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Abstract— This paper considers the problem of using a
sampled-data controller to globally stabilize a class of feed-
forward nonlinear systems. Based on the continuous-time con-
troller proposed in [3], a nested saturation sampled-data control
law is first designed to drive states of the feedforward system
into a small region around the origin in a finite time. Inside
this small region, the nested saturation sampled-data control
law is then reduced to a linear sampled-data control law. An
explicit formula for the maximum allowable sampling period is
computed to guarantee global stability of feedforward systems
under the proposed sampled-data controller with appropriate
gains.

I. INTRODUCTION

This paper considers the global stabilization problem for

a class of feedforward systems under sampled-data control.

The feedforward system is described by

ẋi(t) = xi+1(t) + fi(t, xi+1(t), · · · , xn(t)),

i = 1, · · · , n − 1,

ẋn(t) = u(t), (1)

where x(t) = (x1(t), · · · , xn(t))T ∈ R
n is system state,

u(t) ∈ R is control input, and fi(t, xi+1, · · · , xn) is an

unknown continuous function with fi(t, 0, · · · , 0) = 0 for

i = 1, · · · , n−1. The control law is implemented in discrete-

time under a sampler and zero-order hold device, i.e.,

u(t) = u(tk), ∀t ∈ [tk, tk+1), tk+1 = tk + T,

k ∈ N = {0, 1, 2, · · · }, (2)

where the time instants tk, tk+1 are the sampling points

and T is the sampling period. Our objective is to design

a sampled-data controller u(tk) which globally stabilizes the

feedforward system (1).

The problem of stabilizing feedforward systems has at-

tracted a great deal of attention due to its practical and

theoretical importance [2], [5], [6], [8]. In the literature, there

has been developed some methods to solve the stabilizing

problem, such as the nested saturation design method [9],

[10], forwarding design method [6], [8], and the method

integrated the nested saturation with the Lyapunov design
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together [11], [3]. Nevertheless, the aforementioned results

on global stabilization of feedforward systems are based on

continuous-time feedback. In practice, most of the controllers

are being implemented using digital computers [1]. Hence,

how to design a digital controller to stabilize the feedforward

system (1) becomes imperative. Due to the presence of the

unknown functions fi(t, xi+1, · · · , xn)’s, it is challenging

to find a discrete-time controller to globally stabilize the

feedforward system (1).

Usually, one approach for designing a discrete-time con-

troller is based on the discrete-time approximation of the

nonlinear plant. However, the results using this approach will

only guarantee local or semi-global stabilization due to the

existence of approximation errors which are inevitable for

nonlinear systems. To achieve global stabilization result, it

was shown that by carefully choosing the sampling period,

the emulation method by discretizing continuous-time con-

trollers can guarantee the global stability for some nonlinear

systems [7], [4]. However, the feedforward systems (1) do

not satisfy the assumptions imposed in [7], [4].

In this paper, we focus on solving the problem of

global stabilization for a class of feedforward systems un-

der sampled-data control. Here, the design of sampled-data

controller is carried out by using the emulation approach.

Specifically, first, a continuous-time controller will be de-

signed to globally stabilize the feedforward system, which

has been achieved in [3]. Then the controller is discretized

and implemented digitally where the key issue is to com-

pute the maximum allowable sampling period (MASP) that

guarantees global asymptotic stability. With the help of the

combined method of the nested saturation and Lyapunov

design, an explicit formula for the maximum allowable

sampling period is computed to guarantee global stability

of the feedforward systems (1) under sampled-data control.

II. MAIN RESULTS

In this section, we show that the problem of global

stabilization for system (1) under sampled-data control is

solvable under the following assumption. For the sake of

statement, throughout of this paper, let x denote x(t) when

there is no confusion.

Assumption 2.1: In a neighborhood of the origin, there

exists a positive constant ρ such that

|fi(t, xi+1, · · · , xn)| ≤ ρ(|xi+1|
pi,i+1 + · · ·+ |xn|

pi,n), (3)

where the constants pi,j > 1, j = i + 1, · · · , n, i =
1, · · · , n − 1.
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For simplicity of statement, denote Xi = (x1, · · · , xi), i =
1, 2, · · · , n. The sampled-data control law is constructed as

following form:

u(tk) = un(Xn(tk))

= −bn

[

εσ

(

xn(tk) − un−1(Xn−1(tk))

ε

)]

,

∀t ∈ [tk, tk+1), (4)

with ui(Xi(tk)) = −bi

[

εσ
(

xi(tk)−ui−1(Xi−1(tk))
ε

)]

, i =

1, · · · , n, u0 = 0, and σ(s) =

{

sign(s), |s| > 1
s, |s| ≤ 1

where

ε > 0 is a small constant to be determined later and the

constants bi’s are chosen as

b1 > max{2, n},

bi > max {αi−1(b1, · · · , bi−1) + 2,

βi−1(b1, · · · , bi−1) + n − i + 1} , i = 2, · · · , n,
(5)

with

α1(b1) = b1(2 + b1), β1(b1) =
1

2
+ b1 +

1

2
b4
1,

αj(b1, · · · , bj) = bj (2 + bj + αj−1(b1, · · · , bj−1)) ,

βj(b1, · · · , bj) =
1

2
+ bj +

b2
j (bj − bj−1)

2

2

+

j−1
∑

k=1

(b2
j · · · b

2
k)(bk − bk−1)

2

4
, b0 = 0,

j = 2, · · · , n − 1. (6)

We will show that there exist a small enough constant ε
and a maximum allowable sampling period (MASP) T ∗ >
0 (supk∈N {tk+1 − tk} ≤ T ∗) such that the sampled-data

control system (1)-(4) is globally asymptotically stable.

Remark 2.1: Based on the definition of αi(·), the follow-

ing relations can be obtained:

b1 ≤ b2 ≤ · · · ≤ bn−1 ≤ bn (7)

2 ≤ b1, 2 + αi−1(·) ≤ bi, i = 2, · · · , n. (8)

To show how controller (4) globally stabilizes system (1),

we first introduce three lemmas. The first lemma studies the

local dynamic behavior of closed-loop system (1)-(4) around

the origin, where the saturated sampled-data control law (4)

is equivalent to the linear sampled-data control law

u(t) = − bn(xn(tk) + bn−1[xn−1(tk) + · · ·

+ b2(x2(tk) + b1x1(tk))]), ∀t ∈ [tk, tk+1). (9)

Lemma 2.1: Under Assumption 2.1, the following in-

equality holds for the closed-loop system (1)-(9)

V̇ (Xn)|(1)−(9) ≤− (ξ2
1 + · · · + ξ2

n) + bnξn (ξn(t) − ξn(tk))

+ ω1(Xn)f1(·) + · · · + ωn−1(Xn)fn−1(·),

∀t ∈ [tk, tk+1) (10)

where ξ1 = x1, ξi+1 = xi+1+biξi, ωi(Xn) = ∂V (Xn)/∂xi,

i = 1, · · · , n − 1, and V (Xn) = 1
2 (ξ2

1 + · · · + ξ2
n).

Proof: We first consider the nominal system of (1)

ẋi =xi+1, i = 1, · · · , n − 1, ẋn = u. (11)

Next, we will show that the following inequality holds:

V̇ (Xn)|(11)−(9) ≤− (ξ2
1 + · · · + ξ2

n)

+ bnξn(t) (ξn(t) − ξn(tk)) . (12)

Step 1. For the Lyapunov function V1(x1) = 1
2x2

1, the

derivative of V1 along system (11) is

V̇1(x1) =x1x
∗
2 + x1(x2 − x∗

2) (13)

where x∗
2 is a virtual control law. Select the virtual controller

x∗
2 as x∗

2 = −b1ξ1 with ξ1 = x1 and b1 satisfying (5).

Substituting this virtual controller into (13) results in

V̇1 ≤ −nξ2
1 + ξ1(x2 − x∗

2). (14)

Inductive Step. Assume that at step i− 1, under the virtual

controller x∗
i = −bi−1ξi−1, we have the following inequality

V̇i−1(Xi−1) ≤ −(n−(i−2))(ξ2
1 +· · ·+ξ2

i−1)+ξi−1(xi−x∗
i )

(15)

where ξ1 = x1, ξj = xj − x∗
j , x∗

j = −bj−1ξj−1, j =

2, · · · , i − 1, and Vi−1(Xi−1) = 1
2

∑i−1
k=1 ξ2

k.

Next we show that (15) also holds at step i. To this end,

define Vi(Xi) = Vi−1(Xi−1)+
1
2 (xi−x∗

i )
2 = Vi−1(Xi−1)+

1
2ξ2

i where ξi = xi − x∗
i . The derivative of Vi(Xi) along

system (11) is

V̇i(Xi) ≤− (n − (i − 2))(ξ2
1 + · · · + ξ2

i−1) +
1

2
ξ2
i−1 +

1

2
ξ2
i

+ ξixi+1 + |ξiẋ
∗
i |. (16)

By the definition of x∗
i , it can be verified that

ẋ∗
i = − bi−1ξi + bi−1(bi−1 − bi−2)ξi−1 + · · ·

+ (bi−1bi−2 · · · b2)(b2 − b1)ξ2 + (bi−1bi−2 · · · b1)b1ξ1.

With this in mind, completing the square for each individual

cross term results in

|ξiẋ
∗
i | ≤ ξ2

1 + · · · + ξ2
i−2 +

1

2
ξ2
i−1 + [βi−1(·) − 1/2]ξ2

i .

(17)

where βi−1 is a function defined in (6). Substituting (17)

into (16) leads to

V̇i(Xi) ≤− (n − (i − 1))(ξ2
1 + · · · + ξ2

i−1)

+ βi−1(·)ξ
2
i + ξixi+1. (18)

Since bi > [βi−1(·) + n− i + 1] as chosen in (5), the virtual

controller x∗
i+1 = −biξi yields

V̇i(Xi) ≤ −(n− (i− 1))(ξ2
1 + · · ·+ ξ2

i ) + ξi(xi+1 − x∗
i+1).

This completes the inductive proof.

Following the same line, we can obtain

V̇n(Xn)|(11)−(9) ≤ −(ξ2
1+· · ·+ξ2

n−1+ξ2
n)+ξn(u(t)−x∗

n+1)
(19)
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where ξ1 = x1, ξi = xi − x∗
i , x∗

i = −bi−1ξi−1, i =
2, · · · , nand x∗

n+1 = −bnξn(t). Note that the linear sampled-

data controller (9) can be rewritten as

u(t) = −bnξn(tk)

= x∗
n+1 + bn (ξn(t) − ξn(tk)) , t ∈ [tk, tk+1). (20)

Substituting (20) into (19) yields

V̇n(Xn)|(11)−(9) ≤ −(ξ2
1 + · · · + ξ2

n)

+ bnξn(t) (ξn(t) − ξn(tk)) . (21)

Next, let us consider the nonlinear system (1). By (21),

taking the derivative of V (Xn) along system (1) under the

linear sampled-data control law (9) leads to (10).

Remark 2.2: By its definition, clearly V (Xn) is a

quadratic function. Hence ωi(Xn) = ∂V (Xn)/∂xi is a

linear function. Define W (Xn) = ξ2
1 +· · ·+ξ2

n, then W (Xn)
is a positive definition quadratic function. Hence, there exist

constants ci, hi > 0, i = 1, 2, · · · , n − 1, such that

|ωi(Xn)|(|xi+1| + |xi+2| + · · · + |xn|) ≤ ciW (Xn), (22)

2|xi+1| + |xi+2| + · · · + |xn| ≤ hi

√

W (Xn). (23)

The second lemma was first introduced in [3] where a

continuous-time stabilizer was used. However, even though

the controller employed in this paper is a sampled-data

controller, the proof procedure is similar to the one in [3].

The reason is that Lemma 2.2 mainly discusses the properties

of the first n− 1 equations of system (1) while the different

controller is only applied to the n-th equation. The detailed

proof of Lemma 2.2 can be found in [3].

Lemma 2.2: Consider the closed-loop system (1)-(4) un-

der Assumption 2.1. For any given constants bi, i =
1, · · · , n − 1, there exists a constant ε0 ∈ (0, 1) satisfying

λi(ε0) = ρ
(

|1 + bi|
pi,i+1ε

pi,i+1−1
0 + · · ·

+|1 + bn−1|
pi,nε

pi,n−1
0

)

≤ 1, i = 1, · · · , n − 1,

(24)

for any ε ∈ (0, ε0) the following inequalities hold for i =
1, · · · , n − 1

|fi(t, xi+1(t), · · · , xn(t))| < ε, ∀t ∈ [t, t], (25)
∣

∣ui(Xi(t)) − ui(Xi(t))
∣

∣ ≤ αi(b1, · · · , bi)(t − t), ∀t ≥ t,
(26)

provided |xj | ≤ ε(1 + bj−1), j = i + 1, · · · , n.
The next lemma shows that under the proposed sampled-

data saturated control law (4), by carefully tuning the satura-

tion level and choosing the sampling period, the states of the

upper-triangular system will enter into a small region around

the origin in a finite time and stay there forever. Inside this

small region, the nested saturation sampled-data control law

is no longer saturated. The main goal of this lemma is to

use the feature of nested saturation to handle the high-order

nonlinearities in system (1). This idea has also been used

in [11], [3] to design continuous-time feedback controller.

However, since the controller proposed here is in the discrete-

time form, the proof is significantly different from that in

[11], [3].

Before giving this lemma, define function λ(·) and con-

stant h as follows:

λ(ε) = c1λ1(ε) + · · · + cn−1λn−1(ε),

h = bn +
n−1
∑

j=1

(
n−1
∏

i=j

bi)hj , (27)

where the function λi(·) is defined as (24), and the positive

constants ci’s and hi’s are defined in (22)-(23). Clearly, the

function λ(ε) ∈ K∞
1, and hence there exist small constants

ε1, T1 ∈ (0, 1) such that the following inequalities hold

λ(ε1) <
1

2
, T1hbn <

1

2
. (28)

With the help of above selections of small constants ε1, T1,

we are ready to prove the following Lemma.

Lemma 2.3: Consider the closed-loop system (1)-(4) un-

der Assumption 2.1. If the constant ε and sampling period

T are chosen as

0 < ε ≤ ε∗ = min{ε0, ε1}, 0 < T ≤ T ∗ = min{
1

bn

, T1},

(29)

then there exists a sampling time point Kn ∈ N such that

for any k ≥ Kn,

|xi(t) − ui−1(Xi−1(tk))| ≤ ε,∀t ∈ [tk, tk+1), i = 1, · · · , n.
(30)

Proof. An inductive method will be used to show that

inequality (30) holds. For the sake of brevity, denote

ei(t, tk) = xi(t) − ui−1(Xi−1(tk)),∀t ∈ [tk, tk+1),

i = 1, · · · , n.

Initial Step. In this step, we will prove that inequality (30)

holds for i = n, i.e., there exists a sampling point K1 ∈ N
such that for any k ≥ K1,

|en(t, tk)| = |xn(t)−un−1(Xn−1(tk))| ≤ ε,∀t ∈ [tk, tk+1).

Since the proof can be easily obtained by following the proof

procedure of Inductive Step, we omit it here.

Inductive step. We suppose that at step i− 1, there exist

0 ≤ K1 ≤ · · · ≤ Ki−1, such that for any k ≥ Ki−1,

|ej(t, tk)| = |xj(t) − uj−1(Xj−1(tk))| ≤ ε,

∀t ∈ [tk, tk+1), j = n − i + 2, · · · , n. (31)

In what follows, we will prove that the above relation will

also hold at step i.
We first show that there exists a sampling point Ki ≥

Ki−1 such that |en−i+1(tKi
, tKi

)| ≤ ε. If there is no

such Ki, it can be assumed that for any k ≥ Ki−1,

|en−i+1(tk, tk)| > ε.

1A continuous function g : [0,∞) → [0,∞) is said to be class K∞ if
it is strictly increasing and g(0) = 0, g(r) → ∞ as r → ∞.
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Case 1: en−i+1(tk) = xn−i+1(tk) − un−i(Xn−i(tk)) <
−ε, ∀k ≥ Ki−1. In this case, we have

ẋn−i+1(t) =un−i+1(Xn−i+1(tk)) + en−i+2(t, tk)

+ fn−i+1(t, xn−i+2, · · · , xn)

=bn−i+1ε + en−i+2(t, tk) + fn−i+1(·),

∀t ∈ [tk, tk+1). (32)

Using (31), for any k ≥ Ki−1, we know |xj(t)| ≤ ε(1 +
bj−1),∀t ∈ [tk, tk+1), j = n − i + 2, · · · , n, which leads to

|fn−i+1(t, xn−i+2, · · · , xn)| < ε, ∀t ∈ [tk, tk+1), (33)

from Lemma 2.2. As a result, according to (32) and inductive

assumption condition (31), we get

ẋn−i+1(t) > (bn−i+1 − 2)ε. (34)

Noticing that bn−i+1 − 2 > 0 from (8), it can be concluded

that xn−i+1(t) → +∞ as t → ∞, which leads to a

contradiction disavowing en−i+1(tk, tk) = xn−i+1(tk) −
un−i(Xn−i(tk)) < −ε,∀k ≥ Ki−1.

Case 2: en−i+1(tk, tk) = xn−i+1(tk) − un−i(Xn−i(tk))
> ε, ∀k ≥ Ki−1. Using a proof similar to that of Case 1, we

can prove that this case is also impossible.

Case 3: There exists a K ∈ N such that

en−i+1(tK , tK) < −ε, en−i+1(tK+1, tK+1) > ε, i.e.,

xn−i+1(tK) − un−i(Xn−i(tK)) < −ε, xn−i+1(tK+1)
−un−i(Xn−i(tK+1)) > ε. In this case, by continuity

of xn−i+1(t) − un−i(Xn−i(t)), it can be concluded

that there exists a time t ∈ [tK , tK+1) such that

xn−i+1(t) − un−i(Xn−i(t)) = −ε.

In this case, since en−i+1(tK , tK) < −ε which is also

assumed in Case 1, the relations (32) and (34) hold as well.

By continuity of xn(t), for any t ∈ [t, tK+1],

xn−i+1(t) ≥ xn−i+1(t) = −ε + un−i(Xn−i(t)). (35)

Also, by (32), we get ẋn−i+1(t) ≤ (bn−i+1 + 2)ε, which

leads to

xn−i+1(t) ≤ xn−i+1(t) + (bn−i+1 + 2)ε(t − t)

= −ε + un−i(Xn−i(t)) + (bn−i+1 + 2)ε(t − t),

∀t ∈ [t, tK+1]. (36)

In addition, noticing that for any t ∈ [t, tK+1],

(bn + 2)(t − t) ≤ (bn + 2)T ∗ ≤ (bn + b1)T
∗ ≤ 2bnT ∗ ≤ 2

and |un−i(Xn−i(t))| ≤ bn−iε, it follows from (35) and (36)

that |xn−i+1(t)| ≤ (1 + bn−i)ε, ∀t ∈ [t, tK+1]. Under this

condition and using the inductive assumption condition (31),

we have |xj(t)| ≤ (1 + bj−1)ε,∀t ∈ [t, tK+1], j = n − i +
1, · · · , n. Then, by Lemma 2.2, it can be concluded that

∣

∣un−i(Xn−i(t)) − un−i(Xn−i(tK+1))
∣

∣

≤ αn−i(·)ε(tK+1 − t). (37)

By the definition of en−i+1(t, tk) and (36), we have

en−i+1(tK+1, tK+1) = xn−i+1(tK+1) − un−i(Xn−i(tK+1))

≤ −ε + (bn−i+1 + 2)ε(tK+1 − t)

+ un−i(Xn−i(t)) − un−i(Xn−i(tK+1)). (38)

Since bn−i+1 − αn−i(·) − 2 ≥ 0 from (8) and bn−i+1T
∗ ≤

bnT ∗ ≤ 1, then it follows from (38) and (37) that

en−i+1(tK+1, tK+1) ≤ −ε + (bn−i+1 + 2)ε(tK+1 − t)

+ αn−i(·)ε(tK+1 − t)

= −ε + bn−i+1ε(tK+1 − t) + bn−i+1ε(tK+1 − t)

− (bn−i+1 − αn−i(·) − 2)ε(tK+1 − t)

≤ −ε + εbn−i+1T
∗ + εbn−i+1T

∗ ≤ ε, (39)

which contradicts to the assumption en−i+1(tK+1, tK+1) >
ε.

Case 4: There exists a K ∈ N such that

en−i+1(tK , tK) > ε, en−i+1(tK+1, tK+1) < −ε. By

a similar proof, we can show this case is also impossible.

To summarize Cases 1-4, we can conclude that there exists

a sampling point Ki such that

|en−i+1(tKi
, tKi

)| = |xn−i+1(tKi
)−un−i(Xn−i(tKi

))| ≤ ε.

Next, we will prove that |en−i+1(t, tk)| = |xn−i+1(t) −
un−i(Xn−i(tk))| ≤ ε,∀t ∈ [tk, tk+1),∀k ≥ Ki.

First of all, we consider the case en−i+1(tKi
, tKi

) =
−γε, 0 ≤ γ ≤ 1. By the system dynamic, we have

ėn−i+1(t, tKi
) = ẋn−i+1(t) = bn−i+1γε + en−i+2(t, tKi

)

+ fn−i+1(·), ∀t ∈ [tKi
, tKi+1). (40)

Note that for any t ∈ [tKi
, tKi+1), |en−i+2(t, tKi

)| ≤
ε from the inductive assumption condition (31) and

|fn−i+1(t, xn−i+2, · · · , xn)| < ε,∀t ∈ [tKi
, tKi+1) from

(33). As a result, it follows from (40) that

bn−i+1γε − ε − ε < ėn−i+1(t, tKi
) < bn−i+1γε + ε + ε,

∀t ∈ [tKi
, tKi+1). (41)

Integrating (41) yields that for any t ∈ [tKi
, tKi+1),

en−i+1(t, tKi
) ≤en−i+1(tKi

, tKi
)

+ (bn−i+1γ + 2)ε(t − tKi
)

≤− γε + γεbn−i+1T
∗ + 2εT ∗. (42)

Based on the fact that 2T ∗ ≤ bn−i+1T
∗ ≤ bnT ∗ ≤ 1, (42)

leads to

en−i+1(t, tKi
) ≤ ε. (43)

Similarly, from (41) we have

en−i+1(t, tKi
) ≥ −γε + (bn−i+1γ − 2)ε(t − tKi

)

= −γε + (γ − 1)bn−i+1ε(t − tKi
)

+ (bn−i+1 − 2)ε(t − tKi
) (44)

From the definition of bn−i+1 we know that bn−i+1−2 ≥ 0.

With this in mind, (44) leads to

en−i+1(t, tKi
) ≥ −γε − (1 − γ)bn−i+1εT

∗ ≥ −ε. (45)

Hence,

|en−i+1(t, tKi
)| ≤ ε,∀t ∈ [tKi

, tKi+1). (46)

8312



Now, we discuss en−i+1(tKi+1, tKi+1). Note that

en−i+1(tKi+1, tKi+1) = en−i+1(t
−

Ki+1, tKi
)

+ un−i(Xn−i(tKi
)) − un−i(Xn−i(tKi+1)) (47)

where en−i+1(t
−

Ki+1, tKi
) = lim

t→tKi+1

en−i+1(t, tKi
).

By (46), we know that

|xn−i+1(t)| =
∣

∣en−i+1(t, tKi
) + un−i(Xn−i(t))

∣

∣

≤ (1 + bn−i)ε,∀t ∈ [tKi
, tKi+1). (48)

By continuity of xn−i+1(t), we know (48) holds for all t ∈
[tKi

, tKi+1]. Under this condition and using the inductive as-

sumption condition (31), we have |xj(t)| ≤ (1+bj−1)ε,∀t ∈
[tKi

, tKi+1], j = n − i + 1, · · · , n. Applying Lemma 2.2

results in

|un−i(Xn−i(tKi
)) − un−i(Xn−i(tKi+1))|

≤ αn−i(·)ε(tKi+1 − tKi
). (49)

Meanwhile, from (42) and (44), we get

− γε + (bn−i+1γ − 2)ε(tKi+1 − tKi
) ≤ en−i+1(t

−

Ki+1, tKi
)

≤ −γε + (bn−i+1γ + 2)ε(tKi+1 − tKi
). (50)

Substituting (49) and (50) into (47) yields

en−i+1(tKi+1, tKi+1) ≤ −γε

+ (bn−i+1γ + 2 + αn−i(·))ε(tKi+1 − tKi
)

= −γε + (bn−i+1γ + bn−i+1)ε(tKi+1 − tKi
)

− (bn−i+1 − αn−i(·) − 2)ε(tKi+1 − tKi
). (51)

Noticing that bn−i+1T
∗ ≤ bn−i+1T

∗ ≤ bnT ∗ ≤ 1 and

bn−i+1 − αn−i(·) − 2 > 0 from (8), (51) becomes

en−i+1(tKi+1, tKi+1) ≤ −γε + γεbn−i+1T
∗ + εbn−i+1T

∗

≤ εbn−i+1T
∗ ≤ ε. (52)

On the other hand, similarly we have

en−i+1(tKi+1, tKi+1) ≥ −γε

+ (bn−i+1γ − 2 − αn−i(·))ε(tKi+1 − tKi
)

= −γε + (bn−i+1γ − bn−i+1)ε(tKi+1 − tKi
)

+ (bn−i+1 − αn−i(·) − 2)ε(tKi+1 − tKi
). (53)

Using the same gain relations to obtain (52), (53) can be

estimated as

en−i+1(tKi+1, tKi+1) ≥ −γε + bn−i+1γε(tKi+1 − tKi
)

− bn−i+1ε(tKi+1 − tKi
)

≥ −ε. (54)

Thus |en−i+1(tKi+1, tKi+1)| ≤ ε, ∀t ∈ [tKi
, tKi+1].

A similar proof will show that the assumption of

en−i+1(tKi
, tKi

) = γε, 0 ≤ γ ≤ 1, will also lead to the con-

clusion that |en−i+1(tKi+1, tKi+1)| ≤ ε,∀t ∈ [tKi
, tKi+1].

Then, using an inductive method, it can be concluded that

|en−i+1(t, tk)| ≤ ε, ∀t ∈ [tk, tk+1),∀k ≥ Ki.

According to the results of Initial step and Inductive step,

it can be concluded that there exists a Kn such that for any

k ≥ Kn

|x1(t)| ≤ ε, |x2(t) − u1(x1(tk))| ≤ ε, · · · ,

|xn(t) − un−1(Xn−1(tk))| ≤ ε, ∀t ∈ [tk, tk+1). (55)

This completes the proof.

With the help of Lemmas 2.1-2.3, we are ready to prove

the main result of this paper.

Theorem 2.1: Under Assumption 2.1, system (1) can be

globally stabilized by the sampled-data control law (4) if the

constant ε and sampling period T satisfy condition (29).

Proof. First of all, according to Lemma 2.3, we know that

after the sampling time tKn
, the states x(t) will stay in the

following region

|x1(t)| ≤ ε, |xi(t)| ≤ (1 + bi−1)ε, i = 2, · · · , n, (56)

and hence the sampled-data control law (4) is equivalent to

the linear sampled-data control law (9), i.e.,

u(t) = − bn(xn(tk) + bn−1[xn−1(tk) + · · · + b2(x2(tk)

+ b1x1(tk))]), ∀t ∈ [tk, tk+1), k ≥ Kn. (57)

Next, we only need to prove that system (1) can be

stabilized by the linear sampled-data control law (57) under

the condition (56).

By Lemma 2.1, the derivative of V (Xn) along system (1)

under the control law (57) is

V̇ (Xn)(1)−(57)≤ −W (Xn) + bnξn(t) (ξn(t) − ξn(tk))

+ ω1(Xn)f1(·) + · · · + ωn−1(Xn)fn−1(·).
(58)

By Assumption 2.1, we get

|fi(t, xi+1, · · · , xn)| ≤ (|xi+1| + · · · + |xn|)

× ρ(|xi+1|
pi,i+1−1 + · · · + |xn|

pi,n−1).
(59)

By condition (56) and the definition of λi(·) in (24), we have

|fi(t, xi+1, · · · , xn)| ≤ (|xi+1| + · · · + |xn|)λi(ε). (60)

With the help of (22), it follows from (60) that

|ωi(Xn)fi(·)| ≤ ciλi(ε)W (Xn), i = 1, · · · , n − 1. (61)

Substituting (61) into (58) results in

V̇ (Xn)(1)−(57) ≤− W (Xn) + λ(ε)W (Xn)

+ bnξn(t) (ξn(t) − ξn(tk)) (62)

where λ(ε) is defined in (27).

To handle the term of ξn(t) − ξn(tk), we estimate

|ξn(t) − ξn(tk)| ≤

∫ t

tk

|ξ̇n(τ)|dτ, t ∈ [tk, tk+1). (63)
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Since ξn(τ) = xn(τ) +
∑n−1

j=1 (
∏n−1

i=j bi)xj(τ),

|ξ̇n(τ)| ≤ |u(τ)|

+
n−1
∑

j=1

(
n−1
∏

i=j

bi)|xj+1(τ) + fi(τ, xj+1(τ), · · · , xn(τ))|.

(64)

By Assumption 2.1, we know

|xj+1(τ) + fi(τ, xj+1(τ), · · · , xn(τ))|

≤ |xj+1(τ)| + (|xj+1(τ)| + · · · + |xn(τ)|)

× ρ(|xj+1(τ)|pj,j+1−1 + · · · + |xn(τ)|pj,n−1). (65)

Noticing that ε ≤ ε0 and by (24)-(56), (65) leads to

|xj+1(τ) + fi(τ, xj+1(τ), · · · , xn(τ))|

≤ 2|xj+1(τ)| + |xj+2(τ)| + · · · + |xn(τ)|. (66)

With the help of (23), it follows from (66) that

|xj+1(τ) + fi(τ, xj+1(τ), · · · , xn(τ))|

≤ hj

√

W (Xn(τ)) ≤ hj

√

Wmax(t) (67)

where Wmax(t) = max∀τ∈[tk,t] W (Xn(τ)). In addition,

note that |u(τ)| = bn|ξn(tk)| ≤ bn

√

W (Xn(tk)) ≤
bn

√

Wmax(t). This, together with (63)-(64)-(67) leads to

|ξn(t) − ξn(tk)| ≤ (t − tk)h
√

Wmax(t). (68)

By substituting (68) into (62), we know that for any t ∈
[tk, tk+1), k ≥ Kn, the following inequality holds:

V̇ (Xn(t))(1)−(57) ≤ −W (Xn(t)) + λ(ε)W (Xn(t))

+ (t − tk)hbn

√

W (Xn(t))
√

Wmax(t). (69)

Note that the constant ε and sampling time T satisfy the

condition (29). Hence the following relations hold

λ(ε) < 1/2, Thbn < 1/2, 1 − λ(ε) − Thbn < 1. (70)

In what follows, we will use the relation (69) together the

paramater conditions (70) to prove that

max
∀τ∈[tk,tk+1]

W (Xn(τ)) = W (Xn(tk)).

Otherwise, it can be assumed that there exists a time instant

t′ ∈ [tk, tk+1] such that W (Xn(t′)) > W (Xn(tk)). Using

λ(ε) < 1
2 in (70), clearly we can prove from (69) that for

Xn(tk) 6= 0, Ẇ (Xn(tk)) = 2V̇ (Xn(tk)) < 0, which implies

Ẇ (Xn(t)) will decrease in a short time starting from tk.

Hence, there is a time instant t′′ ∈ [tk, t′] such that

(i) W (Xn(t′′)) = W (Xn(tk)), (ii) Ẇ (Xn(t′′)) > 0,

and (iii)W (Xn(t)) ≤ W (Xn(tk)), ∀t ∈ [tk, t′′]. (71)

Based on relations (71), it follows from (69) that

1

2
Ẇ (Xn(t′′)) = V̇ (Xn(t′′))

≤ −[1 − λ(ε) − Thbn]W (Xn(t′′)) < 0
(72)

which contradicts to the assumption Ẇ (Xn(t′′)) > 0. Thus,

max∀τ∈[tk,tk+1] W (Xn(τ)) = W (Xn(tk)).
With this fact in mind and noticing V (Xn(t)) =

1
2W (Xn(t)), it follows from (69) that

Ẇ (Xn(t))(1)−(57) ≤− 2(1 − λ(ε))W (Xn(t))

+ 2Thbn

√

W (Xn(t))
√

W (Xn(tk)).
(73)

For simplicity of statement, let η(t) =
√

W (Xn(t))
W (Xn(tk)) . A

straightforward calculation leads to

η̇(t) ≤ −(1 − λ(ε))η(t) + Thbn. (74)

Noticing that η(tk) = 1, it follows (74) that

η(tk+1) ≤ e−(1−λ(ε))T +
(

1 − e−(1−λ(ε))T
) Thbn

1 − λ(ε)
:= l.

(75)

which leads to W (Xn(tk+1)) ≤ l2W (Xn(tk)). By (70), we

know Thbn

1−λ(ε) < 1, which implies the constant l < 1. Hence,

W (Xn(tk)) converges zero as k tends to infinity, i.e., system

(1) is globally stabilized by sampled-data controller (4).

III. CONCLUSION

In this paper, we have designed a sampled-data controller

to globally stabilize a class of feedforward systems with un-

known nonlinearities. An explicit formula for the maximum

allowable sampling period is computed to guarantee global

stability of feedforward systems under the proposed sampled-

data controller with appropriate gains.
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