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Abstract — A vehicle stability control approach for four-
wheel independently actuated (4WIA) electric vehicles is 
presented.  The proposed control method consists of a higher-
level controller and a lower-level controller.  Due to the possible 
modeling error and parametric uncertainties, an adaptive 
control based higher-level controller is designed to yield the 
vehicle virtual control efforts. The lower-level controller 
allocates the required control efforts to the four in-wheel 
motors for generating the desired tire forces. An analytic 
solution on how to distribute the higher-level control efforts is 
given, when the actuators constraints are not considered.  
Simulations based on a high-fidelity, CarSim®, full-vehicle 
model show the effectiveness of the control approach. 

I. INTRODUCTION 

OUR wheel independently-actuated (4WIA) electric 
vehicle is a promising vehicle architecture due to its 

potentials in emissions and fuel consumption reductions [1].  
4WIA electric vehicles employ four in-wheel (or hub) 
motors to actuate the four wheels, and the torque and 
driving/braking mode of each wheel can be controlled 
independently.  Such an actuation flexibility together with 
the electric motors’ fast and precise torque responses may 
enhance the existing vehicle control strategies, e.g. traction 
control system (TCS), direct yaw-moment control (DYC), 
and other advanced vehicle motion/stability control systems 
[2][3][4][5][20][21].   

This paper considers the stability control of a 4WIA 
electric vehicle.  Many studies have been carried out on the 
vehicle stability control.  However, most of them are for the 
traditional vehicle architectures [6][7][8], not for the 4WIA 
electric vehicles.  Sakai [9] proposed a DYC system for a 
4WIA electric vehicle, but only the vehicle lateral motion 
was controlled. Besides, a half vehicle model which is a 
linear approximation of the vehicle dynamics was used.  A 
braking control method for electric vehicle was proposed in 
[10], the studied vehicle was driven by independent front 
and rear motors, not by in-wheel motors.  A stability control 
system for four-wheel driven hybrid electric vehicle was 
proposed in [11].  The vehicle was driven by a front motor 
and a rear motor, and the rear motor with an electro 
hydraulic brake was used to generate the required torque 
split for motion control. Thus the control problem is 
different from the one considered in this study. 
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The actuators in a 4WIA electric vehicle are more than 
those in a conventional vehicle.  This actuation redundancy 
makes the 4WIA electric vehicle control problem more 
challenging but rewarding.  The proposed control system 
consists of a higher-level controller and a lower-level 
controller.  Due to the possible modeling inaccuracies and 
vehicle parametric uncertainties, an adaptive controller is 
designed as the higher-level control to give the required 
virtual ground forces from the left and right sides of the 
vehicle.  The lower-level controller allocates the virtual 
ground forces from the higher-level controller to the four 
wheels.  Control allocation algorithms are generally used to 
distribute the higher-level control signals to the lower-level 
actuators [5][12].  However, the numerical optimization-
based control allocation algorithms usually require high 
computational efforts, thus may challenge the 
implementations in real-time.  In this study, an analytic 
solution of allocating the ground forces is given without 
explicitly considering the actuators’ constraints.   

The rest of the paper is organized as follows.  System 
modeling is presented in section 2.  The proposed vehicle 
control method is described in section 3.  Simulation results 
are given in section 4 followed by conclusive remarks. 

II. SYSTEM MODELING  

A schematic diagram of a vehicle model is shown in 
Figure 1.  Vehicle equations of motion in longitudinal, 
lateral, and yaw directions can be expressed as: 
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where ௫ܸ and ௬ܸ are the vehicle longitudinal speed and 
lateral speed, respectively,  Ω௭ is the yaw rate.  M  is the 
mass of the vehicle, ܫ௭ is the yaw inertia, and ܥ௔ is the 
aerodynamic drag term.  ܨ௑, ܨ௒, and ܯ௭ are the total 
forces/moment represented by the summation of the tire 
forces generated at all the four tires, and can be written as 
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(2) 

with ߪ being the front wheel steering angle.  Based on (2), 
(1) can be rewritten as 
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where ,
T

x xfl xfr xrl xrrF F F F F     
T
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are the tire longitudinal and lateral forces. The 
corresponding matrices are: 
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Note that the tire lateral forces are functions of the tire slip 
angles, which can be calculated as 
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(4) 

which means that the tire lateral forces 
yF  are also functions 

of the vehicle states.  So we can rewrite the vehicle model as 
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where xiB  and yiB  are the ith columns of xB  and yB , and 
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The wheel dynamics can be written as 

 _ ,i i xi i rollI T F F R     (6) 

where iT  is the in-wheel motor torque. _i rollF  is the tire 

rolling resistance, which can be calculated as 
 2

_ 1 ,i r o l l z i o x iF F V    (7) 

where o  is a coefficient in the order of 10ିଶ, 1  is a 

coefficient in the order of 10ି଼,  ziF  is the tire normal load 

and can be either calculated from the load transfer model or 
with the tire deflection [14].  The mechanical motion of a 
motor or a vehicle is much slower than a motor’s 
electromagnetic dynamics, implying that the dynamic 
response of the motor driver and in-wheel motor can be 
ignored.  Thus, the motor torque can be written as 

,i i iT k u (8) 
with iu  being the motor torque control signal, and ik  being 

the motor control gain.  As the motor torque can be obtained 
from the motor current or the motor control signal [16], one 
can assume that the motor torque is known. 

The tire slip ratio is defined as 
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with the speeds at the wheel centers being calculated by 
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Based on the above equation, the accelerations at the wheel 
centers can also be calculated. Global positioning system 
(GPS) and inertia measurement unit (IMU) have been 
proved to be an effective means of measuring vehicle states 
[17][18].  The wheel speeds can also be measured with a 
wheel speed sensors and the wheel angular accelerations can 
be estimated in real-time with a Kalman filter such as the 
one in [19]. Thus, in this study, we assume all of the 
required signals to be known. 

 
Figure 1.  Schematic diagram of a vehicle model. 

III. CONTROLLER DESIGN 

The higher-level and lower-level controller designs are 
presented in this section. 

A. Higher-level controller design 

In this paper, we consider the vehicle longitudinal speed 
and yaw rate control, and thus the vehicle model can be 
written as 
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It is known that there is a matrix N  which can make the 
following hold, 
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Define the virtual tire force as 
,v xF NF  (13) 
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with [ ]T
x zX V  .  One can see that the two virtual forces 

on the same side of the vehicle have the same effect on the 
vehicle longitudinal speed and yaw rate dynamics.  So the 
total control effort of the two wheels on the same side can be 
written as 
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The above vehicle model can be further written as 
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It indicates that the vehicle speed is controlled by vu , while 

the yaw rate error is compensated with the virtual force split

su .   

The higher-level controller is designed based on (17). 
Note that as soon as vu

 
and su

 
are obtained, the virtual 

forces _v rF and _v lF can be calculated from (18).  For the 

first channel, the following controller 
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with rxV being the reference speed and 1K  being a positive 

constant, can make the tracking error, x rx xe V V  , converge 

to 0 as t   .  However, due to the modeling error and 
parameter uncertainties, 1( )f X and M  may not be accurately 
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 which means that the error dynamics can be written as 
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 

   
 

1 1 1

1 2

_ 1

1 2

_1 1 1 1

1 2 1

ˆ
ˆ

1

ˆ

1 1 1 1

ˆ ˆˆ2
.1 1

ˆˆ v s

x v sx v

f f f
MM

x x M

u fM MM
x x vM M M

e ue Muf f f fMM
x x M M M

V e e

e K e f u f f

K e e f

 

 

  



 

  

       

       
 

  

 

    

 

 



 
(24) 

If the following holds 
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and assuming that the upper bound of 1f̂  has the same 

bound of 1f , the time derivative of 1V  can be written as 
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where 1 max| |f  is the upper bound of 1| |f , 1_minf  and 1_maxf  

are the upper and lower bounds of 1f , respectively.   One 

can see from (26) that if we do not use the supervisory 
control, 
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Note that the control error xe  can be arbitrarily small as 1K  

can be chosen to be arbitrarily large.  If | |x xe e  with xe
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where 10V  is the initial value of 1( )V t .  Based on (30), one 

has 
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where c is a positive constant.  Note that when | |x xe e , all 

the signals on the right side of (22) are bounded, so xe L .  

Thus, based on the Barbalat’s Lemma, it can be concluded 
that ݁௫ will tend to converge to zero until x xe e  is satisfied 

[13][15].  Thus, the final controller can be written as 
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The adaption law (25) may cause the control signals grow 
out of the boundary. Thus the following parameter update 
law modifications are introduced as 
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where 1 and 2 are positive constants and 
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Redefine the Lyapunov function candidate (23) as 
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Based on (35) and (36), the time derivative of the above 
Lyapunov function candidate is 
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(40) 

Based on (36) and (37), if 1_ min 1 1_ maxf f f  , the following 

holds 

1 1 1 1
ˆ , .xf f f e   (41) 

And if 1 1_ minf f or 1 1_ maxf f , we have 
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which means the following will always hold 
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Similarly, one has 
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So (40) can be rewritten as 
 1 1 1 _

1

2
.1_ 1

x v sf f f e u
new x M

V K e 


   

  (45) 

Based on (36), one can see that if 1f  tends to move out of its 

boundary 1_ min 1_ max[ , ]f f , the feedback term 1 1 1
ˆ( )f f  will 

pull 1f  back to 1f̂ .  Thus 1f  is also bounded.  In order to 
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1
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be redesigned as 
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Thus, the final modified control law for the first channel is 
given by (35), (36), (37), (38), and (46).   

If we define the Lyapunov function candidate for the 
second channel as 
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where rz ze
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   , 3  and 4 are positive constants and 
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Here, 3_minf  and 3_maxf  are the upper and lower bounds of 

3f , respectively.  _minzI  and _maxzI  are the lower and upper 

bounds of zI .  Similar to the controller design for the first 

channel, the control law for the second channel can also be 
designed as 
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(51) 

where 3 max| |f  is the upper bound of 3| |f .  

B. Lower-level controller design 

The lower-level controllers operate the four in-wheel 
motors to give the desired tire forces.  Define the cost 
function as 

2 2 2 2 ,fl xfl fr xfr rl xrl rr xrrJ w F w F w F w F    (52) 
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where iw  is the weighting factor for each tire force.  Based 

on (13), the relationship between the actual tire force and the 
virtual tire force can be written as 

1
x vF N F  (53) 
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Rewrite (15) as 
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Based on (53) and (54), the cost function (52) can be written 
in a function of a and b as 
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weighting factors to be the same, the following will hold 
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Based on (56), one has 
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 which means that (55) has a global minimal point when 
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Note that when the steering angle is zero, 0.5a b  , which 
means that the driving force will be equally distributed to the 
left or right sides of the vehicle.  Also note that the 
constraints of the tire forces are not explicitly considered in 
the above optimization method.  

The tire force model and the tire-road friction coefficient 
(TRFC) will be needed if the tire force is controlled by slip 
ratio feedback.  However, it is usually difficult to get an 
accurate tire model and TRFC.  In this study, the motor 
control signal for each motor is calculated from the wheel 
dynamics and can be written as 

 _ _
,_

i xi desire i roll

i

I F F R

i m k
u

  


  (59) 

where _i mu  is the motor control signal, _xi desireF
 

is the 

desired tire force calculated from (53), (54), and (58).  Due 
to the possible measurement noises in i , i  cannot be 

directly calculated from i  by taking the derivative of i  , 

so the wheel angular accelerations need to be 

estimated/filtered before calculating the motor control signal 
in practice.  Note that if the required tire force is greater than 
the maximal value, some skid/spin controller can be used to 
control the slip ratio such as the maximal tire force can be 
provided [9][10].  

IV. SIMULATION STUDIES 

Two simulation cases based on a high-fidelity, full-
vehicle model constructed in CarSim® were conducted. The 
vehicle parameters in the simulations are taken from an 
actual prototyping 4WIA electric vehicle with in-wheel 
motors developed in the authors’ group at The Ohio State 
University [16].      

A. Acceleration on a Split-μ Road  

In this simulation, a split-μ road was used and the vehicle 
steering angle was set as zero. At 1s the vehicle ran onto the 
split-μ road surface.  The desired vehicle speed was 
accelerated from 50km/h to 62km/h in 6 seconds.  The 
TRFC on the left side of the road was set as 0.8 and the right 
side TRFC was chosen as 0.1.    

 
Figure 2.  Vehicle trajectories in the split-μ simulation. 

The vehicle global trajectories are compared in Figure 2.  
To better show the effectiveness of the proposed controller, 
the performance of an uncontrolled vehicle which runs on 
the same road was also compared.  One can see the proposed 
control system can control the vehicle well, while the 
uncontrolled vehicle failed to follow the references as the 
right side wheels failed to provide the required tire forces.  
The vehicle yaw rates are shown in Figure 3.  One can see 
that the controlled vehicle could follow the reference very 
well.  

 
Figure 3.  Yaw rates in the split-ߤ simulation. 
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B. J-turn on Low-μ

 

Road 

In this simulation, the vehicle ran at a constant speed of 
70km/h on a low μ road.  The TRFC was set to 0.4 and a 
counter-clockwise turn was introduced at 1.1s to make the 
front wheel steering angle be 1.6 degree.   As the designed 
controller does not depend on the vehicle parameters, we set 
the initial vehicle mass in the controller as 600 kg, which is 
different to the actual vehicle mass.  The vehicle yaw inertia 
initial value in the controller was set as 300 kg.m2, while the 
real yaw inertia in the CarSim® model was 447.6 kg.m2. The 
vehicle yaw rates are compared in Figure 4.  One can see 
that the controlled vehicle followed the reference well, while 
the yaw rate of the uncontrolled vehicle diverted from the 
reference very fast.  The vehicle trajectories after 4s are 
shown in Figure 5, where we can see again that the stability 
of the controlled vehicle was ensured.   

 

Figure 4.  Yaw rates in the J-turn simulation. 

      

Figure 5.  Vehicle trajectories in the J-turn simulation (red: 
uncontrolled vehicle; blue: controlled vehicle). 

V. CONCLUSIONS 

A vehicle stability control system for a 4WIA electric 
vehicle is presented.   The proposed control method does not 
need the accurate vehicle parameters or tire force models but 
still can control the vehicle to follow the desired trajectories.  
An analytic solution was found to distribute the required 
control efforts from the higher-level controller to the four 
wheels without explicit considerations on actuator 
constraints.  Simulations using a high-fidelity, CarSim®, 
full-vehicle model show the effectiveness of the control 
approach.  Tire force constraints are not explicitly 
considered in the proposed tire force distribution design and 
will be incorporated in the future study. 
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