, and so on.

In (7), the structure of matrix BK(0) at time t = 0
indicates that, whenever the decision of agent j directly

affects the state of agent i (i.e., m(G)ij = 1), agent j also

conveys its own initial state to agent i. Agent i then updates

its own controller state to store the information thus received.

Similarly, the structure of AK(t) dictates that, whenever an

agent conveys its decision to another, it also conveys its

controller state (i.e., all the information it has received so

far). This way, the agents fully exploit the partially nested

information structure. Yet, matrices BK(t) and DK(t) being

zero for t > 0 indicates that, at optimum, the agents do not

convey unnecessary information. Finally, the block diagonal

structure of CK(t) indicates that the decision of an agent at

time t > 0 depends solely on the state of the controller that

the agent has direct access to.

The convex problem of minimizing (5) over all Kt+1 sub-

ject to (6) can be readily solved using, e.g., the vectorization

approach described in [14, Theorem 29]. In the next section,

we prove Theorem 1 and show that the time to consensus

equals N∗ under the optimal controller.

Corollary to Main Result

Let the matrices AK(·), BK(·), CK(·), and DK(·) be as

in (7). If µ = E[x(0)] 6= 0, then it is readily seen that an

optimal controller has the form (3) with the second equation

replaced by

u(t) = CK(t)xK(t) + DK(t)x(t) − BT(BBT)−1Fµ

and the initial controller state given by xK(0) = −G(In)µ.

IV. PROOF OF MAIN RESULT

In this section, we sketch a proof of Theorem 1. In the

first subsection, we invoke quadratic invariance to employ a

change variables and show the optimality part of the theorem.

Then a guarantee for time-optimal, finite-time consensus

is established in the second subsection. The proofs of the

lemmas presented in this section are omitted due to space

constraints.

A. Optimality

We first present an augmented version of the state-space

model, so that our finite-horizon stochastic control problem

is converted to an equivalent static optimization problem.

Define the augmented vectors X , U , and Z as

X =




x(0)
...

x(T − 1)


 , U =




u(0)
...

u(T − 1)


 , Z =




z(0)
...

z(T − 1)


 .

Then the augmented system has the state-space description

Z = P11x(0) + P12U ,

X = P21x(0) + P22U ,

where

P11 =




F

F
...

F


 , P12 =




B

B

. . .

B


 ,

P21 =




I

0
...

0


 , P22 =




0

B 0

. . .
. . .

B 0


 .

With E[(x(0))] = 0, the initial controller state xK(0) can

be taken to be equal to zero and a linear feedback control

law takes the form

U = KX
with K ∈ R

mT×nT . If I − P22K is invertible, we have

Z =
(
P11 + P12K(I− P22K)−1P21

)
x(0).

The cost function for the augmented system is then given as

T−1∑

t=0

E ‖z(t)‖2
= E ‖Z‖2

.

With E
[
x(0)x(0)T

]
= Σ > 0, this is equal to

∥∥(P11 + P12K(I − P22K)−1P21)Σ
1/2
∥∥2

F
. (8)

For a binary matrix A = [aij ] ∈ {0, 1}m×n, we define

the subspace S(A) of R
m×n as

S(A) = {S = [sij ] : aij = 0 implies sij = 0}
= {S ∈ R

m×n : M(S) = M(S) ◦M(A)}.
Since the information structure within the network is as-

sumed to be partially nested, the information of a parent

is allowed to be fully transmitted to its children at each

time step. This guarantees the existence of a linear optimal

controller minimizing the cost (8) subject to an appropriate

constraint on the sparsity pattern of K [12]. We partition K

into T 2 blocks Kij ∈ R
m×n, so that Kij denotes the linear

mapping that maps x(j − 1) to u(i − 1). By causality, it

immediately follows that Kij = 0 for all i < j. The

block Kii represents the mapping from x(i− 1) to u(i− 1).
Since the information from a parent takes a unit time step to

reach its children, it is evident that only xj(t) can directly

affect uij(t). Define

N11(t) = diag(1m1
, . . . ,1mn

) ∈ {0, 1}m×n

and

Nij = M(N11M(G)i−j) ∈ {0, 1}m×n

for i, j ∈ V with i ≥ j. Since the decision of an agent

depends only on the information available to its parents,

we have that Kii ∈ S(N11) and Kij ∈ S(Nij). Let N ∈
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R
mT×nT be the block lower triangular matrix whose block

(i, j) is given by Nij whenever i, j ∈ V with i ≥ j. Then

our partially nested decentralized control problem reduces

to the static optimization problem to minimize (8) subject to

K ∈ S(N).
Now we invoke the notion of quadratic invariance [14],

which enables us to perform a change of variables and

convert this problem into an equivalent convex problem.

Lemma 2: The following hold true:

1) The subspace S(N) is quadratically invariant under

P22; i.e., we have KP22K ∈ S(N) for all K ∈ S(N).
2) We have K ∈ S(N) if and only if Q = K(I −

P22K)−1 ∈ S(N).
Lemma 3: The problem of minimizing (8) over all K ∈

S(N) ⊂ R
mT×nT is equivalent to minimizing (5) over all

Kt+1 ∈ R
m×n subject to (6) for each t = 0, 1, . . . , T − 1

separately. The minimizers K and Kt+1, t = 0, . . . , T − 1
are related by

K =



K1 0 · · · 0

...
...

...

KT 0 · · · 0




with each block Kt = Qt1 ∈ S(Nt1) for t = 1, . . . , T .

Lemma 3 is a consequence of Lemma 2. The matrix K that

represents an optimal feedback controller is then obtained

based on Lemma 3. The fact that the state-space description

in (7) leads to this K can be shown by verifying that the

product CK(t)AK(t − 1) · · ·AK(1)BK(0) equals Kt+1.

This equality can be established exploiting the diagonal

structure of the blocks of BK(0) and AK(t).

B. Guarantee for Consensus

It remains to show that the optimal controller guarantees

finite-time consensus in an optimal number of steps. The

following lemma says that the number of “effective” com-

munication channels is nondecreasing in time t, and that the

number of such channels is maximum at time t = n−1. That

is, if there is no information flow from agent i to agent j at

some time t ≥ n − 1, then no information flow is allowed

from i to j at the next time step t + 1.

Lemma 4: The following hold true:

1) S(M(G)k) ⊂ S(M(G)k+1) for k ∈ N0.

2) M(M(G)k) = M(M(G)k+1) for k = n − 1, n, . . . .

The following lemma gives a relation between the infor-

mation flow within the network and the spanning trees within

the network’s connectivity graph.

Lemma 5: If node j ∈ V is the root of some spanning

tree in G, then m(G)n−1

ij 6= 0 for any i ∈ V .

Whenever G is connected from a node i ∈ V , define a

sequence of disjoint subsets Vi(0), Vi(1), . . . of V as Vi(0) =
{i} and

Vi(t + 1) =

{
j ∈ V \

t⋃

τ=0

Vi(τ) : mjk(G) = 1, k ∈ Vi(t)

}

whenever t ∈ N0. Then, under the partially nested infor-

mation structure, Vi(t) is the set of agents that will receive

1

3 

7

4

2 

6

8 

5 

Fig. 1. A leaderless network for Example 1.

the information about agent i’s initial state in exactly t time

steps. Let

Ni = min{t ∈ N0 : Vi(0) ∪ · · · ∪ Vi(t) = V }

if G is connected from i; otherwise, put Ni = 0. If αi = 0
for some i ∈ V , then the initial state of agent i needs not be

conveyed among the agents. Thus, the quantity

N∗ = max{Ni : αi 6= 0, i ∈ V }

is the minimum number of time steps required for a network

of n agents to reach consensus under any distributed protocol

[7, Corollary 1]. Clearly, N∗ ≤ n − 1 in general.

Lemmas 4 and 5 establish the following proposition, which

says that the controller of the form (3) with its coefficients

given in (7) makes the network reach consensus within N∗

steps. We will denote this controller by K∗.

Proposition 6: Suppose that the matrix F in (4b) satisfies

conditions 1) and 2) in Theorem 1, and that the control

horizon T ≥ n. Then controller K∗ achieves finite-time

consensus at time t = N∗, so that xi(t) =
∑n

j=1
αjxj(0)

for all i ∈ V and for all t ≥ N∗ (with probability one).

Since N∗ ≤ n − 1, Proposition 6 completes the proof of

Theorem 1.

V. NUMERICAL EXAMPLES

In this section, we present a couple of numerical exam-

ples. In all of the following examples, we assume that the

initial state vector has zero mean and identity covariance.

This assumption only affects the optimality of the transient

performance; it does not affect the time-optimality of finite-

time consensus.

1) Example 1: Consider the network of eight agents

whose connectivity graph is as shown in Fig. 1. This network

was used previously in, e.g., [9], [15]. A decentralized

controller of order 64, where each agent has direct access to

an eight-variable subvector of the controller state, has been

obtained based on Theorem 1 with F = − 1

8

[
18 · · · 18

]
.

Then an initial state x(0) is generated randomly and the

initial controller state xK(0) is set to zero. While the protocol

in [9] for this network achieved asymptotic consensus to the

average value of the initial states, finite-time consensus was

achieved within 6 steps in [15]. However, Fig. 2 shows that

our controller achieves consensus at t = 2, which is equal to

the minimum number of steps N∗ required for this network

to achieve consensus.
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Fig. 2. Finite-time consensus on the graph in Fig. 1.
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Fig. 3. A leader-follower network for Example 2.

2) Example 2: Consider the eight-agent leader-follower

network described by the graph in Fig. 3. In this example,

agent 1 is the leader and the objective of each follower is to

follow the state of the leader perfectly. An optimal controller

is obtained using F = −
[
18 0 · · · 0

]
. As shown in

Fig. 4, the network reaches finite-time consensus at t = 4.

VI. CONCLUSIONS

We considered a finite-time consensus problem for a multi-

agent network whose communication topology is defined by

a fixed directed graph, and presented an efficient controller

synthesis procedure for achieving optimal transient perfor-

mance while reaching consensus in a minimal number of

time steps. The tractability of this procedure was ensured

by invoking information structural concepts such as partial

nestedness and quadratic invariance. The initial states of the

agents were assumed random and unknown, but disturbance

inputs and measurement noise were assumed absent.

As is typical in decentralized stochastic control problems,

what is implicit in our problem formulation is that each agent

knows a priori what the underlying communication topology

is. This is a reasonable assumption as far as networks with

stationary information structure are concerned. However,

such an assumption is no longer valid for time-varying

networks. Thus, a potential future research direction is to

generalize the concepts of partial nestedness and quadratic

invariance to time-varying situations and provide a tractable

synthesis procedure for networks with time-varying graphs.
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Fig. 4. Finite-time consensus on the graph in Fig. 3.

In the presence of disturbance inputs and measurement

noise, on the other hand, the requirement of finite-time

consensus is not attainable, and one needs to settle for an

asymptotic result. Such a result will have to rely on a concept

of asymptotic consensus with added robustness requirements

against disturbances and noise, and thus requires further

investigation of existing analysis and synthesis conditions

for asymptotic consensus.
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