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Abstract— The dynamics of Boolean networks can be rep-
resented by asynchronous transition graphs, whose attractors
describe the system’s asymptotic behavior. This paper shows
that the attractors of the feedback interconnection of two
Boolean modules can be fully identified in terms of cross-
products of the attractors of each module. Based on this
observation, a model reduction technique is proposed, aiming
at analysing the asymptotic behavior of a high-dimensional
network through the computation of the dynamics of two
isolated smaller subnetworks. The method is applied to a large
network which models cell-fate decision: all the attractors of the
full network are exactly calculated by representing the network
as an interconnection of two 3-input/3-output modules.

I. INTRODUCTION

Models of biological regulatory networks frequently in-
volve a large number of variables and interactions, and this
introduces mathematical problems related to the analysis of
high dimensional dynamical systems. Searching for model
reduction techniques is therefore a central point in mathemat-
ical modeling [1]. The development of reduction techniques
appropriate to describe biological systems remains a very
challenging task, due to the constraints on positivity or
interpretation of the reduced variables. The method proposed
in this paper concerns the special class of asynchronous
Boolean networks (ABN). Boolean models are specially
useful to represent large biological networks for which
available information is essentially qualitative rather than
quantitative, in the sense that interactions among a group of
biochemical species (genes, enzymes, transcription factors,
etc.) are clearly identified and experimentally confirmed, but
little is known about rate constants and kinetic parameters. In
these cases, Boolean models are able to rapidly predict gene
expression patterns under various experimental conditions as
well as mimick, in a rather straightforward manner “mutant”
behaviors (for instance by forcing one or several variables
to a given value, thus modeling genetic deletions and over-
expressions, or specific drug effects). Furthermore, Boolean
models generally provide an efficient and practical frame-
work to implement complex influence diagrams, with dozens
of interacting variables, intertwined feedback loops and mul-
tiple crosstalks between several antagonistic pathways. Some
successful examples include Drosophila’s segment polarity
network [2], a cell-fate decision network [3], or apoptosis [4].
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Due to the nature of its state space (the variables take
only the values 0 or 1), a Boolean model is quite easy to
implement and simulate and one can, in principle, exactly
compute all its possible trajectories and “steady states” or at-
tractors. However, as the dimension n of the model increases,
the full characterization of the state space rapidly becomes
computationally expensive, since the number of calculations
increases with 2n. In such cases, one solution can be to focus
the analysis on a particular (and wisely chosen) set of initial
conditions, which leads to a partial characterization of the
state space and attractors (see for instance [2]). This has
the disadvantage that possibly interesting global dynamical
behaviors and attractors may remain unidentified. Another
reduction technique is described in [5] and consists in
projecting the transition graph onto a subset of the variables.
When a variable is “hidden”, its logical rule is injected into
the rules of the variables it regulates (self-regulated variables
are thus irreducible), therefore guaranteeing no loss in terms
of interactions. From a dynamical point of view, this process
assumes that the variable is rapid with respect to the others,
as its update is immediately transmitted to its targets.

In this paper we propose a method to analyse large
Boolean networks as the interconnection of two input/ouput
modules, A and B, of smaller dimensions. The idea of
decomposing a system into two smaller modules to deduce
some properties of the composed system is a classical idea
in automatic control. It has been used in several contexts,
notably to characterize the equilibria of the interconnection
of two monotone ODE systems, under appropriate conditions
on the input/output characteristics [6], [7]. For discrete
systems the fact that the state space of an interconnection
can be easily computed as the set of all cross-products of
the states of the two systems, has been used to predict
several facts on the composed system, such as reachability
regions [8].

In this work, we will consider the interconnection of
Boolean networks, with Boolean inputs and outputs. For each
fixed input, the dynamics of the network is characterized by
an asynchronous transition graph (see Section II). To study
the attractors of the interconnection of systems A and B,
a new asymptotic graph is introduced, where the nodes are
the cross products of (same-output subsets of the) attractors
of the networks A and B, and the edges are those induced
by the asynchronous dynamics (Section III). The main result
states that the attractors of the interconnected system can be
recovered from the attractors of this asymptotic graph (Sec-
tion IV), a result which is valid for general multiple input-
multiple output systems (Section V). Finally, an application
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to the high-dimensional cell-fate decision model developed
in [3] shows that this method can be a very powerful tool
for model reduction and analysis.

II. DYNAMICS OF BOOLEAN MODULES

A Boolean multiple input-multiple output (MIMO) system
A is characterized by its state space ΩA : {0, 1}nA on nA
variables a = (a1, . . . , anA), its input u ∈ UA = {0, 1}pA ,
output function hA : ΩA → HA, with HA = {0, 1}qA , and
a logical vector function fA(a;u) : ΩA × UA → ΩA.

To characterize the dynamics of system A one needs
to specify the updating strategy, by defining a rule for
calculating the state at the next instant (a[t+] ≡ a+) as
a function of the current state (a[t]). There are different
possible strategies, among them the synchronous case (where
all coordinates ai are simultaneously updated), and the more
general asynchronous case (where a single coordinate is
updated at each iteration). In both cases, the dynamics
of a Boolean system can be fully characterized in terms
of a directed graph, called transition graph. Asynchronous
updating is more complex as the transition graph is not
deterministic, nevertheless it is more general and also much
more realistic for biological applications, as different events
may happen at very different time scales. Throughout this
paper, we will consider asynchronous Boolean networks
(ABN). The description and analysis of an ABN without
inputs or outputs can be found in [9] (see also [10] and [11]
for general references on graphs and positive matrices). For
MIMO ABNs, the relevant objects can be defined as follows.

Definition 1: The asynchronous transition graph, GA,u =
(ΩA, EA,u), of system A under fixed input u is a directed
graph among the elements (or nodes) of ΩA, where the edges
are given by EA,u. An edge “a→ ã” is in EA,u iff:

∃j, ãj = fAj (a;u) = 1− aj and ãi = ai ∀i 6= j.

If fA(a;u) ≡ a, then there are no outgoing arrows from this
node and, in this case, an edge a→ a is added. Such states
are called single state attractors.
Let S(ΩA) represent the set of subsets of ΩA.

Definition 2: The set of asynchronous successors, σA,u :
ΩA → S(ΩA), of an element of ΩA in GA,u is given by:

σA,u(a) = {ã ∈ ΩA : a→ ã is in EA,u}, (1)

(therefore, if fA(a;u) = a, σA,u(a) is the singleton {a}).
By abuse of notation, define also the set of successors of a
set S ⊂ ΩA: σA,u(S) = ∪a∈S σA,u(a).
A pathway in GA,u connecting two of its vertices a0 to af
will be represented in the form:

a0
GA,u

 af .

Definition 3: The basin of attraction and the reachable
set of a set S ⊂ ΩA, in GA,u, are given by:

B(S;GA,u) = {a0 ∈ ΩA : ∃ a0
GA,u

 af , for some af ∈ S},

R(S;GA,u) = {af ∈ ΩA : ∃ a0
GA,u

 af , for some a0 ∈ S}.

Definition 4: A strongly connected component (SCC) of
GA,u is a maximal subset C ⊂ ΩA, that contains a pathway
joining any pair of its elements:

∀a, ã ∈ C, ∃ a
GA,u

 ã.

Define also the set CA,u of all strongly connected compo-
nents of GA,u.

Definition 5: An attractor T is a terminal strongly con-
nected component, that is, ∪a∈TσA,u(a) = T . The output
set of an attractor will be denoted hA(T ) = {hA(a), a ∈
T} ⊆ HA. Each attractor can be decomposed into (at most)
2qA disjoint subsets, according to their output, which will be
called semi-attractors :

T = ∪α∈HATα, where Tα = {a ∈ T : hA(a) = α }.
In the following, we will only consider the nonempty semi-
attractors (it is immediate to see that at least one of the
semi-attractors will be nonempty). To deal with systems that
have more than one attractor we will adopt the following
notation:

Aiu = ∪α∈HAAiu,α, i = 1, . . . , rA,u, (2)

where Aiu is the i-th attractor of the graph GA,u. The set
of all semi-attractors of the graphs GA,u, for all u ∈ UA,
is denoted T A. To avoid confusions between SCCs, sets of
SCCs and their corresponding states, introduce the projection
function π : S(CA,u)→ S(ΩA):

π(R) = {a ∈ ΩA : a ∈ C for some C ∈ R}.

For any two semi-attractors, define a function ∆ : T A ×
T A → {0, 1} which indicates whether they belong to the
same parent attractor:

∆(Aiu,α, A
i1
u1,α1

)

=


1, u = u1, α 6= α1, and ∃Aı̃

u ∈ such that
π(Aiu,α) ∪ π(Ai1u1,α1

) ⊂ π(Aı̃
u)

0, otherwise.
(3)

III. THE ASYMPTOTIC GRAPH

Consider two Boolean MIMO systems A and B, charac-
terized by the objects defined above, with respective output
functions h̄A and h̄B . The interconnection of A and B can
be described by two feedback functions that transform the
outputs of one system into the inputs of the other (see Fig. 1):

κAB : HA → UB , κBA : HB → UA.

To simplify the statements, without loss of generality, we
can consider the composition of h̄∗ and κ∗ to be a new output
function with consistent dimensions:

hA : ΩA → UB , hA(a) = κAB(h̄A(a)),
hB : ΩB → UA, hB(b) = κBA(h̄B(b)).

Therefore, we have: HA ≡ UB and HB ≡ UA. Under
this transformation, the interconnection of A and B is the
Boolean system Σ, with no inputs or outputs, with state space
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Fig. 1. The interconnection of two multiple input-multiple output systems
with (pA, qA) = (1, 3) and (pB , qB) = (2, 3).

Ω = ΩA × ΩB , and Boolean rule fΣ : Ω → Ω constructed
in the following way:

fΣ(a, b) =
(
fA(a;hB(b)), fB(b;hA(a))

)
. (4)

The successors σ(a, b) of an element of Ω with the asyn-
chronous updating strategy are of the form

σ(a, b) :=
{

(a, b̃), (ã, b) ∈ Ω :

ã ∈ σA,hB(b)(a) and b̃ ∈ σB,hA(a)(b)
}
. (5)

The notation σ(S) will also be used to designate the suc-
cessors of a set S ∈ Ω (see Def. 2). Let G denote the
asynchronous transition graph of Σ. To motivate the concepts
discussed in this section, suppose that systems A and B are
two single input- single output systems that have single state
attractors of the form A1

01 and B1
10. Then the Boolean rules

for the interconnection give:

fΣ(A1
01, B

1
10) =

(
fA(A1

01; 0), fB(B1
10; 1)

)
=

(
A1

01, B
1
10

)
, (6)

where the last equality follows by definition of the attractors.
Therefore, the cross-product A1

01 ×B1
10 is itself an attractor

of the interconnected system. So, one may ask the following
questions: are all cross-products Aiuα ×Bkvβ , also attractors
of the interconnected system? Are all attractors of Σ of
this form? The answer to the first question is, obviously,
no. The answer to the second question is also negative but,
in this paper, we will show that all the attractors of Σ can
nevertheless be identified in terms of products Aiuα × Bkvβ .
Consider thus the set of cross-products of semi-attractors:

V as = {V ikuα;vβ := Aiuα ×Bkvβ : Aiuα ∈ T A, Bkvβ ∈ T B}.

Note that the asynchronous updating strategy for systems A
and B induces a similar strategy for Σ, since the successors
of a state are defined according to (5). Now, observe that for
any fixed input u, any state a ∈ ΩA must belong to at least
one basin of attraction, that is, there exist indexes i` = i`(a),
` = 1, . . . , 2pA such that

a ∈ B(Ai`u`αa ;GA,u
`

), ∀ ` = 1, . . . , 2pA (7)

where αa = hA(a) and u` is the binary representation of `
on pA digits (1 = 0 · · · 0, 2 = 0 · · · 01, etc.). Using (5), we
can construct a pathway where coordinates b remain fixed

and a follows a path in GA,β until it reaches an attractor
with u = hB(b) = β:

Aiuα ×Bkvβ 3 (a1, b)
GA,β

 (af , b) ∈ A
if
βαf
×Bkvβ (8)

with hA(af ) = αf . Based on these observations, one can
define a set of edges E as between nodes of V as, and thus
generate a transition graph, Gas, as follows.

Definition 6: Let u, u1, β, β1 ∈ UA and v, v1, α, α1 ∈
UB . The asymptotic graph associated with the interconnected
system Σ is Gas = (V as, E as), where the edges are given by:
(i) V ikuα;vβ → V ik1uα;v1β1

iff
either α = v1 = v and ∆(Bkvβ , B

k1
vβ1

) = 1,
or α = v1 6= v and R(Bkvβ ;GB,v1) ∩ B(Bk1v1β1

;GB,v1) 6= ∅;

(ii) V ikuα;vβ → V i1ku1α1;vβ iff
either β = u1 = u and ∆(Aiuα, A

i1
uα1

) = 1,
or β = u1 6= u and R(Aiuα;GA,u1)∩B(Ai1u1α1

;GA,u1) 6= ∅.

To illustrate this construction, see Examples 1-3 below. Since
the number of attractors for each graph is typically much
smaller than the total number of states, the graph Gas will
be much faster to construct and analyze than the full G.
Note that the transitions in the asymptotic graph follow an
asynchronous strategy in T A × T B , since no edges are
allowed to connect elements V ikuα;vβ → V i1k1u1α1;v1β1

, with
u 6= u1, α 6= α1, v 6= v1, and β 6= β1.

Remark 1: A timescale hypothesis. An edge of Gas of type
(ii) in Def. 6 corresponds to a trajectory in G of the form (8),
Pb = {(aj , b), j = 1, . . . , f} for some fixed b ∈ Bkvβ and a1,
af in distinct semi-attractors. One may say that pathway Pb
evolves according to the ΣA dynamics, with no update of the
interconnecting function v = hA(·). Similar trajectories, Pa,
correspond to type (i) edges. Pathways in Gas correspond,
therefore, to concatenations of type Pb and Pa pathways in
G, along which the interconnecting functions are updated at
a “low” frequency (w.r.t. the dynamics of each system). In
fact, v (resp., u) can be updated only at the endpoint of a
type Pb (resp., Pa) sequence.

IV. ATTRACTORS OF AN INTERCONNECTION

The main result states that the set of attractors of Gas

generates all the attractors of the full system G.
Theorem 1: If Q is an attractor of G, then there exists

at least one corresponding attractor in Gas, Qas = Qas(Q).
Moreover, if Q1 6= Q2 are two distinct attractors of G, then
Qas(Q1) 6= Qas(Q2).
In broad terms, Theorem 1 says that any attractor of G
generates an attractor in Gas, but the converse is not nec-
essarily true and Gas may have more attractors than G.
Moreover, the individual states of Qas(Q) are contained in
Q (ie. π(Qas(Q)) ⊂ π(Q)). The proof is given in Section V.

To decide which of the attractors of Gas actually corre-
spond to attractors of G, one way is to compute the reachable
set of each of them in G. However, using (6), it is immediate
to see that those Qas formed by a cross-product of two single
state (semi-)attractors are also attractors of G:
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Lemma 1: Suppose that R is a single state attractor of Gas

i.e., π(R) contains a single element of Ω. Then π(R) is also
an attractor of G.

We next give two simple examples to illustrate Def. 6 and
Theorem 1.

Example 1: Consider the interconnection between two
positive feedforward cascades, A, B both of the form:

ΣA : fA(a;u) =
(
u
a1

)
, hA(a) = a2,

It is easy to check that each system has only one attractor
for each fixed input:

A1
00 = {00}, A1

11 = {11}, B1
00 = {00}, B1

11 = {11}.

The interconnection Σ obtains by setting u = hB(b) = b2
and v = hA(a) = a2, and the asymptotic graph is, therefore,

A1
00 ×B1

00 ← A1
00 ×B1

11

↑ ↓
A1

11 ×B1
00 → A1

11 ×B1
11

.

By Theorem 1 and Lemma 1, Σ has exactly two attractors:
{0000} and {1111}. Indeed, it is easy to see that Σ is a
positive feedback loop, hence a bistable system, with exactly
these two attractors.

Example 2: Consider next the interconnection between a
positive and a negative cascade, with ΣA as in Example 1
and:

ΣB : fB(b; v) =
(
v
¬b1

)
, hB(b) = b2,

where ¬b1 = 1 − b1 denotes negation. Again there is only
one attractor for each fixed input, as follows:

A1
00 = {00}, A1

11 = {11}, B1
01 = {01}, B1

10 = {10}.

As in the previous example, the interconnection Σ obtains
by setting u = hB(b) = b2 and v = hA(a) = a2, and the
asymptotic graph becomes:

A1
00 ×B1

01 ← A1
00 ×B1

10

↓ ↑
A1

11 ×B1
01 → A1

11 ×B1
10

.

By Theorem 1, there is only one attractor for Σ,
and it contains the elements: {0001, 1101, 1110, 0010}.
Indeed, it is easy to check that Σ is a nega-
tive feedback loop, with a cyclic attractor: TΣ =
{0001, 1001, 1101, 1111, 1110, 0110, 0010, 0000}.

The third example shows that there is not a one-to-
one correspondence between G and Gas: an interconnected
system where Gas has three attractors but G only two.

Example 3: Consider two 3-dimensional systems, charac-
terized by their asynchronous transition graphs, shown in
Fig. 2. Assume that the output for each system is the last
coordinate, hA(x) = hB(x) = x3. Each system has four
semi-attractors, so the asymptotic graph has 16 states, while
the graph G of the interconnected system has 8 × 8 = 64
states, which is a very significant reduction. The asymptotic
graph Gas corresponding to the interconnection of the two

systems is given in Fig. 3. Theorem 1 says that G has
at most three attractors, characterized by: Qas

1 = A1
01 ×

B1
10 = {001000}, Qas

2 = A2
01 × B1

10 = {111000}, and
Qas

3 = {A1
10 × B1

00, . . . , A
2
11 × B2

10}. The two single state
attractors are immediately attractors of the interconnected
system, by Lemma 1. However, we can also see that Qas

3 is
not a true attractor of G. Indeed, consider the following set
of transitions

A1
10 ×B3

11
GB,0

 A1
10 × 000 GA,0

 001× 000 = Qas
1

which shows there is a pathway connecting Qas
3 to Qas

1. This
pathway is “hidden” in Gas, as it is not allowed in Def. 6:
the first part of this trajectory stops at 000 in GB,0 instead
of at 110 = B1

00.

(a) (b)

(c) (d)

Fig. 2. The transitions graphs for Example 3: (a) GA,0, (b) GA,1, (c)
GB,0, (d) GB,1.

Fig. 3. The asymptotic transition graph Gas for Example 3.

V. PROOF OF THEOREM 1

To prove Theorem 1, it is useful to introduce a function
that assigns elements of V as to subsets of Ω.

Definition 7: The asymptotic reducing function ψ :
S(ΩA × ΩB)→ S(V as) is defined as:

ψ(Q) = {Aiuα ×Bkvβ ∈ V as : π(Aiuα)× π(Bkvβ) ⊂ Q}.
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Recall that, without loss of generality, we are assuming pA =
qB and pB = qA, which implies HB = UA, HA = UB .

Lemma 2: If Q is an attractor of G, then ψ(Q) 6= ∅.
Proof: Suppose Q is an attractor of G, and let (a, b) ∈

Q, with a ∈ ΩA and b ∈ ΩB . Set u := hB(b) = β and let
a ∈ B(Aiβα;GA,β), for some i and some α ∈ UB . Since
Q is a terminal SCC, it contains all the paths starting from
any of its elements, in particular Q must contain the set
π(Aiβα) × {b}, for all α ∈ UB , because Aiβ is connected.
Since Aiβα is nonemtpy, then the set {ã} × π(Bkαδ) belongs
to Q for all ã ∈ Aiβα and b ∈ B(Bkαδ;G

B,α), for some
δ ∈ UA (since Bkαδ is nonemtpy for some δ ∈ UA, by (7)).
Therefore, one can conclude that Aiβα ×Bkαδ ∈ ψ(Q).

Lemma 3: Let Q be an attractor of G and let Aiuα×Bkvβ ∈
ψ(Q). Then all its successors in Gas are also in ψ(Q).

Proof: Assume that Ai1u1α1
×Bkvβ is a successor. Then,

by Definition 6, either
1. u1 = β and R(Aiuα;GA,u1) ∩ B(Ai1u1α1

;GA,u1) 6= ∅
2. or u = u1 = β and α1 6= α.

In the first case, since Q is an attractor, for all (a0, b0) ∈
π(Aiuα)× π(Bkvβ) ⊂ Q then also R(a0;GA,β)× {b0} ⊂ Q.
Because hB(Bkvβ) ≡ β we can conclude R(Aiuα;GA,β) ×
π(Bkvβ) ⊂ Q. In particular, π(Ai1u1α1

) ⊂ R(Aiuα;GA,β).
Therefore, Ai1u1α1

×Bkvβ ∈ ψ(Q).
In the second case, one has that Ai1u1α1

= Ai1β,α1
and Aiβ,α

are two semi-attractors belonging to the same attractor Ajβ of
the graph GA,β . By connectedness of Ajβ , π(Ai1β,α1

)×{b0} ⊂
Q, for all b0 ∈ π(Bkvβ). Hence Ai1u1α1

× Bkvβ is indeed in
ψ(Q).

Theorem 1 follows immediately as a Corollary:
Corollary 1: If Q is an attractor of G, then ψ(Q) contains

an attractor of Gas. If Q1, Q2 are two distinct attractors of
G, then ψ(Q1)∩ψ(Q2) = ∅ and so ψ(Qi) (i = 1, 2) contain
distinct attractors of Gas.

Proof: By Lemma 3 the set ψ(Q) contains all of its
successors. Recall that all states in a digraph eventually
converge to an attractor. If ψ(Q) contains no attractor of
Gas then it does not contain all the successors of its states,
which is a contradiction.

To prove the second statement, first note that Q1 ∩Q2 =
∅ since they are two distinct attractors of G. Hence, by
construction of ψ, also ψ(Q1) ∩ ψ(Q2) = ∅. Therefore,
since each ψ(Qi) contains an attractor of Gas (by the first
statement), they have to be distinct attractors.

VI. APPLICATION: CELL-FATE DECISION

To further illustrate the reduction method, it is applied to
the Boolean model of cell-fate decision developed in [3].
This model represents the interplays between three ma-
jor cellular pathways: apoptotic cell death (intrinsic or
mitochondria-dependent pathway), non-apoptotic cell death
(RIP1-dependent necrosis in this case) and survival (through
activation of the pro-survival transcription factor NFκB). It
includes the engagement of two different death receptors:
TNF and Fas. For a more thorough biological description

of the network, the reader is referred to [3] and references
therein.

Fig. 4. The cell-fate decision network developed in [3]. Only internal
variables are depicted (external inputs FASL, TNF and FADD are considered
as constants and are not represented). The full system (22 variables) is
expressed as the interconnection of two modules A and B of eleven
variables, each with 3 inputs and 3 outputs (dashed arrows correspond to
modules’ interconnections).

Remark 2: The original system of [3] has 25 variables,
three of which do not have specific logical rules as they
correspond to external inputs of the system: TNF (Tu-
mor Necrosis Factor), FASL (Fas ligand) and FADD (Fas-
associated protein with Death Domain). These external inputs
are represented in italic in Table I. In this study, we will
consider them as constants and focus our analysis on the 22-
dimensional graph proposed in Fig. 4. The 23 = 8 different
combinations of the triple (TNF,FASL,FADD) will then be
analysed separately.

The first step of the method consists in partitioning the
22 variables into two 11-dimensional, interconnected MIMO
modules A and B. The chosen modules with their inputs,
outputs and logical rules are defined in Table I (the rules are
taken from [3, Suppl.Mat.]). Mathematically, the intercon-
nection of A and B is defined by:

8<: u1 := hB,1(b) = RIP1,
u2 := hB,2(b) = ATP,
u3 := hB,3(b) = MPT ∨ BAX,

8<: v1 := hA,1(a) = cFLIP,
v2 := hA,2(a) = NFκB,
v3 := hA,3(a) = C3.

The next step consists in computing transition graphs GA,u

and GB,v (for u, v ∈ {0, 1}3) and their sets of attractors
and semi-attractors Aiu,α and Bkv,β . Each one of these
graphs contains only 211 = 2048 states, which makes these
computations (involving SCC decomposition and terminal
SCC detection) much more rapid than for the transition
graph of the whole system (which contains 222 > 4 million
states). Once the semi-attractors are found, the last step
consists in the construction of the asymptotic graph. As an
example, consider the case where TNF,FASL,FADD=1,0,1.
The asymptotic graph has only 120 nodes. This graph has
three attractors, denoted a1, a2 and a3, each one containing
a single state (see Table II). By virtue of Theorem 1 and
Lemma 1, these states are attractors of the interconnected
system. They can be associated to the three expected phe-
notypes: a1 to non-apoptotic cell death (necrosis), a2 to
apoptosis and a3 to survival through NFκB activation (see [3]
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TABLE I
DEFINITION OF MODULES.

Module A
Inputs: u = (u1, u2, u3)
Outputs: hA,1 = cFLIP, hA,2 = NFκB, hA,3 = C3
Logical rules:
RIP1ub’ = cIAP ∧ u1
cIAP’ = (NFκB ∨ cIAP) ∧ ¬SMAC
cFLIP’ = NFκB
IKK’ = RIP1ub
NFκB’ = IKK ∧ ¬C3
SMAC’ = MOMP
MOMP’ = u3
CytC’ = MOMP
XIAP’ = NFκB ∧ ¬SMAC
apoptosome’ = CytC ∧ ¬XIAP ∧ u2
C3’ = apoptosome ∧ ¬XIAP

Module B
Inputs: v = (v1, v2, v3)
Outputs: hB,1 = RIP1, hB,2 = ATP, hB,3 = MPT∨BAX
Logical rules:
DISC-TNF’ = FADD ∧ TNFR
TNFR’ = TNF
DISC-FAS’ = FADD ∧ FASL
RIP1’ = ¬C8 ∧ (TNFR ∨ DISC-FAS)
C8’ = (DISC-TNF ∨ DISC-FAS ∨ v3) ∧ ¬v1
BCL2’ = v2
RIP1K’ = RIP1
ROS’ = ¬v2 ∧ (RIP1K ∨ MPT)
BAX’ = C8 ∧ ¬BCL2
MPT’ = ROS ∧ ¬BCL2
ATP’ = ¬MPT

for details). In total, when considering all combinations of
constants TNF, FASL and FADD, 27 attractors are retrieved,
all containing single state attractors. Due to lack of space,
the 27 retrieved steady states are not reproduced here, but
they exactly correspond to the ones shown in [3, Fig. 2].

Interconnection of Boolean modules is therefore an ef-
ficient and practical method to simplify the analysis of a
large Boolean network, by reducing it to the analysis of two
half-sized isolated subnetworks, as shown in this example.
The fact that the 27 uncovered semi-attractor cross-products
correspond exactly to the attractors of the whole system is a
direct consequence of Theorem 1 and Lemma 1, and is based
on the structure of the asymptotic graph. In [3] the same
conclusion is obtained through a different argument based on
the reduction method developed in [5]. In contrast to [5], our
interconnection method does not involve the projection onto
a subset of variables, with the advantage that every variable
of the original system is preserved. A further development of
the method will be to extend the asymptotic graph to include
(biological) transition probabilities (see for instance [3], [9]),

TABLE II
STEADY STATES WHEN TNF=1, FASL=0 AND FADD=1.

RIP1ub cIAP cFLIP IKK NFκB SMAC MOMP CytC
a1 0 0 0 0 0 1 1 1
a2 0 0 0 0 0 1 1 1
a3 1 1 1 1 1 0 0 0

XIAP apop. C3 D-TNF TNFR D-FAS RIP1 C8
a1 0 0 0 1 1 0 0 1
a2 0 1 1 1 1 0 0 1
a3 1 0 0 1 1 0 1 0

Bcl2 RIP1K ROS BAX MPT ATP phenotype
a1 0 0 1 1 1 0 necrosis
a2 0 0 0 1 0 1 apoptosis
a3 1 1 0 0 0 1 survival

in order to compute the probability to reach each attractor
from a given initial condition. This work is currently in
progress.

VII. CONCLUSIONS AND FUTURE WORK
The main result in this paper is the identification of all

the possible attractors of a Boolean interconnected system
in terms of the attractors of the two isolated subsystems.
This result has important applications to the analysis of large
Boolean networks which appear frequently in the biological
sciences. For any Boolean network, the size of the transition
graph grows exponentially with the dimension n of the
network, thus rapidly limiting the use of algorithms such as
SCC decomposition or hierarchical organization. Therefore,
by decomposing a large system into two smaller MIMO
modules, it may become possible to analytically compute
the asymptotic behavior of the system without computing
the whole 2n-dimensional transition graph. Several questions
have arised from our analysis, in particular the problem of
deciding when one of the predicted attractors is spurious
(Lemma 1 provides a first answer, sufficient in the given
example, but possible extensions are currently being investi-
gated by the authors). Another question concerns the possi-
bility of decomposing a network into more than two modules
and, more generally, the necessity of developing algorithms
for decomposing a network into modules with minimal
numbers of inputs and outputs. Future work is to explore
the trade-off between model decomposition/reduction and the
computational load in the construction of the corresponding
asymptotic graph.
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