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Abstract— This paper reports a Pointwise Min-Norm control

(PWMN) general result for a class of distributed systems that

include transport phenomena associated with fluid flow in pipes

and open pool canals. The main goal is to find a numerical

control scheme that ultimately can be embedded in a more

general Nonlinear Model Predictive Control formulation as an

alternative to ensure closed-loop stability, for moderate values

of the receding horizon without increasing dramatically the

computational effort. In fact the PWMN control can be viewed

as the NMPC limit stabilizing solution when the predictive

horizon value goes to zero. A tubular system with finite escape

traveling time is used to illustrate the control performance. An

application to a canal pool modeled by Saint-Venant’s equations

is also given. Canals are formed by a sequence of pools sep-

arated by gates. Water distribution canals provide interesting

examples of distributed parameter plants for nonlinear control

application.

I. INTRODUCTION

This paper describes a Robust Pointwise Min-Norm (RP-

WMN) control general result for a class of distributed

systems with fluid flow, heat transfer and (bio)reactions pro-

cesses modeled by a set of hyperbolic and/or parabolic PDE

equations including convective and dispersive phenomena.

This broad class of models arises from physical conservation

principles by balances of mass, energy and linear momentum

and can describe the temperature and (bio)chemical species

distribution on moving fluids through pipes [2], [24] and also

fluids hydraulics in open pool channels at atmospheric pres-

sure, predicting velocity and mass, space and time behavior

[6].

Pointwise Control for nonlinear finite dimensional systems

can be found on several seminal nonlinear control text books

[30], [9]. For the control of infinite dimensional see [4]

and [5]. The first introduces linear control theory for infinite

dimensional systems using semigroups in a mathematical

background. In the second robust control methodologies to

deal with hyperbolic and parabolic distributed systems are

developed and a prototype system closely related with the

present class of systems is introduced.

In the last decade the use of a PWMN stability condition

for predictive control was studied in [26] and [12] using

a slightly different approach. Similar Control Lyapunov
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Function (CLF) techniques for adaptive control of hyperbolic

systems are described in [16].

Nonlinear Model Predictive Control (NMPC) for lumped

systems is a well understood control methodology and its

main results can be found in [10] and [27]. For a survey

see [28]. Predictive control of hyperbolic PDE systems,

namely transport-reaction processes, was studied in [8]

and [29] for SISO cases. In the former the controller is

based on a predictive model developed using the method

of characteristics and does not consider constraints. In the

latter finite differences for space discretization and a space

distributed actuator were used with good results.

Adaptive predictive control was obtained via Orthogonal

Collocation reduced modeling, for SISO hyperbolic tubular

transport-reaction processes, can be found in [13] and [14].

A successful application, for a distributed uncertain solar

power plant, where NMPC was combined with Feedback

Linearizing is presented in [18] and with Lyapunov Adap-

tation in [15]. A wide bibliography on water distribution

in open canals control is available. For a selection of the

controller structure combined with robust design methods

in order to achieve a compromise between water resources

management and disturbance rejection see [23]. Predictive

control with adaptation is considered in [11] and [21] and

also in [17] for a multivariate NMPC application to a water

canal pool.

In this paper the main goal is to establish a numerical

PWMN control scheme that ultimately can be combined in

a more general NMPC design as a way to ensure closed-

loop stability, for moderate values of the prediction horizon,

and without increasing dramatically the computational effort

or massive off-line computation. In fact, the PWMN control

can be viewed as the NMPC limit stabilizing solution when

the horizon value goes to zero. The rest of the paper is orga-

nized as follows: Section 2 introduces the class of systems

under study. Section 3 states the main result for RPWMN

control and discuss its use as a stabilizing limit solution for

continuous NMPC formulation. Section 4 presents a detailed

example for a tubular system with finite escape traveling time

and section 5 is dedicated to a canal pool modeled by Saint-

Venant equations application to illustrate by simulation the

proposed control scheme. Section 6 draws conclusions.

II. MODELS

Consider the following class of PDE models:

∂x(z, t)

∂ t
+L (x(z, t),u(t);θ) = s(x(z, t),u(t);θ) (1)

M (x(z, t),u;θ) = 0
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yk(t) =
∫ 1

0
bk(z) hk(x(z, t)) dz (k = 1, ..., p) (2)

where (z, t) ∈ [0,1]×R≥0, the state trajectories x(., t) ∈ X ,a

n-dimensional-like vector of smooth functions defined on the

space interval [0,1], the manipulated input u(t) ∈ U ⊂ R
m

and is bounded and where the output y(t) ∈ Y ⊂ R
p and

is also bounded. The operator L (.,u;θ) is a quasi-linear

matrix space operator. Boundary conditions are given by the

nonlinear space operator M (.,u;θ). Vector functions s(x,d),
h(x) are smooth vectors of nonlinear functions, s(x,d) : Rn×
R

m → R
n, h(x) : Rn → R . The space weight bk(z) > 0 :

[ 0,1]→ R
+ satisfies

∫ 1
0 bk(z) dz = 1.

The column vector θ ∈ Θ ⊂ R
q denotes the uncertain

parameters or additive disturbances that lies within a known

open convex set Θ = {θ : θ < θ < θ}.

The L operator must include convection terms v
∂ (.)
∂ z

and

will depend on the manipulated variable(s) when u ≡ v. If

the manipulated variable is space weighted additive in the

production term then:

s(x,u;θ) = sx(x;θ)+ sx(x;θ) w(z) u (3)

In both cases the manipulated variable(s) is explicit on

equation (1) and it will be implicit when it only appears in

the boundary condition.

These prototype configurations allow the study of a wide

variety of processes with transport phenomena, see for in-

stance [2], including tubular reactors [20], bio-reactors [7],

heat exchangers, solar fields [3], and fluid flow in water

distribution canals. This class of distributed nonlinear sys-

tems may exhibit complex dynamical behavior, with strong

space dependency, such as unstable dynamics [1], unstable

with traveling finite escape time, non minimum-phase behav-

ior [25], hot spots characteristics [20] and fluid flow traveling

waves and oscillation [24].

III. POINTWISE MIN-NORM CONTROL

An implicit stabilizing controller may be design obtained

using the following optimization statement: if V (e)> φ then

min
u∈U

uT u (4)

s. t. (1) and max
θ∈Θ

{V̇ (e;θ)}+αV (e)< 0

where V (e) : X → R≥0 is a continuously differentiable, pos-

itive definite and radially unbounded function in respect to

the L2 norm of e, see [5], and e(z, t) = x(z, t)−xr(z;θ0) is the

difference between the actual state and a steady state profile

along space length, where xr ∈ X , obtained for parameter

nominal value θ0. In other words, V (e) is simply a robust

CLF candidate whose derivative maximum can be made

less than −αV (e) pointwise by the choice of control values

outside a small region around the origin. This region can

be made arbitrarily small by picking φ sufficiently small.

Small control property, see [30], and numerical issues can

be avoided in this way. The parameter α relax convergence.

The most obvious choice for the CLF candidate is:

V (e) =
1

2

∫ 1

0
eT q(z)e dz (5)

where
∫ 1

0 q(z) dz = 1, with q(z) positive definite.

Using Lyapunov stability arguments [22]: any e(z, t) so-

lution, originating in a bounded region, will asymptotically

tend to the included invariant region parameterized by φ as

t → ∞, if V̇ < 0 (∀ e �= 0).
In this case, the time derivative of (5) yields:

V̇ =
1

2

∫ 1

0

∂

∂ t

(
eT (z, t) q(z) e(z, t)

)
dz (6)

using (1):

V̇ =
∫ 1

0
(s(x,u;θ)−L (x,u;θ)T q(z)e(z, t) dz (7)

and the robust optimization condition, for the class of sys-

tems under study, is given by:

max
θ

{∫ 1

0
(s(x,u;θ)−L (x,u;θ))T q(z)e(z, t) dz

}

+
α

2

∫ 0

1
eT q(z)e dz < 0 (8)

Remark that one of the following conditions must hold a

priori in relation to the manner how the inputs appear in (1).

If the corrected condition does not hold then the candidate

V is not a RCLF and a different candidate or method must

be used. Condition
∫ 1

0 (
∂x
∂ z
)T Av q(z)e dz �= 0, where Av is a

diagonal matrix with one or zero in the main diagonal, must

hold if the corresponding state is related with the manipulated

velocity. Or
∫ 1

0 (sx(x;θ) w(z) u)T q(z)e dz �= 0 iff u �= 0 if u

is related with the production term. Finally M (x,u,θ) �= 0

iff u �= 0 if u is implicit through boundary conditions. If

these conditions do not hold then controllability from u to

the ’output’ ≡ V is lost. Remark also that these conditions

depend on q(z) for finding V .

The above results can be summarized in the following

propositions:

Proposition 1: Consider the class of distributed systems

ΣΔ = (L ,M ,s,U,Θ,Y,R) with solutions x(z, t) defined

by (1), then the function V given by (5) is a RCLF for ΣΔ

if and only if exists scalars φ , α ∈ R
+ such that:

min
u∈U

max
θ∈Θ

{V̇ (e;θ)}+αV (e)< 0

whenever V (e)> φ .

Proposition 2: The u ∈U referred in proposition 1 can

be obtained by the optimization statement (4) when feasible,

meaning that the set U ⊃ u is large enough.

Feasibility in the last proposition rises only from the fact

that in general unstable systems cannot be stabilized globally

when input constrains are present. Without feasibility there

is no guarantee for global stability.

An important PWMN control feature is evident from the

remark that it can be viewed as the NMPC limit stabilizing

solution when the horizon value goes to zero. Consider the

following NMPC formulation:

min
u∈U

∫ t+T

t
(V (e(z,τ))+ρuT u)dτ (9)

s. t. (1) and max
θ∈Θ

{V̇ (e;θ)}+αV (e)< 0

2663



Consider what happens as the horizon T tends to zero:

min
u

lim
T →0

1

T

∫ t+T

t
(V (e(z,τ))+ρ uT u)dτ

= min
u
{V (e(z,τ))+ρ uT u}⇔min

u
uT u (10)

Remark that dividing (9) by T has no effect on the opti-

mization problem and also that when T goes to zero there

is no need to include the term V (e) because it is not affected

by u and so forth constant. Hence this simple observation,

stated in [26], indicates that as T goes to zero receding

horizon controllers loses the ability to maintain acceptable

performance just by minimizing input energy. Performance

degradation can lead in general to closed-loop instability if

the RPWMN condition or some other equivalent mechanism

is not included to assure stability. Remark also that the

constraint requires V to be a RCLF for any receding horizon

value and by that closed-loop stability is guaranteed.

IV. FINITE ESCAPE TRAVELING TIME

DISTRIBUTED SYSTEM

Consider a possibly uncertain distributed hyperbolic sys-

tem with finite traveling escape time, is given by:

∂x

∂ t
+

u(t)

L

∂x

∂ z
= θx2 (11)

with parameter θ > θ > θ > 0, solving for x(0, t) = 0 it

yields:

x(z, t) =
1

ϕ(z,0)−θ t
(12)

where ϕ(z,0) = x−1(z,0). Clearly for constant velocity u >
θL to stabilize the system around x(z, t) = 0 if x(z,0) = 1,

see Fig. 1.
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Fig. 1. Numerical solution, by 200 finite differences, for u=2.5 m/s, θ = 2
and x(z,0) = 1.

The space stationary profile, defined by ∂x
∂ t
≡ 0, can be

obtained from:
dx(z)

dz
= γx2 (13)

where γ = θL
u

. Denoting x(0, t) = xin for the boundary

condition, then the solution for the stationary state profile

is:

xr(z) =
xin

1− γrxinz
(14)

With the output set-point xr(1, t) = r, and using (14) it

follows:

r =
xin

1− γrxin

and ur =
θ rxin

r− xin

, (15)

with ur > 0 which implies r > xin. Substituting (15) in (14)

it yields:

xr =
rxin

r− rz+ xinz
(16)

for xr(0) = xin and xr(1) = r.

Stabilizing around the stationary profile, using the candi-

date Lyapunov function:

V =
1

2

∫ 1

0
e2dz (17)

with e = x− xr. Differentiating (17) with respect to time:

V̇ =−
u

L

∫ 1

0
e

∂x

∂ z
dz+

∫ 1

0
e θx2dz (18)

The feasible optimization problem can be written as:

min
u>0

u2 (19)

s. t.
∂x

∂ t
+

u

L

∂x

∂ z
= θx2

−
u

L

∫ 1

0
e

∂x

∂ z
dz+max

θ

{
θ

∫ 1

0
e x2dz

}
+α

1

2

∫ 1

0
e2dz < 0

yielding the following dynamical bound max{V̇}+αV < 0.

In this case, an analytical solution can be found for (19):

u =
Θ̌

∫ 1
0 e x2dz+α V∫ 1

0 e ∂x
∂ z

dz
L (20)

where Θ̌ switches from θ to θ with sign(
∫ 1

0 e x2dz). Remark

that u is well-defined because
∫ 1

0 e ∂x
∂ z

dz �= 0 outside the

curve level V (e) = φ and the space operators converge

exponentially to zero as e(z, t)→ 0. In fact this can be shown

observing that the PDE solution x(z, t) = (x−1
in −θzL/u(t))−1,

along characteristic curve ż = u(t)/L, implies ∂x
∂ t

> 0 and

e(z, t) �= 0 for any z �= 0, outside the invariant region.

Remark also that equation (20) coincides with the control

law obtained through feedback linearization with y≡V with

a characteristic index equal to one outside the invariant

region [4].

Figs. 2 and 3 show x(z, t) and u(t) when the set-point

suddenly changes from 3 to 2 at t = 5 s. This simulation

results were obtained solving (19) for 200 space finite

differences. Figs. 4 and 5 show x(z, t) and u(t) when the

set-point changes from 3 to 2 at t = 5 s, and from 2 to 3

again at t = 10 s for bounded uncertain θ . Remark that in

both cases ur is unknown.
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Fig. 2. State x(z, t) transition, for θ = 2, α = 2 and φ = 0.0001.
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Fig. 3. Manipulated velocity u [m/s].

V. WATER DISTRIBUTION CANAL POOL

Water distribution canals provide interesting examples of

distributed parameter plants for which nonlinear control may

be applied. Canals are formed by a sequence of pools sepa-

rated by gates. Output variables are the pool level at certain

points, manipulated variables are the position of the gates

and disturbances are the outlet water flows for agricultural

use. The operation of this system is subject to a number of

constraints. These are the minimum and maximum positions

of the gates, gate slew-rate and the minimum and maximum

water level. The objective considered in this application is to

drive the canal pool level to track a reference in the presence

of disturbances. The pool level is a function of both time and

space that satisfies the Saint-Venant equations. These are a

set of hyperbolic partial differential equations that embody
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Fig. 4. Robust state x(z, t) transition, for θ ∈ [1.8 2.2], α = 2 and φ =
0.0001.

0 5 10 15 20
2.8

3

3.2

3.4

3.6

3.8

4

4.2

u 
[m

/s
]

t [s]

Fig. 5. Manipulated velocity u [m/s].

mass and momentum conservation.

Saint-Venant equations for a single pool model without

infiltration are given by:

∂h

∂ t
+

v

L

∂h

∂ z
+

(
da

dh

)−1
a(h)

L

∂v

∂ z
= 0

∂v

∂ t
+

v

L

∂h

∂ z
+

g

L

∂v

∂ z
+g(I (h,v)−J ) = 0 (21)

where h(z, t) and v(z, t) are respectively level and water

velocity distributions along space (z ∈ [0,1]) and time, wet

surface a(h) and friction I (h,v) are nonlinear functions, g

is the gravity acceleration, J is the constant canal slope and

L is the pool length. Boundary conditions are given by flow

at upstream and downstream gates:

v(0, t) = cdAd(u)
√

(2g(Hu(t)−h(0, t)))/a(h(0, t)) (22)
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TABLE I

POOL PHYSICAL PARAMETERS.

Parameter Value Units

Gravitational constant g 9.8 ms−1

Manning coefficient n 1.0 m−1s−3

Discharge coefficient cd 0.6 −
Discharge area Ad(u) 0.49 u m2

Bottom width b 0.15 m

Trapezoid slope d 0.15 −
Canal slope J 2×10−3 −
Upstream elevation Hu 2.0 m

Downstream elevation Hd 1.0 m

v(1, t) = cdAd(u)
√

(2g(h(1, t)−Hd(t)))/a(h(1, t)) (23)

In this paper a single trapezoidal reach with two pools, two

moving gates (upstream ends) and a fixed gate at the down-

stream end is considered. The water elevation immediately

before and after the reach, Hu(t) and Hd(t) respectively, are

assumed known. See table I for physical parameters values,

the canal pool is depicted in Fig. 6.
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Fig. 6. Canal pool schematic.

Using PWMN optimization statement (20) a water eleva-

tion control was developed using the upstream gate position

as control signal. The error signal was obtained by consid-

ering a water level measure and the corresponding reference

at some fixed distance from the gate, velocity distribution

was not included in the optimiztion process to keep low

computational effort.

Figs. 7 and 8 show respectively water elevation and gate

manoeuver for RPWMN level control at 1.7 m, upstream,

when downstream gate opens from 0 to 0.1 m at t = 0 s. The

pool was initially at rest with 1.5 m at z = 0.5. Numerical

results were obtained with 200 space finite differences, more

details about model space reduction can be found in [17].

Controller parameters values: α = 0.5 and φ = 1×10−5.

Figs. 9 and 10 show the same experiment when down-

stream gate opens from 0 to 0.1 m at t = 10 s. Remark that

in the first experiment the wave back propagation effect on

gate opening is very small causing only a small overshoot. In
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Fig. 7. Water elevation h(z, t) [m].
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Fig. 9. Water elevation h(z, t) [m].
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Fig. 10. Upstream gate opening u [m].

the last case there are two combined observable facts. Until

t = 10 s the pool level is increasing and the downstream gate

is closed creating a large water rise near it. After t = 10 s

the downstream gate opens letting the water down flow.

During this period the upstream gate opening must actuate

accordingly causing the constraint u ≥ 0 to be active for a

considerable period of time. This last experiment illustrates

how this type of control can handle hard constraints.

VI. CONCLUSIONS

A general result for distributed fluid flow systems stabi-

lization around a stationary space profile was derived using

RPWMN methodologies. The derived optimization statement

can be interpreted as a stabilizing limit solution, when

included in a predictive receding horizon control formu-

lation, ensuring by that way closed-loop stability for any

horizon value. The viability of this alternative technique was

shown along with the advantage of small increase on the

computational effort, observed in the numerical example and

application. The results obtained for water distribution canal

pool RPWMN control form a basis of more complex studies

on canal engineered architectures that by combining robust

and predictive design methods can achieve a fair compro-

mise between water resources management and disturbance

rejection.
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[20] Lefèvre, L., D. Dochain, S. Feyo de Azevedo and A. Magnus. Optimal

selection of orthogonal polynomials applied to the integration of

chemical reactor equations by collocation methods, Computers &
Chemical Engineering, Vol. 24, pages 2571-2588, 2000.

[21] Lemos, J. M., L. M. Rato, F. Machado, N. Nogueira, P. Salgueiro, R.
N. Silva and M. Rijo. Predictive adaptive control of water level in
canal pools. Proc. 16th Int. Conf. Systems Science, Wroclaw, Poland,
pages 139-148, 2007.

[22] La Salle, J. and S. Lefschetz. Stability by Liapunov’s Direct Method,
Academic Press, 1961.

[23] Litrico, X., and V. Fromion. H∞ Control of an Irrigation Canal Pool
With a Mixed Control Politics. IEEE Trans. Control Syst. Tech.,
14(1):99-111, 2006.

[24] Marquardt, W. Traveling waves in chemical processes, International
Chemical Engineering, Vol. 30, N 4, 1990.

[25] Nihtila, M. T., J. P. Tervo, J. P. Kaipio and J. P. Babary. Controller

design issues and algorithms for a nonlinear distributed-parameter

process, IEEE International Conference on Computational Cybernetics
and Simulation 1997, Systems, Man, and Cybernetics, Vol. 3, pages
2414-2419, 1997.
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