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Abstract—The United States Marine Corps (USMC) utilizes
Forward Operating Bases (FOBs) which employ multiple gener-
ation units, primarily powered by JP-8 (similar to diesel fuel). It is
often true that logistical support to deliver fuel is both expensive
and dangerous. On the other hand, the generation units deployed
by USMC range from 2 KW to over 200 KW, with very different
input-output characteristics. In order to minimize fuel usage,
a more sophisticated dispatch approach is needed. This paper
applies the Karush-Kuhn-Tucker (KKT) conditions for optimality
(in the sense of minimizing the fuel consumption) to develop an
approach to economically dispatch generators. Simulation results
based on the KKT method are compared with several existing
dispatch methods, showing that our approach reduces the fuel
usage compared to current standard methods.

Index Terms—fuel economy, Lagrangian functions, optimiza-
tion, power generation dispatch, power systems.

I. INTRODUCTION

THE United States Marine Corps (USMC) utilizes gener-
ation units covering a broad range, from 2 KW to over

200 KW. These generation units can have very different fuel
consumption curves. The highest efficiency normally occurs
when the generators are loaded at near rated capacity, with
larger generators being typically more efficient than smaller
units. Considering fuel consumption as the primary cost, each
generation unit has a different cost function.

For this study, a classic two-tier power generator configu-
ration is assumed. Suppose several of these generators, with
the same or different rated output power, are interconnected
to provide sufficient power to meet the overall demand. At
the same time, it is desired to minimize the fuel consumption.
How should these generation units be dispatched? There are
several existing dispatch methods, which include: all uniform-
ly, descend uniformly, and maximum load uniformly. These
approaches are easy to apply and widely used in the power
industry [1] [2]. However, these methods are not sufficient for
USMC applications, in that they do not guarantee to minimize
fuel usage. Note further that optimal economic generator
dispatch for a microgrid would find useful application in many
other (smart grid) areas [3].

In this paper, the Karush-Kuhn-Tucker (KKT) conditions are
used to optimally dispatch generation units for minimum fuel
consumption [4]. All the feasible solutions are found, but only
the optimum solution is actually used for generator dispatch.
Following the introduction in section 1, the rest of the paper is
organized as follows. In section 2 the general problem is set up,
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and the KKT condition are briefly reviewed. The KKT-based
conditions for generator dispatch are established in section 3,
so as to minimize the fuel consumption. A simulation tool
is developed in MatlabTM, and the simulation results are
presented in section 4, along with comparisons to existing
methods. Finally, in section 5, we present some concluding
remarks.

II. PROBLEM SETUP AND THE KKT CONDITIONS

In this section, the general problem is set up. We wish
to find an optimal approach, in the sense of minimizing
fuel consumption, for dispatching generation units. This is an
extremum problem with inequality constraints, and hence the
KKT optimality conditions are briefly presented as well.

A. Generator Dispatch Problem Setup
Suppose there are n generation units (i = 1, 2, 3 . . . , n),

with each generation unit having its own input-output charac-
teristic curve. Further suppose this curve can be expressed by
a quadratic function [5] as:

Φi = αi
2β

2
i + αi

1βi + αi
0 (1)

where αi
2, α

i
1, and αi

0 are given parameters of the generation
unit (typically obtained via identification experiments or man-
ufacturer specifications). A typical 60 KW generation unit
input-output characteristic curve is shown in Fig. 1. Let Pi

be the output power of generation unit i, ranging from a
minimum P i

min to a maximum P i
max [3]. We define βi as:

βi = Pi/P
i
max (i.e., output power as a fraction of maximum

rated power). Suppose Fi is the fuel consumption of generation
unit i (whilst producing corresponding output power Pi), and
it varies from a minimum F i

min to a maximum F i
max. We

define Φi as: Φi = Fi/F
i
max (i.e., fuel usage as a fraction of

maximum fuel usage). Note of course that Pi and Fi are both
physical quantities, which only assume non-negative values.
Note further that βi varies between 0 and 1 (i.e., zero power
to maximum power), but when the generation unit is idling
at zero output power, it still consumes some fuel. Hence,
Φi varies from a small positive value to 1 (i.e., idling to
maximum fuel usage). With these definitions, the total output
power can be expressed as:

∑n
i=1 P

i
maxβi and the total fuel

consumption can be expressed as:
∑n

i=1 F
i
maxΦi. If storage

of electrical energy is not considered, the generation units
total output power always equals the total power demand, with
power produced at essentially the same time as it is consumed
[4]. In this case, the demanded power PT , and the total fuel
consumption FT , of n generation units are given respectively
as follows:

PT =
n∑

i=1

P i
maxβi (2)
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Fig. 1: A typical generation unit input-output characteristic curve

FT =
n∑

i=1

F i
maxΦi (3)

The economic generator dispatch problem is to mini-
mize the fuel usage, while at the same time ensuring
the total generator output power meets the total pow-
er demand. This problem can now be formulated as [6]:

minimize: FT =

n∑
i=1

F i
maxΦi

subject to: PT =

n∑
i=1

P i
maxβi

0 ≤ βi ≤ 1

The inequality constraint 0 ≤ βi ≤ 1 is trivially equivalent
to −βi ≤ 0 and βi−1 ≤ 0. It can be seen that this optimization
problem contains both equality and inequality constraints.
This kind of extremum problem can be solved by deploying
the KKT optimality conditions, and hence before proceeding
further we briefly review the general KKT conditions.

B. Karush-Kuhn-Tucker (KKT) Optimality Conditions

Considering the following problem:
minimize f(x)

subject to h(x) = 0,
g(x) ≤ 0

where f : Rn → R, h : Rn → Rm, m ≤ n, and g : Rn → Rp

[7]. The KKT optimality conditions for the above problem
comprise five components, which are shown below:

1) µ∗ ≥ 0

2) Df(x∗) + λ∗TDh(x∗) + µ∗TDg(x∗) = 0T

3) µ∗T g(x∗) = 0

4) h(x∗) = 0

5) g(x∗) ≤ 0

where x∗ is the feasible solution, and also a local minimum.
λ∗ ∈ Rm is regarded as the Lagrange multiplier vector, and
µ∗ ∈ Rp is taken as the Karush-Kuhn-Tucker (KKT) multiplier
vector. Their components are referred to as the Lagrange

multipliers and Karush-Kuhn-Tucker (KKT) multipliers, re-
spectively. Df is defined as: Df ≡

[
∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

]
,

with Dh and Dg defined similarly [8]. Accordingly, the
original optimal generator dispatch problem is mapped into
the following problem, in a form suitable for applying the
KKT conditions:

minimize: f(βi) = FT =
n∑

i=1

F i
maxΦi

subject to: h(βi) =

n∑
i=1

P i
maxβi − PT = 0

g(βi) =



−β1 ≤ 0
β1 − 1 ≤ 0
−β2 ≤ 0

β2 − 1 ≤ 0
...

−βn ≤ 0
βn − 1 ≤ 0

In the next section, the mapped optimal generator dispatch
problem is solved via application of the appropriate KKT
conditions.

III. KKT CONDITIONS FOR OPTIMAL DISPATCH

For general case, suppose there are n generation units
interconnected to serve the load. Then the KKT conditions
are given as:

1) µ =
[
µ1
1 µ1

2 µ2
1 µ2

2 . . . µn
1 µn

2

]T ≥ 0

2) F 1
max(2α

1
2β1 + α1

1) + λP 1
max − µ1

1 + µ1
2 = 0

F 2
max(2α

2
2β2 + α2

1) + λP 2
max − µ2

1 + µ2
2 = 0

...
Fn
max(2α

n
2βn + αn

1 ) + λPn
max − µn

1 + µn
2 = 0

3)
[
µ1
1 µ1

2 µ2
1 µ2

2 . . . µn
1 µn

2

]


−β1

β1 − 1
−β2

β2 − 1
...

−βn

βn − 1


= 0

4) h(βi) =
n∑

i=1

P i
maxβi − PT = 0

5) g(βi) =



−β1

β1 − 1
−β2

β2 − 1
...

−βn

βn − 1


≤ 0

where the superscript i in µi
j denotes (that it is a KKT

multiplier for) generation unit i. Note that each generation
unit has two KKT multipliers, µi

1 and µi
2, which correspond

to the lower and upper limits of each βi. Now condition 3) is
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equivalent to:

−µ1
1β1 + µ1

2(β1 − 1)− µ2
1β2 + µ2

2(β2 − 1) + . . .

−µn
1βn + µn

2 (βn − 1) = 0
(4)

Note from condition 1), all µi
j’s are nonnegative, and from

condition 5), all elements of g(βi) are nonpositive. Equation
(4) implies that all elements of h(βi) equal 0. Taking this into
account, and for ease of presentation considering only the first
generation unit, the first two terms of equation (4) are:

−µ1
1β1 = 0 (5)

and
µ1
2(β1 − 1) = 0 (6)

There are three possibilities for βi, namely βi = 0, βi = 1,
and 0 < βi < 1. Note that when β1 = 0, from equation (6)
immediately it can be observed that µ1

2 = 0, so that the only
unknown is µ1

1; When β1 = 1, from equation (5), it is easy to
see that µ1

1 = 0, and µ1
2 is the only unknown. Similarly, when

0 < β1 < 1, from equation (5), it can be seen that µ1
1 = 0,

and from equation (6) it follows that µ1
2 = 0, so that β1 is the

only unknown.
These three situations cover all the possible combinations.

Notice that among the variables β1, µ1
1, and µ1

2, two variables
are always known, leaving us with only one unknown variable.
The other generation units may be solved by the same ap-
proach. For the entire system, there is one more unknown, the
Lagrange multiplier λ associated with the equality constraint
in condition 2). It has been ignored in the discussion till
now, since it does not appear in condition 3). Thus, for n
generation units interconnected as a system, there are 3n

possible combinations, and for each combination we always
have 2n variables known, with n+1 variables unknown, to be
solved for from the resulting n+ 1 remaining equations [1].

Referring to the five components of the KKT conditions,
note that conditions 1), 3), and 5) are constraints, with con-
ditions 2) and 4) used to compute the unknown variables. By
putting conditions 2) and 4) into matrix form, equation (7) is
obtained as:

Ax = b (7)

where A ∈ R(n+1)×(3n+1), x ∈ R3n+1 and b ∈ Rn+1

x =
[
β1 β2 · · · βn λ µ1

1 µ1
2 · · · µn

1 µn
2

]T
b =

[
−F 1

maxα
1
1 − F 2

maxα
2
1 · · · − Fn

maxα
n
1 PT

]T
Note that of the 3n + 1 elements in x, only n + 1 of them
are unknown. In order to find all potential solutions, the 3n

possible combinations need to be solved via:

xukn = A−1
uknb (8)

where xukn ∈ Rn+1 represents the unknown elements in x.
Aukn ∈ R(n+1)×(n+1) only consists of the column elements of
A that correspond to unknown (row) elements in x. Equation
(8) computes all the unknown variables. By substituting the
solution in xukn back into x, all the elements of x are now
known. Thus, by using the objective function f(βi), the fuel
consumptions of all the potential solutions may be computed.
The minimum fuel consumption is now readily found, and the

corresponding βi’s constitute the (global) optimal generator
dispatch solution.

IV. EXAMPLES AND DISCUSSION

As an example, we consider a microgrid with three gener-
ation units. For the KKT-based dispatch method, the solution
algorithm is implemented in MatlabTM, with the correspond-
ing flowchart shown in Fig. 2. In this section, the simula-
tion results of the KKT-based dispatch method and several
existing standard dispatch methods are compared. The existing
methods used for comparison include: all uniformly dispatch
(AUD), descend uniformly dispatch (DUD), and maximum
load uniformly dispatch (MLUD).

Suppose there are n generation units available. The AUD
method specifies that all n generation units are running, and
they are all loaded to the same power ratio, i.e., PT

PR
, where

PT is the total power demand, and PR is the total rated output
power of the (running) generation units. This explains the term
‘uniformly’ dispatch. The other approaches pre-select a group
of generators, and then uniformly dispatch within that group.

In the DUD method, the available generation units are
arranged in descending order, in the sense of their rated output
power. So long as the total output rated power of the first
m (where m < n) generation units is greater than or equal
to the total power demand, only the first m generation units
are running. The remaining n−m generation units are either
shut off or idling. If the total power demand is greater than
the total generation capability of the first n − 1 generation
units, all generation units need to be running. At this point,
the DUD method utilizes the same power ratio as the AUD
method. The MLUD method involves first finding all possible
combinations of the given n generation units that can meet the
total power demand. Then, the algorithm chooses the particular
combination PC , that gives the minimum non-negative value
of PC − PT . Generation units which form the particular
combination PC are running, with the remaining generation
units shut off or idling [9].

In all simulations, the total demand power PT sweeps from
1 KW to the total rated output power. Five different generation
units are used, and their parameters are given in Table 1.
We consider separately the ‘idling’ and ‘shut-off’ cases. In
the idling case, as discussed earlier, even generation units not
generating power still consume fuel to remain idling (see Fig.
1 and note that Φi ̸= 0 for βi = 0). In the shut-off case, it is
assumed that generators not contributing to the load are turned
off and hence do not consume any fuel. Note that this involves
a modified (KKT) solution, since the generator input-output
curve is essentially discontinuous at βi = 0, but for reasons
of brevity we do not go into the details of this here.

TABLE I: Generation Units Parameters
No. Pmax α2 α1 α0 Fmax

(KW) (gal/hr)
1 20 0.071428571 0.753571429 0.183928571 1.6
2 30 0.064285714 0.748214286 0.193035714 2.9
3 40 0.057142857 0.742857143 0.202142857 4.0
4 60 0.103512881 0.689929742 0.203881733 4.8
5 150 0.167758847 0.676277851 0.160419397 10.9
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A =


2F 1

maxα
1
2 0 · · · 0 P 1

max −1 1 0 0 · · · 0 0
0 2F 2

maxα
2
2 · · · 0 P 2

max 0 0 −1 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 2Fn

maxα
n
2 Pn

max 0 0 0 0 · · · −1 1
P 1
max P 2

max · · · Pn
max 0 0 0 0 0 · · · 0 0



Fig. 2: Flowchart of the MatlabTM script file

Three different configurations are compared. We first con-
sider generation units 1, 2, and 3, which represents a microgrid
that consists of similar (but not the same) small rated output
power generators. The second microgrid is constructed using
three of the No. 4 generators, hence representing a microgrid
with identical generators. The third microgrid consists of
generators 1, 3, and 5, representing a microgrid containing
very different generators. Simulation results for the shut-off
case are shown in Fig. 3, Fig. 4, Fig. 5, and Fig. 6, and for
the idling case in Fig. 7, Fig. 8, Fig. 9, and Fig. 10.

Fig. 3 illustrates the fuel consumption curves for each
method tested on configuration 1 in the shut-off case. Clearly,
it can be seen that the KKT-based approach consumes the
least fuel. The AUD method, which keeps all generators on,
consumes the most fuel. The DUD method initially has the
40 KW generator turned on. This is the one of the most
inefficient generators at low loads. For the MLUD method,
with total power demand between 30 KW and 40 KW, the

40 KW generator is turned on. By contrast, the KKT-based
method combines more efficient 20KW and 30 KW generators
to supply the load.

Fig. 4 shows how the generators are actually dispatched for
the above test using the KKT-based method. At the beginning,
the most efficient generator, namely 20 KW, is turned on. Once
the total load demand exceeds 20 KW, the method turns off the
20 KW generator and starts the 30 KW generator, because it is
more efficient than having two generators running. However,
the combined 20 KW and 30 KW generators are more efficient
than the 40 KW one. Hence, once the load exceeds 30 KW, the
combined 20 KW and 30 KW generation units are used. When
load exceeds 50 KW, the 20 KW and 40 KW generators are
used, up to PT = 60 KW, at which point all three generators
are required serve the load.
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Fig. 3: Fuel consumption of 1st configuration in shut-off case

Three identical generators form configuration 2, whose fuel
consumption curves are shown Fig. 5. As one would expect,
there is no preference in how to dispatch between them, so that
the DUD method, MLUD method, and KKT-based method
all consume the same amount of fuel, indicating that uniform
dispatch is the optimal solution for this case. Note, however,
that the above approaches utilize a sub-group of generators
(big enough to serve the load). The AUD method has all
generators running all the time, and so it consumes more fuel
than the other methods.

In the shut-off case, when there are considerably big d-
ifferences between the generators in the system, the AUD
and DUD methods perform poorly. This is because both of
these methods always have the biggest generators on, but big
generators are inefficient when the load is too low. The MLUD
method is considerably more efficient, since it is more flexible
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Fig. 4: 1st configuration generators dispatch in shut-off case
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Fig. 5: Fuel consumption of 2nd configuration in shut-off case

compared to the previous two methods. However, note that the
objective function is to minPC−PT , subject to: PC−PT ≥ 0,
which is not directly minimizing fuel consumption. Hence, it is
still slightly out-performed by the KKT-based method, which
finds the true optimal dispatch for least fuel consumption, as
can be seen in Fig. 6, which shows the fuel consumption
curves for configuration 3.

We now consider the idling case, and the fuel consumption
curves for the 1st configuration are shown in Fig. 7. Although
the KKT-based method still consumes least fuel, its superiority
over the other approaches is now less apparent. In the idling
case all the generators are on all the time for all the methods.
Hence, the space of fuel performance curves is compressed,
with small differences between the approaches.

Fig. 8 shows how the KKT-based method dispatches the
generation units for the above test. Note that this is much
smoother than the dispatch schedule shown earlier in Fig. 4
for the shut-off case, because there is no longer any advantage
to switching machines in and out. There are some similarities
between Fig. 4 and Fig. 8, since we can see that both of them
utilize the 20 KW generator first. However, note that in Fig. 8,

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18
Compare all approaches in shut off case (20 40 150)

Loads (KW)

F
ue

l u
sa

ge
 (

G
al

lo
n)

 

 

All Unif
Descend Unif
Max load Unif
KKT

Fig. 6: Fuel consumption of 3rd configuration in shut-off case

once the load exceeds 25 KW, all three generators supply the
load (versus the shut-off case in Fig. 4). This happens since all
the generators are idling anyway, so it is better to have them
contribute to the load, rather than just idling and wasting fuel.
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Fig. 7: Fuel consumption of 1st configuration in idling case

For the second configuration, shown in Fig. 9, there is little
difference between the approaches. In fact the AUD and KKT-
based methods consume identical amounts of fuel, as do the
DUD and MLUD methods. This makes perfect sense, since
all the generators are identical, and all are kept idling, there
is little room for optimal dispatch to make a big difference.

The third system is operated in the idling case to generate
the curves in Fig. 10. It can be seen that the KKT-based
method shows great advantages over the MLUD and DUD
methods. The reasons are similar to the earlier discussion
regarding Fig. 6, where uneconomical generators are turned
on at low load. Conversely, the AUD method shows more
economical behavior, and is largely similar to the KKT-based
method, but is less efficient for mid-range total loads. This is
because the AUD method dispatches all generators identically,
but the individual generators themselves are inefficient at low
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Fig. 8: 1st configuration generators dispatch in idling case
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Fig. 9: Fuel consumption of 2nd configuration in idling case

and high loads. Hence, we see once again that the KKT-based
dispatch method is the best in terms of fuel economy.
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Fig. 10: Fuel consumption of 3rd system in idling case

V. CONCLUSION

This paper presents a KKT-based approach for optimal
generator dispatch in a microgrid. The primary objective is
to minimize fuel consumption, which has significant practi-
cal meaning for USMC operations and smart grid systems
[10]. Simulation testing showed that the KKT-based dispatch
method is the most economical, regardless of the system
structure and operation situation. Standard existing dispatch
methods can have similar performance in the right circum-
stances, but they all also exhibited poor performance under
other circumstances, and the KKT-based approach was the
only one that always dispatched the generators in the most
economical manner.

Note that in this paper some factors are neglected, including
the generator start-up fuel consumption. Also, for the shut-off
case, the generators may be switched on and off as necessary
when the load ramps up, which would not be acceptable
in a practical application. These issues constitute a more
complicated problem, which will require a more sophisticated
control algorithm, and this is a subject of current research.
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