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Abstract— This paper studies the problem of simultaneous
input and state estimation for a nonlinear dynamical system.
A Bayesian paradigm is proposed to provide statistical deriva-
tion of joint input and state estimators. Using the Bayesian
paradigm, a Maximum a Posteriori (MAP) based estimation
scheme is developed as a joint estimator. The scheme involves
nonlinear MAP optimization, which is addressed by a clas-
sical Gauss-Newton method. The effectiveness of the proposed
scheme is illustrated via a simulation based study on ocean flow
field estimation using submersible drogues that can measure
position and acceleration intermittently.

I. INTRODUCTION

For linear systems, the Kalman filter (KF) is debatably

the most popular technique for state estimation [1]. A large

variety of systems involve nonlinearities, and the extensions

of the KF to nonlinear systems still form a major family of

solutions. Among them the extended Kalman filter (EKF) is

used widely for its computational efficiency and easiness to

implement [1]. Nevertheless, it may have poor performance,

because the introduced linearization is only valid around the

current operating condition of the state estimate. To reduce

the linearization error, the iterated extended Kalman filter

(IEKF) refines the procedure by using the most recent state

estimate iteratively [1], [2]. The IEKF update was found

in [3] to be equivalent to applying the Gauss-Newton method

to approximately calculating a maximum likelihood estimate.

The EKF and IEKF uses both input and output observa-

tions to estimate the state of a nonlinear system. In this paper,

we are interested in extending the notion of state estimation

to the situation where the input uk is also unknown, and

investigate the problem of nonlinear simultaneous input and

state estimation (N-SISE). Consider the nonlinear system of

the form

Σ :

{

xk+1 = f(uk, xk) (1a)

yk = h(uk, xk) (1b)

where k ∈ N
+ is the time index, u ∈ R

m is the input vector,

x ∈ R
n is the state vector, y ∈ Rp is measurement vector.

The mappings f : Rm × R
n → R

n and h : Rm × R
n →

R
p define the state transition and measurement functions,

respectively; both f and h have continuous partial derivatives

of the first order. The N-SISE problem is: For the system

Σ in (1), given the measurements {y0, y1, · · · , yk}, how to

obtain the estimates of uk and xk? Our motivation comes
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from the problem of velocity estimation for underwater ocean

flow based on a submersible drogue that can only measure

position and acceleration intermittently [4].

State estimation with unknown input has been studied for

systems where the input is unmeasurable, see [5], [6], [7],

[8] and references therein. More useful for understanding

the system behavior, simultaneous input and state estimation

(SISE) has been given much emphasis in recent years.

Most of the works consider linear discrete-time systems,

with solutions derived from existing estimation techniques.

To mention them, the KF is used in [9], moving horizon

estimation (MHE) in [10], H∞ filtering in [11], sliding mode

observer in [12], and minimum variance unbiased estimation

(MVUE) in [13], [14]. For nonlinear systems, N-SISE is

discussed in [15], [16], but the attention is restricted to only

a special class of systems consisting of a nominally linear

part and a nonlinear part.

We reformulate the N-SISE problem using statistical anal-

ysis and derive a Bayesian framework for estimation. From a

statistical point of view, the state variables and measurements

form two stochastic processes, the propagation of which

depends on the state space equations. The Bayesian approach

based on analysis of probability density distributions has

been effectively used for nonlinear state estimation [1].

Different from its standard counterpart in the literature, the

Bayesian paradigm proposed in this work incorporates not

only the state but also the unknown input. This provides

a sound theoretical basis for the ensuing design of the N-

SISE scheme. With the derived Bayesian paradigm and under

Gaussian distribution assumptions, a Maximum a Posteriori

(MAP) cost function is established, which leads to the

MAP estimates of the input and state. As the nonlinearity

hinders analytical calculation of the estimates, a Gauss-

Newton method will be used for approximate calculation [3],

[17].

The remainder of this paper is organized as follows. A

Bayesian framework for N-SISE is developed in Section II.

Section III proceeds to derive a scheme for input and state

estimation under the proposed Bayesian framework. The

scheme yields nonlinear MAP estimates of the input and

state, employing the Gauss-Newton method for computation.

An application study on the drogue based flow field estima-

tion is described in Section IV. Finally, Section V concludes

the paper.

II. BAYESIAN PARADIGM

Bayesian statistics has historically provided a significant

framework for developing the estimation schemes such as
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the classical KF [18] and particle filter [1]. A Bayesian

estimator estimates the probability density function (pdf) of

unknown variables conditioned on available measurements.

Denote Yk = {y0, y1, · · · , yk}. It is obvious that Yk contains

all measurement information available until time instant k. In

our case, both the input uk and state xk are to be estimated

from Yk. In fact, they can be estimated in appropriate

ways, once the joint conditional pdf p(uk, xk|Yk) is obtained

for each time instant k. The goal here is to sequentially

compute p(uk, xk|Yk) from p(uk−1, xk−1|Yk−1). This can

be accomplished in a two-step procedure of prediction and

update.

Prediction is to determine p(xk|Yk−1) – the a priori

conditional pdf of xk given measurements up until time

instant k − 1. By the Chapman-Kolmogorov equation [19],

we have

p(xk|Yk−1) =

∫ ∫

p(xk|uk−1, xk−1, Yk−1)

· p(uk−1, xk−1|Yk−1)duk−1dxk−1.

It is noted that

p(xk|uk−1, xk−1, Yk−1) = p(xk|uk−1, xk−1)

since xk entirely depends on uk−1 and xk−1, as the state

equation (1a) is Markovian with order one. Hence it follows

that

p(xk|Yk−1) =

∫ ∫

p(xk|uk−1, xk−1)

· p(uk−1, xk−1|Yk−1)duk−1dxk−1

(2)

where the pdf p(xk|uk−1, xk−1) can be determined from

(1a).

At time instant k, the measurement yk is usable to up-

date p(xk|Yk−1) to obtain the a posteriori conditional pdf

p(uk, xk|Yk). To proceed further, we make the following

assumption:

(A1) {uk} is a white process, independent of x0, {wk}

and {vk}

where ‘white’ means that uk and ul are independent random

variables for k 6= l. Unknown to us, uk may assume all pos-

sible values. Hence a natural way to address the estimation

of uk is to treat it as a random variable. We adopt (A1) to

disentangle uk from the state and measurement processes.

From (A1), it can be easily seen that uk is independent of

xk and Yk−1.

Using the Bayes’ rule repeatedly, we obtain

p(uk, xk|Yk) =
p(uk, xk, Yk)

p(Yk)

=
p(uk, xk, yk, Yk−1)

p(yk, Yk−1)

=
p(yk|uk, xk, Yk−1)p(uk, xk|Yk−1)p(Yk−1)

p(yk|Yk−1)p(Yk−1)

=
p(yk|uk, xk, Yk−1)p(uk, xk|Yk−1)

p(yk|Yk−1)
.

Note that

p(yk|uk, xk, Yk−1) = p(yk|uk, xk) (3)

p(uk, xk|Yk−1) = p(xk|Yk−1)p(uk). (4)

Here, (3) is due to the fact that yk entirely depends on uk and

xk, and (4) is due to (A1), which indicates uk’s independence

from xk and Yk−1. Consequently,

p(uk, xk|Yk) =
p(yk|uk, xk)p(xk|Yk−1)p(uk)

p(yk|Yk−1)

∝ p(yk|uk, xk)p(xk|Yk−1). (5)

To clarify, p(yk|uk, xk) can be determined from (1b),

p(xk|Yk−1) can be obtained in the prediction procedure.

Since p(uk) is unknown to us, it can be neglected in

the estimation procedures and treated like p(yk|Yk−1) as a

proportionality coefficient.

Sequentially updating (2) and (5) yields the Bayesian

solution to estimating the input and state simultaneously.

The proposed Bayesian paradigm describes a statistics based

framework for nonlinear input and state estimation, within

which different methods can be derived potentially. Guided

by the paradigm, we would establish an MAP based scheme

for input and state estimation.

III. ITERATED SIMULTANEOUS INPUT AND STATE

ESTIMATION

Let ûk be the estimation of uk, x̂−

k be the a priori estimate

of xk given Yk−1, and x̂+
k be the a posteriori estimate of xk

given Yk. We assume multivariate Gaussian distributions for

the following conditional pdf’s, i.e.,

(A2) p(uk, xk|Yk) ∼ N

([

ûk

x̂+
k

]

,

[

Pu
k Pux

k

(Pux
k )T P x+

k

])

(6)

(A3) p(yk) ∼ N (h(uk, xk), Rk)) (7)

(A4) p(xk|Yk−1) ∼ N
(

x̂−

k , P
x−
k

)

(8)

(A5) uk is a Gaussian random variable with no a priori

knowledge available,

where the covariance matrices, Pu
k , P x+

k ,

[

Pu
k Pux

k

(Pux
k )T P x+

k

]

,

Rk and P x−
k , are symmetric positive definite (SPD) for each

time instant k.

Under the assumptions (A2)-(A5), an N-SISE scheme is

to be developed by MAP estimation within the Bayesian

framework in Section II. In other words, the scheme is

Bayesian for multivariate Gaussian distributions.

A. Prediction

To develop the state prediction procedure, let us begin with

(2). Define

x̂−

k = argmax
xk

p(xk|Yk−1). (9)

The above maximization requires the knowledge of

p(xk|uk−1, xk−1) and p(uk−1, xk−1|Yk−1). We see that the

assumption (A1) indicates

p(uk−1, xk−1|Yk−1) ∼ N

([

ûk−1

x̂+
k−1

]

,

[

Pu
k−1 Pux

k−1

(Pux
k−1)

T P x+
k−1

])

.

(10)
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Furthermore, we approximately have

p(xk|uk−1, xk−1) ∼ N
(

f(ûk−1, x̂
+
k−1),Wk−1

)

(11)

where Wk−1 is given in (12). The result in (11) follows

from the assumption (A1) and the first-order Taylor series

expansion of f(uk−1, xk−1) about (ûk−1, x̂
+
k−1) in (13).

Substituting the pdf’s of Gaussian distributions in (10) and

(11) into (2), we obtain

p(xk|Yk−1) ∼ N
(

f(ûk−1, x̂
+
k−1),Wk−1

)

which is maximized by

x̂−

k = f(ûk−1, x̂
+
k−1) (14)

associated with the prediction error covariance Wk−1. How-

ever, Wk may suffer singularity in computation, so we

consider using the following prediction covariance instead

P x−
k = Wk−1 +Qk−1 (15)

where Qk is designer-specified and adjustable as Rk.

The equations (14) and (15) constitute the prediction

formula together, computing the predicted values of of the

state and error covariance, respectively. The computation at

time instant k utilizes only ûk−1 and x̂+
k−1, thus cutting

down on storage of the past data to reduce computational

complexity.

B. Update

The next step is to update x̂−

k to x̂+
k with the newly arriving

measurement yk. Define
[

ûk

x̂+
k

]

= arg max
uk,xk

p(uk, xk|Yk). (16)

The approach used in [3], [17] can be extended to the above

maximization problem to obtain ûk and x̂+
k , by applying the

Gauss-Newton method for approximating MAP estimates.

Define p(uk, xk|Yk) as the MAP cost function L(uk, xk),
i.e.,

L(uk, xk) := p(uk, xk|Yk)

which can be rewritten as in (17). Note that λ in (17)

combines all the constants.

It is easier to deal with the logarithmic cost function

ℓ(uk, xk) = lnL(uk, xk) = δ + rT(uk, xk)r(uk, xk) (18)

where δ = lnλ and

r(xk, uk) =

[

R
−

1
2

k (yk − h(xk, uk))

(P x−
k )−

1
2 (xk − x̂−

k )

]

.

Then by (16), the input estimate ûk and state estimate x̂+
k

can be equivalently defined as
[

ûk

x̂+
k

]

= arg max
uk,xk

ℓ(uk, xk). (19)

The MAP estimation problem in (19) requires nonlinear

optimization, which makes the derivation of an analytical

solution difficult. However, it can be numerically solved by

the Gauss-Newton method if treated as a nonlinear least

squares problem.

Given x̂−

k at time instant k, the Gauss-Newton method

gives the input estimate ûk and updated state estimate x̂+
k ,

by defining the sequences of approximations û
(i)
k and x̂

+(i)
k

as the updated estimate of ûk and x̂+
k , where (i) denotes the

iteration step.

The iterated computation is shown in (20), where the initial

guesses û
(0)
k = 0 and x̂

+(0)
k = x̂−

k . The iteration process

continues until the iteration step (i) reaches the preselected

maximum imax or the difference between two consecutive

iterations is less than than a preselected value, with û
(i)
k and

x̂
+(i)
k obtained in the final iteration assigned to ûk and x̂+

k ,

respectively.

The iteration process in (20) refines the input and state

estimates continually by re-evaluating the joint estimator

around the latest estimated input and state operating point.

Though it demands more computational power, the iteration

based refinement enhances not only the estimation perfor-

mance but also the robustness to nonlinearities.

The error covariance associated with (20) is equal to

the inverse of the Fisher information matrix, as common

in MAP estimators under Gaussian distributions [20]. The

Fisher information matrix I is defined as

I(uk, xk) =

[

Iu Iux

(Iux)
T Ix

]

= E

([

▽
T
u ℓ

▽
T
x ℓ

]

[▽uℓ ▽xℓ ]

)

followed by
[

Pu
k Pux

k

(Pux
k )

T
P x+
k

]

= I−1(ûk, x̂
+
k ). (21)

Using results in matrix analysis, we give the explicit

formulae for the gradients:

▽ur =

[

−R
−

1
2

k ▽uh(uk, xk)
0

]

▽xr =

[

−R
−

1
2

k ▽xh(uk, xk)
(

P x−
k

)

−
1
2

]

▽uℓ = rT▽ur

= (yk − h(uk, xk))
T
R−1

k ▽uh(uk, xk)

▽xℓ = rT▽xr

= (yk − h(uk, xk))
T
R−1

k ▽xh(uk, xk)

+
(

xk − x̂−

k

)T (

P x−
k

)

−1
.

Hence I(uk, xk) is given by (22).

Within the proposed Bayesian framework, we have thus far

developed a MAP based N-SISE scheme for the nonlinear

system Σ in (1). It includes the prediction procedure (14)-

(15) and the update procedure (20)-(22), while the latter is

iteratively implemented. The proposed algorithm is summa-

rized below.

IV. APPLICATION TO FLOW FIELD ESTIMATION

A. The Drogue Based Flow Field Estimation

The buoyancy-controlled drogue [4] (Fig. 1(a)) allows

submergence up to a depth of 150 feet. We consider an

arbitrary 2D flow field vd(z, t) (Fig. 1(b)) for the sake

of simplicity, since the results to be obtained are easily

6015



Wk−1 ≈ [▽uf(ûk−1, x̂
+
k−1) ▽xf(ûk−1, x̂

+
k−1) ]

[

Pu
k−1 Pux

k−1

(Pux
k−1)

T P x+
k−1

] [

▽
T
u f(ûk−1, x̂

+
k−1)

▽
T
x f(ûk−1, x̂

+
k−1)

]

(12)

f(uk−1, xk−1) = f(ûk−1, x̂
+
k−1) + [▽uf(ûk−1, x̂

+
k−1) ▽xf(ûk−1, x̂

+
k−1) ]

[

uk−1 − ûk−1

xk−1 − x̂+
k−1

]

+O(·) (13)

L(uk, xk) = λ · exp

[

(yk − h(uk, xk))
T
R−1

k (yk − h(uk, xk)) +
(

xk − x̂−

k

)T
(P x−

k )−1
(

xk − x̂−

k

)

]

(17)

[

û
(i+1)
k

x̂
+(i+1)
k

]

=

[

û
(i)
k

x̂
+(i)
k

]

−

[[

▽
T
u r(û

(i)
k , x̂

+(i)
k )

▽
T
x r(û

(i)
k , x̂

+(i)
k )

]

[▽ur(û
(i)
k , x̂

+(i)
k ) ▽xr(û

(i)
k , x̂

+(i)
k ) ]

]

−1

·

[

▽
T
u r(û

(i)
k , x̂

+(i)
k )

▽
T
x r(û

(i)
k , x̂

+(i)
k )

]

r(û
(i)
k , x̂

+(i)
k ) (20)

I(uk, xk) =

[

▽
T
uh(uk, xk)R

−1
k ▽uh(uk, xk) ▽

T
uh(uk, xk)R

−1
k ▽xh(uk, xk)

▽
T
xh(uk, xk)R

−1
k ▽uh(uk, xk) ▽

T
xh(uk, xk)R

−1
k ▽xh(uk, xk) +

(

P x−
k

)

−1

]

(22)

Algorithm 1: The N-SISE Algorithm

Initialize: x̂+
0 = E(x0), P

x+
0 = p0I , where p0 is a large

positive value ;

for k = 1 to N do
Prediction:

State prediction via (14);

Computation of approximate prediction error

covariance via (15) ;

Update:

Initialize: i = 0, û
(0)
k = 0, x̂

+(0)
k = x̂−

k ;

while i < imax do
Gauss-Newton based joint input and state

estimation via (20) ;

i = i+ 1;

end

ûk = û
(imax)
k , x̂+

k = x̂
+(imax)
k ;

Computation of approximate joint estimation error

covariance via (21)-(22);

end

Note: An alternative for the stop condition in the iteration

process is that the difference between two consecutive

iterations is less than some preselected tolerance level.

generalizable to the 3D case. As shown in Fig. 1(b), vd(z, t)
is along the d-direction and assumed time-stationary and

dependent only on the drogue depth z. The dynamics of

the drogue within the flow field can be described by the

differential equation [21]

md̈(t) = c ·
(

vd(z, t)− ḋ(t)
)

·
∣

∣

∣
vd(z, t)− ḋ(t)

∣

∣

∣
(23)

(a) (b)

Fig. 1. (a) Schematic view of the buoyancy-controlled drogue; (b) flow
field estimation using the drogue.

where m is the constant rigid mass, c is the drag coefficient

that quantifies the drag or resistance applied on the drogue

in the flow field.

For (23), two state variables x1(t) := d(t) and x2(t) :=
ḋ(t) can be defined. Further, vd(z, t) can be viewed as the

unknown external input into the drogue dynamics, naturally

implying the definition of u(t) := vd(z, t). Then (23) can be

transformed into the state space equations
{

ẋ1(t) = x2(t)

ẋ2(t) =
c
m

· sign (u(t)− x2(t)) · (u(t)− x2(t))
2 (24)

Its discrete-time representation, by assuming zero-order hold

for the input variable u(t) and using finite difference to

approximate the differentiation over half open intervals

[kT, (k + 1)T ), can be written as
{

x1,k+1 = x1,k + T · x2,k

x2,k+1 = x2,k + T · c
m

· (uk − x2,k) · |uk − x2,k|
(25)
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where k ∈ N
+, uk := u(kT ) and xi,k := xi(kT ) for i =

1, 2.

The drogue features N -periodical (N ∈ N
+) submerging-

surfacing depth pattern – after submerging, it moves under-

water for a duration of (N − 1)T , and then surfaces for

T . No matter whether it is underwater or on the surface,

the depth zk := z(kT ) and acceleration d̈k := d(kT ) are

measurable; however, the position dk := d(kT ) can only be

measured when it is surfaced. Thus multi-rate measurements

arise, with the fast one yk := d̈k and slow one ηk := dk
given by, respectively,

{

yk = c
m

· sign (uk − x2,k) · (uk − x2,k)
2

ηkN = x1,kN .
(26)

Combining (25) and (26), we obtain the state space model

to describe the dynamics of the drogue:

Σm :







xk+1 = f(uk, xk)
yk = h(uk, xk)
ηkN = ϕ(ukN , xkN )

(27)

where the functions f , h and φ can be determined contex-

tually. The model is nonlinear, multi-rate and with unknown

input. Multi-rate sampling induces cumbersomeness in usage

of the measurement data. It is thus desirable to use the lifting

technique to transform the multi-rate system into a single-

rate high-order one [22]. The idea of ‘lifting’ a system was

also used in [23] to design Newton observer for nonlinear

systems.

Define the lifted input, state and measurement vectors,

respectively, as

ũk := [uT
(k−1)N+1 uT

(k−1)N+2 · · · uT
kN ]

T

x̃k := x(k−1)N+1

ỹk := [ yT(k−1)N+1 yT(k−1)N+2 · · · yTkN ηTkN ]
T

and define the lifted state transition and measurement func-

tions, respectively, as

F (x̃k, ũk) := fukN ◦ fukN−1 ◦

· · · ◦ fu(k−1)N+1(x(k−1)N+1)

H(x̃k, ũk) :=













hu(k−1)N+1(x(k−1)N+1)
hu(k−1)N+2 ◦ fu(k−1)N+1(x(k−1)N+1)

...

hukN ◦ · · · ◦ fu(k−1)N+1(x(k−1)N+1)
ϕukN ◦ · · · ◦ fu(k−1)N+1(x(k−1)N+1)













.

Then it is straightforward to obtain the equivalent lifted

model as follows:

Σs :

{

x̃k+1 = F (ũk, x̃k)
ỹk = H(ũk, x̃k)

. (28)

The proposed N-SISE scheme would be implemented to

the system Σs in (28) to acquire the information estimates

of not only the velocities of the flow field (unknown input)

but also the motion of the drogue (state variables).
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Fig. 2. Depth profile assumed for the drogue.

B. Numerical Simulation

Let the flow field vd(z, t) be with parabolic velocity

distribution, i.e.,

vd(z, t) = −0.2z2 + 0.8

Let m = 1.5Kg, c = 0.24N/m2/s2, T = 0.1s and N = 5.

The drogue is assumed to follow the depth profile shown

in Fig. 2, with the time duration of each underwater travel

being N ·T . The proposed scheme of course also allows for

other profiles with equal dive duration.

Substitute the parameters into the state space drogue model

in (25)-(26), and then implement the proposed scheme to

the simulation data obtained from the model. The simulation

results are shown in Figs. 3. Fig. 3 makes comparisons

between the actual and estimated values for u, x1 and x2,

respectively. A quick convergence to the truth is observed for

the estimates of all the variables. It is seen that the estimation

achieves high accurateness. The simulation shows the power

of the proposed scheme to provide reliable estimates for the

challenging problem of flow field estimation.

V. CONCLUSION

Motivated by the needs in drogue based ocean flow field

estimation, this paper has investigated the problem of N-

SISE – simultaneous input and state estimation for nonlinear

systems. The problem is solved via two procedures. First,

a Bayesian paradigm for N-SISE is developed. Then with

the guidance of the Bayesian paradigm, a scheme based on

MAP criterion is proposed to estimate the input and state of

the nonlinear system. The scheme is sequential, consisting

of prediction and update; furthermore, each update involves

iterative searching, as a result of using the Gauss-Newton

method for maximizing the nonlinear MAP cost function.

The N-SISE scheme is applied to estimate the ocean flow

velocity profiles on the basis of multi-rate sampling of posi-

tion and acceleration of a drogue. Satisfactory performance

is observed in simulation results. Regarding N-SISE, another

interesting but challenging topic is joint input and state

observability, which will be further studied.
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Fig. 3. Actual values and estimated values: (a) u vs. û; (b) x1 vs. x̂1;
(c) x2 vs. x̂2. The green circle denotes the time instants when multi-rate
sampling occurs.
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