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Abstract— In this paper observer design is considered for
a class of non-linear systems whose non-linear part is energy
preserving. Examples of such systems arise from considering
finite dimensional approximations of fluid flows. A strategy
to construct convergent observers for this class of non-linear
system is presented. The approach has the advantage that it
is possible, via convex programming, to prove whether the
constructed observer converges, in contrast to several existing
approaches to observer design for non-linear systems. Finally
the method is used to produce a globally convergent observer
for the Lorenz attractor.

I. INTRODUCTION

Observer design for non-linear systems is an important and
difficult problem. In this paper, observer design is considered
for a class of non-linear dynamical systems which are closely
related to fluid flows. In particular,

ẋ(t) = Ax(t) +N(x(t))x(t), t ≥ 0,
y(t) = Cx(t), t ≥ 0,
x(0) = x0 ∈ Rn.

(1)

where A ∈ Rn×n, C ∈ Rp×n and N : Rn → Rn×n is
a linear operator. Furthermore, it is assumed that the non-
linearity N(x)x has the energy preserving property

xTN(x)x = 0, x ∈ Rn. (2)

The importance of dynamical systems of the form (1) is
that they arise in relation to fluid flows, when the Navier-
Stokes equations are approximated by a finite dimensional
system [4]. In experimental practice, such an approximation
is referred to as a ‘low order model’ and can be created
directly from experimental data by using, for example, the
method of Proper Orthogonal Decomposition [6], [15]. From
a theoretical perspective, it is therefore of great interest to
study the control theoretic properties of such systems, with
a view to guiding experimental implementation. The link
between the Navier-Stokes equations and (1) is presented
in Section III.

Observer design for non-linear systems has received much
attention, with approaches falling into two main categories.
One approach, first considered in [12] and generalized in
[7], [8], [10], [11], is to apply a change of co-ordinates
to linearize the system, up to an additional term involving
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the output y(t). Subsequently, linear design methods can be
applied to create an observer for the transformed system, then
the co-ordinate transformation is inverted to form an observer
for the original, non-linear, system. The main drawback of
this approach is that it is usually impossible to prove that
the chosen co-ordinate transformation is invertible. Hence,
while this is a powerful technique for observer design, it is
difficult to prove in practice that the constructed observer
will actually converge.

The second approach is to assume a Lipschitz-type bound
on the nonlinear part of the system. For example, in ad-
dition to the standard Lipschitz assumption [1], [14], one-
sided Lipschitz conditions [5], [16] and a ‘less conservative’
Lipschitz condition [13] have been studied. These techniques
apply a Luenberger-type observer and require that the non-
linearity is ‘small enough’ with respect to the linear part of
the dynamics. A major drawback of this approach is that
systems with a dominant non-linear term often have a large
Lipschitz bound and if this is the case, it is unlikely to be
possible to prove that a given observer converges.

The difficulties of the above techniques arise either from
excessive generality or overly restrictive assumptions. The
co-ordinate transformation technique may theoretically be
applied to any non-linear system, and is therefore unlikely
to succeed in every case. For the Lipschitz approaches, a
small global Lipschitz bound restricts the class of systems
to which the results may be applied. For this reason, we aim
for an approach to observer design that sits between these
two extremes by only considering the particular class of non-
linear system (1).

The following notation will be used. A matrix P ∈ Rn×n
is said to be positive definite (written P � 0) if its symmetric
part satisfies xT (P + PT )x > 0, for any x ∈ Rn, and
negative definite if −P is positive definite (written P ≺ 0).
The set of symmetric matrices of dimension n is denoted Sn.
For matrices A,B and C of appropriate sizes, the shorthand[

A B
(∗) C

]
:=

[
A B
BT C

]
is used to simplify the block matrix. For r > 0 and d ∈ Rn,
the ‖ · ‖2-norm ball centered at d of radius r is denoted
Br(d). For i = 1, . . . , n,

ei = (0, . . . 0, 1, 0, . . . , 0)T︸ ︷︷ ︸
ith entry

denotes the ith element of the standard basis of Rn. For sets
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S, T ⊂ Rn and α ∈ R,

S + T := {s+ t : s ∈ S, t ∈ T}, αS := {αs : s ∈ S}.

II. OBSERVER DESIGN

The approach taken in this paper is to exploit the bilinear
and energy preserving properties of the non-linearity in (1)
to obtain a method for constructing a convergent observer. In
particular, for a given gain matrix L ∈ Rn×p, the observer
(x̂(t))t≥0 is assumed to have dynamics

˙̂x = Ax̂+N(x̂)x̂− L(y −Cx̂), x̂(0) = x̂0 ∈ Rn. (3)

Therefore, the observer error e := x− x̂ satisfies

ė = (A+ LC)e+N(x)x−N(x̂)x̂. (4)

The aim of this paper is to find a constructive method of
calculating L such that

e(t)→ 0, t→∞.

The main results, Algorithm 2.4, Theorem 2.5 and Theorem
2.7, provide methods of constructing such a gain L by
solving a series of convex optimization problems.

The property of the non-linear system (1) that is advan-
tageous for observer design is that the energy preserving
property (2) implies the existence of an invariant set for the
system dynamics. A set S ⊂ Rn is said to be invariant for
the dynamical system (1) if x(t0) ∈ S at time t0 ≥ 0 implies
that x(t) ∈ S for every subsequent time t ≥ t0. Invariant sets
can be described in terms of perturbations of the linear part
A of the system. In the following, given a matrix A ∈ Rn×n
and a vector d ∈ Rn define a perturbed matrix Ad ∈ Rn×n
by

Adx := Ax+N(x)d+N(d)x, x ∈ Rn.

Subsequently, we make the following assumption.
(A1) There exists d ∈ Rn such that Ad ≺ 0.
Clearly, assumption (A1) holds if A ≺ 0. Furthermore, it
is shown in Proposition 3.1 that (A1) holds for the class of
systems representing finite dimensional approximations of
fluid flows.

Lemma 2.1: Suppose that there exist d ∈ Rn and α > 0
such that Ad+αI ≺ 0. Then Br(d) is invariant for (1), with

r =
1

α
‖Ad+N(d)d‖2. (5)

Proof: Using the linearity of N : Rn → Rn×n, the
system’s dynamics can be written

ẋ = Ax+N(x− d)(x− d) +N(x)d+N(d)x−N(d)d

= Ad(x− d) +N(x− d)(x− d) +Add−N(d)d.

For D(x) := 1
2‖x− d‖

2
2, the energy preserving property (2)

implies that

Ḋ(x) = (x− d)TAd(x− d) + (x− d)T (Ad+N(d)d).

≤ −α‖x− d‖22 + ‖x− d‖2‖Ad+N(d)d‖2.

Therefore, Ḋ(x) < 0 whenever ‖x− d‖2 > r, with r given
by (5). Hence, Br(d) is invariant for (1).

If (1) represents a fluid system, an invariant set may be
calculated more explicitly, as described in Proposition 3.1
and Corollary 3.2. In general, since Ad is affine in d, the
condition {d : Ad+ATd ≺ 0} 6= ∅ can be checked by solving
a semidefinite program [2].

Ideally, one would like to calculate an invariant ball with
the smallest possible radius. However, due to the non-linear
dependence of (5) upon (α, d) ∈ R × Rn, it is difficult
to minimize (5) by convex optimization methods. In order
to remove the non-linear dependence upon d from (5), the
search can be restricted to vectors d such that N(d)d = 0.
To do this, select a matrix Q ∈ Rn×n with the property

d ∈ ker(Q)⇒ N(d)d = 0. (6)

For example, let Q
(i)
jk := N(ej)ik, for each i, j, k ∈

{1, . . . , n}. Then

N(d)d =
(
dTQ(1)d, . . . , dTQ(n)d

)T
and hence, if Q is chosen such that ker(Q) is any of the
spaces

n⋂
i=1

ker(Φ
(i)
j ), Φ

(i)
j ∈

{
Q(i), Q(i)T

}
,

then Q satisfies (6).
Depending upon the system under consideration, it may be

possible to find Qj such that
⋃
j ker(Qj) = {d : N(d)d =

0}, as is shown for the Lorenz attractor in Section IV. Even if
this is not the case, a natural choice for Q may be apparent
given the system’s underlying structure – see Section III.
The advantage of this assumption is that if the search for the
centre of an invariant set is conducted over ker(Q), it can be
performed by solving a semidefinite program. Subsequently,
it will be assumed that:

(A2) A matrix Q ∈ Rn×n is chosen such that N(d)d = 0
whenever d ∈ ker(Q).

Proposition 2.2: Suppose that the semidefinite program

minimize s

subject to

[
s (Ax)T

(∗) sIn

]
� 0

tA+ (Ax −A) + I � 0 (7)
t ≥ 0

Qx = 0

with variables s, t ∈ R and x ∈ Rn has optimal values
(s∗, t∗, x∗) with t∗ > 0. Then Bs∗(x∗/t∗) is an invariant set
for (x(t))t≥0,

σ∗ := inf
λ>0
d∈Rn

{
‖Ad+N(d)d‖2

λ
: (8)

Ad + λI ≺ 0, d ∈ ker(Q)

}
<∞

and s∗ = σ∗.
Proof: Suppose that (s∗, t∗, x∗) are optimal values of
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(7) and t∗ > 0. Then since,

A(x∗/t∗) + I/t∗ � 0, ‖Ax∗‖2 ≤ s
∗, (9)

Lemma 2.1 implies that Bs∗(x∗/t∗) is invariant for
(x(t))t≥0. Now suppose that (λ, d) ∈ R+ × Rn satisfy the
minimization constraints in (8). Since

A/λ+ (A(d/λ) −A) + I � 0, Qd = 0,

it follows that

s∗ ≤ ‖A(d/λ)‖2 =
‖Ad+N(d)d‖2

λ
.

Therefore, s∗ ≤ σ∗. Conversely, (9) implies that

σ∗ ≤ t∗
∥∥∥∥Ax∗t∗

∥∥∥∥
2

= ‖Ax∗‖2 ≤ s∗.

Hence, s∗ = σ∗.

Given an invariant set for the state and an observer gain
L, the following result provides a sufficient condition for the
existence of an invariant set for the observer (x̂(t))t≥0.

Lemma 2.3: Suppose that Br(d) is invariant for (1) and
that x0 ∈ Br(d). If there exist d̂ ∈ Rn and α > 0 such that
Ad̂ + LC + αI ≺ 0, then Br̂(d̂) is invariant for (x̂(t))t≥0
under the dynamics (3), where

r̂ =
1

α
sup

v∈Br(d−d̂)

∥∥∥LCv −Ad̂−N(d̂)d̂
∥∥∥
2
. (10)

Proof: Suppose that d̂ ∈ Rn is such that Ad̂ + LC +
αI ≺ 0. Then,

˙̂x = (Ad̂ + LC)(x̂−d̂) +N(x̂− d̂)(x̂− d̂)

− (LC(x− d̂)−Ad̂−N(d̂)d̂).

If D(x̂) := 1
2‖x̂− d̂‖

2
2, then

Ḋ(x̂) = (x̂− d̂)T (Ad̂ + LC)(x̂− d̂)

− (x̂− d̂)T (LC(x− d̂)−Ad̂−N(d̂)d̂)

< −α‖x̂− d̂‖22
− (x̂− d̂)T (LC(x− d̂)−Ad̂−N(d̂)d̂).

By assumption, x(t) ∈ Br(d), for any time t ≥ 0. Therefore,

x(t)− d̂ ∈ Br(d− d̂), t ≥ 0.

The result follows since Ḋ(x̂) < 0 whenever x̂ ∈ Br̂(d̂),
with r̂ given by (10).

To study observer convergence, it is useful to rewrite the
nonlinear part of the observer error dynamics (4). For x, x̂ ∈
Rn,

N(x)x−N(x̂)x̂ = N(x− x̂)x−N(x̂)x̂+N(x̂)x

= N(x− x̂)x+N(x̂)(x− x̂)

= N(e)x+N(x)e−N(e)e

= N(e)(x− e/2) +N(x− e/2)e

= N(e)((x+ x̂)/2) +N((x+ x̂)/2)(e)

= (A x+x̂
2
−A)e. (11)

Hence, the error dynamics (4) may be written

ė =
(
A x+x̂

2
+ LC

)
e. (12)

The observer error dynamics can therefore be considered as
a linear time varying system, and the problem of observer
design is to find a gain L which stabilizes (12). The proposed
strategy for constructing a convergent observer is split into
two stages: observer design; and convergence certificate. This
strategy, stated formally as Algorithm 2.4 and Theorem 2.5
below, can be described as follows.

Observer design: Use Proposition 2.2 to calculate an
invariant set Br(d) for the state (x(t))t≥0. For the observer
(x̂(t))t≥0 to converge to the state, it is sensible to assume
that its invariant set contains Br(d). Hence, we search for a
gain L which stabilizes (12) under the assumption

1

2
(x(t) + x̂(t)) ∈ S, t ≥ 0, (13)

for a pre-defined set S ⊇ Br(d).
To ensure that Lemma 2.3 can be used to construct an

invariant set for the observer, check that {α > 0 : ∃x ∈
Rn s.t. Ax + LC + αI ≺ 0} 6= ∅. The tuning parameters
α1, α2 are included in this stage, to provide control over
‖LC‖2. By Lemma 2.3, ‖LC‖2 influences the radius of the
invariant set calculated for (x̂(t))t≥0 in the second stage.

Convergence certificate: Once L has been calculated, we
wish to check whether the observer error converges to zero.
Use Lemma 2.3 to calculate an invariant set Bd̂(r̂) for
(x̂(t))t≥0. Consequently,

1

2
(x(t) + x̂(t)) ∈ B r+r̂

2

(
(d+ d̂)/2

)
, t ≥ 0. (14)

Hence, e(t)→ 0 if it can be verified that (12) is stable under
the assumption (14).

Algorithm 2.4 (Observer design):
(i) Use Proposition 2.2 to select d ∈ Rn, r > 0 such that

Br(d) is invariant for (1).
(ii) Select α1, α2 ≥ 0 and pick (yi)

N
i=1 ⊂ Rn such that

Br(d) ⊂ conv{yi : i = 1 . . . N}. Calculate positive
definite P ∈ Sn and R ∈ Rn×p such that:

P − α1I � 0; (15)[
α2In RC
(∗) α2Ip

]
� 0; (16)

PAyi +ATyiP +RC + CTRT ≺ 0, (17)

for each i = 1 . . . N . Define L := P−1R.
(iii) Solve the semidefinite program

α∗ = max {α ∈ R : ∃x ∈ Rn s.t. Ax + LC + αI ≺ 0} .
(18)

Step (iii) of Algorithm 2.4 is a check to determine whether
it is possible to use Lemma 2.3 to calculate an invariant set
for the observer (x̂(t))t≥0. If a prospective candidate for L
is found for which α∗ > 0, the following result may be used
to verify observer convergence.

Theorem 2.5 (Convergence certificate): Suppose that Al-
gorithm 2.4 has been completed, providing an invariant set
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Br(d) for (x(t))t≥0, a candidate L = P−1R for the observer
gain and α∗ > 0. Assume that the observer (x̂(t))t≥0
satisfies the dynamics (3) and that x0 ∈ Br(d). Suppose
that (s∗, t∗, ξ∗) ∈ R+ × R+ × Rn is an optimal solution to

minimize s

subject to

[
s− tr‖LC‖2 (LC(td− ξ)−Aξ)T

(∗) (s− tr‖LC‖2)In

]
� 0

(19)
t(A+ LC) + (Aξ −A) + I � 0 (20)
Qξ = 0, i = 1, . . . , n, (21)

with variables (s, t, ξ) ∈ R+ × R+ × Rn. Then
(i) If t∗ > 0, the set Br̂(d̂) is invariant for (x̂(t))t≥0, for

r̂ := s∗, d̂ := ξ∗/t∗.
(ii) If (ŷi)

N
i=1 ⊂ Rn are such that

B r+r̂
2

((d+ d̂)/2) ⊂ conv{ŷi : i = 1, . . . , N}

and there exists positive definite P̂ ∈ Sn such that

P̂ (Aŷi + LC) ≺ 0, i = 1, . . . , N, (22)

the observer error satisfies e(t) → 0, t → ∞, for any
initial condition x̂0 ∈ Br̂(d̂).
Proof: (i) By (20), (21) and Lemma 2.3, Br̃(ξ∗/t∗) is

invariant for (x̂(t))t≥0 with

r̃ = sup
v∈Br(d−ξ∗/t∗)

t∗ ‖LCv −A(ξ∗/t∗)‖2 .

By (19),

r̃ = sup
v∈Br(0)

t∗‖LCv + LC(d− ξ∗/t∗)−A(ξ∗/t∗)‖2

≤ t∗r‖LC‖2 + ‖LCt∗d− (A+ LC)ξ∗‖2
≤ s∗.

Hence, Br̂(d̂) is invariant for (x̂(t))t≥0, for r̂ = s∗ and
d̂ = ξ∗/t∗.

(ii) Suppose that x0 ∈ Br(d) and x̂0 ∈ Br̂(d̂). Then by
invariance,

1

2
(x(t) + x̂(t)) ∈ 1

2

(
Br(d) +Br̂(d̂)

)
⊂ B r+r̂

2

(
(d+ d̂)/2

)
⊂ conv {ŷi : i = 1, . . . , N} , t ≥ 0.

It follows from (12) and (22) that e(t)→ 0, t→∞.
Remark 2.6: The choice of vectors (yi)

N
i=1 and (ŷi)

N
i=1

may be influenced by the dimension of the system under
consideration. For example, one possible choice is a cube in
Rn of smallest side-length containing the ball Br(d) ⊂ Rn,
which requires N = 2n. However, for large dimensions n,
solving the associated semidefinite program may be com-
putationally intractable. In this case, a more conservative
bounding set may be used. For example, the ‖ · ‖1-norm
ball

Br(d) ⊂ conv{d±
√
nrei : i = 1, . . . , n}

containing Br(d) requires N = 2n points. A simplex, which

can be represented as the convex hull of N = n + 1 points
in Rn, can also be used.
Ideally, the search for an observer gain L and invariant set
Br̂(d̂) would be performed simultaneously. The reason for
this is that the radius of the ball in (14) depends upon
r̂, which in turn depends upon LC via (10). Due to the
complexity introduced by the system’s non-linearity, this is
difficult to achieve if the search for P in Algorithm 2.4 is
conducted over Sn. However, if the search is taken over a
particular subset of Sn, defined in terms of the non-linearity
N , it is possible to remove the need to find Br̂(d̂). Define

SnN := {P ∈ Sn : eTPN(e)e = 0, e ∈ Rn}.

Since the energy preserving property (2) holds, it is the case
that SnN 6= ∅. Notice also that, since eTPN(e)e is linear in
P , it is easy to calculate SnN for a given non-linearity N .
The following result provides conditions for global observer
convergence.

Theorem 2.7: Suppose that Br(d), calculated by Propo-
sition 2.2, is invariant for (1) and let x0 ∈ Br(d). Pick
(yi)

N
i=1 ⊂ Rn such that Br(d) ⊂ conv{yi, i = 1, . . . , N}

and suppose that there exist positive definite P ∈ SnN and
R ∈ Rn×p such that

PAyi +RC ≺ 0, i = 1, . . . , N. (23)

Then if L := P−1R, the observer (x̂(t))t≥0 defined by (3)
satisfies e(t)→ 0, t→∞, for any initial condition x̂0 ∈ Rn.

Proof: Let V (e) = eTPe. Then by (11) and (12),

∇V · ė = eTP (A x+x̂
2

+ LC)e

= eTP (A+ LC)e

+ eTP (N(x)e+N(e)x−N(e)e)

(P ∈ SnN ) = eTP (Ax + LC)e.

(by (23)) < 0, e ∈ Rn.

Hence, e(t)→ 0, t→∞ and since x̂ does not appear in the
expression for ∇V · ė, the observer error converges to zero
for any initial condition x̂0 ∈ Rn.

III. OBSERVATION FOR FLUID SYSTEMS

Finite dimensional approximations of fluid flows satisfying
the Navier-Stokes equations can be represented in the form
(1), and consequently observers for fluid systems may de-
signed by the methods in Section II. For u : Ω ⊂ R3 → R3,
the incompressible Navier-Stokes equations are

∂u

∂t
+ (u · ∇)u = −∇p+

1

R
∇2u + f ,

∇ · u = 0,

where p : Ω → R represents the pressure, f : Ω → R3 is
an external force and R the Reynold’s number of the flow.
A common assumption [6], [15] is that the flow field can be
decomposed in the form

u(x, t) =

∞∑
i=1

ai(t)ui(x),
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and a finite dimensional approximation of the flow obtained
by considering the truncation u =

∑n
i=1 aiui.

A set of ordinary differential equations for the time-
dependent coefficients ai can be obtained via the method
of Galerkin projection (see e.g. [3]), leading to

ȧi =
〈f ,ui〉
‖ui‖2

− λi
R
ai +

∑
j,k

ajak
‖ui‖2

〈(uj · ∇)uk,ui〉, (24)

for each i = 1, . . . , n, where λi > 0 are fixed constants.
To remove the constant term from (24) it is assumed that
(24) has a known stationary point a = c. Making the
transformation x = a − c, the perturbations about c have
dynamics

ẋ = Ax+N(x)x, (25)

where

Ax :=
1

R
Λx+N(c)x+N(x)c, x ∈ Rn,

for Λ ≺ 0 and N : Rn → Rn×n has the form

N(x) =

n∑
i=1

xiQ
(i), x ∈ Rn.

Here, the matrices Q(i) ∈ Rn×n are anti-symmetric and
satisfy the additional property

Q
(i)
ij = 0, i, j = 1, . . . , n. (26)

As a consequence, N has the energy preserving property
(2). This additional structure allows the calculation of an
invariant set for the fluid system.

Proposition 3.1: For the dynamics (25) with stationary
point c ∈ Rn, there exists r > 0 such that Br(−c) is invariant
for (25).

Proof: Note that A−c = 1
RΛ ≺ 0. By Proposition 2.1

it follows that ‖x+ c‖22 is decreasing if

1

R
(x+ c)TΛ(x+ c)T + (x+ c)T

(
− 1

R
Λc+N(c)c

)
< 0.

Standard algebraic manipulation shows that the set of x ∈ Rn
for which the above inequality holds is equal to Rn\E, where
E is the ellipsoid

E :=

{
x ∈ Rn :

n∑
i=1

λi

(
xi −

R

2λi
(Λc+N(c)c)i

)2

≤
n∑
i=1

R2

4λi
(Λc+N(c)c)2i

}
The result follows if r > 0 is chosen such that E ⊂ Br(−c).

In order to more easily calculate the invariant set for a
fluid flow, it is convenient to select the basis functions ui
appropriately. For example, u1 may be chosen [3] to coincide
with the laminar solution to the flow. In this case c = e1.

Corollary 3.2: Suppose that c = e1. Then the ball
B√

λ1/λmin
(−c) is invariant for (25).

Proof: By (26), N(c)c = 0. Applying Proposition 3.1,

the associated ellipsoid is

E :=

{
x ∈ Rn : λ1

(
x1 +

1

2

)2

+

n∑
i=1

λix
2
i ≤

λ1
4

}
⊂ B√

λ1/λmin
(−c).

Consequently, Algorithm 2.4, Theorem 2.5 or Theorem
2.7 can be applied with state invariant set Br(d) =
Bλ1/λmin

(−e1). Even if it is not possible to prove global
observer convergence, the structure of the non-linearity N for
fluid systems implies that if Algorithm 2.4 can be completed,
the resulting observer is locally convergent.

Theorem 3.3: Suppose that Br(d) is invariant for
(x(t))t≥0, let (yi)

N
i=1 be such that Br(d) ⊂ conv{yi : i =

1, . . . , N} and assume there exist P ∈ Sn and R ∈ Rn×p
such that

PAyi +RC ≺ 0, i = 1, . . . , n.

Then if (x̂(t))t≥0 has dynamics (3) for L := P−1R, there
exists ρ > 0 such that ‖x0−x̂0‖2 < ρ implies e(t)→ 0, t→
∞.

Proof: Consider the error dynamics as a time varying
system by writing

ė = f(t, e) := (Ax(t) + LC)e−N(e)e, t ≥ 0.

Then the linearized error dynamics are

∂f

∂e

∣∣∣∣
e=0

= Ax(t) + LC.

The result follows from [9, Theorem 3.11], if it can be shown
the Jacobian J(t, e) := ∂f/∂e satisfies

‖J(t, e)− J(t, ẽ)‖2 ≤ L‖e− ẽ‖2, e, ẽ ∈ Rn, t ≥ 0,

for some constant L > 0. By property (26),(
∂N(e)e

∂e

)
ij

=

n∑
k=1

ekQ
(k)
ij , i, j = 1, . . . , n.

Hence, for any e, ẽ ∈ Rn and t ≥ 0,

‖J(t, e)− J(t, ẽ)‖2

=

∥∥∥∥∥
n∑
k=1

(ek − ẽk)Q
(k)
ij

∥∥∥∥∥
2

≤
√
n

∥∥∥∥∥
n∑
k=1

(ek − ẽk)Q
(k)
ij

∥∥∥∥∥
1

=
√
n max

1≤j≤n

n∑
i=1

n∑
k=1

|ek − ẽk||Q(k)
ij |,

≤
√
n max

1≤j≤n

n∑
i=1

(
n∑
k=1

|Q(k)
ij |

2

) 1
2

· ‖e− ẽ‖2.
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IV. EXAMPLE

We consider the Lorenz attractor, whose dynamics orig-
inate as a simplified form of the Navier-Stokes equations.
Consequently, the non-linear part of the systems has the
energy preserving property (2). In particular, the dynamics
have the form (1) with

A :=

 −10 10 0
28 −1 0
0 0 −8/3

 ,

N(x) :=

 0 0 0
0 0 −x1
0 x1 0

 , x ∈ R3.

Suppose that it is possible to observe only to first state:

y = Cx, C :=
(

1 0 0
)
.

The first step towards constructing a convergent observer is
to select Q which satisfies (6). Notice that

{d ∈ R3 : N(d)d = 0} = span{e2, e3} ∪ span{e1}.

We choose the larger space span{e2, e3} = kerQ, for

Q :=

 1 0 0
0 0 0
0 0 0


Proposition 2.2 implies that Br(d) is invariant for the state
(x(t))t≥0 with r = 100.70 and d = 37.76. In this case,

SnN = span
{

diag
(

1 0 0
)
, diag

(
0 1 1

)}
.

Solving Algorithm 2.4 (ii) with the restriction P ∈ SnN ,
tuning parameters α1 = 0.1, α2 = 103 and the condition
P < 10 · I gives

P (Ayi + LC) ≺ 0, i = 1, . . . , 8,

where

P = diag
(

10 0.1642 0.1642
)
∈ SnN ,

L =
(
−99.51 −599.43 0

)T
and (yi)

8
i=1 are the vertices of a cube of smallest side

length containing Br(d). Hence, Theorem 2.7 implies that
the resulting observer is globally convergent.

Observer design for the Lorenz attractor is considered in
[12]. Here, the co-ordinate transformation approach is used
and it is also assumed that C = (1 0 0). This approach cre-
ates an observer which appears to converge experimentally,
but the complexity of the co-ordinate transformation means
that it is not possible to prove convergence.

For the Lipschitz approach, suppose there exists γ > 0,
symmetric P � 0 and R ∈ Rp×n such that[

PA+ATP +RC + CTRT P
(∗) −I/γ2

]
≺ 0. (27)

It is easy to deduce (see e.g. [5], [13]) that if S is an invariant
set for the state and the non-linearity satisfies the Lipschitz

condition

‖N(x)x−N(y)y‖2 ≤ γ‖x− y‖2, x, y ∈ S,

then (3), for L = P−1R, is a convergent observer. With
respect to the Lorenz dynamics, the largest γ > 0 satisfying
(27) is γ = 2.67. However, letting x = (x1, x2, x3), y =
(y1, x2, x3) implies that

‖N(x)x−N(y)y‖2
‖x− y‖2

=
√
x22 + x23.

It is known that there exists x in the range of the Lorenz
attractor for which

√
x22 + x23 >

√
1500 and hence, the Lip-

schitz approach [1] cannot be used to construct a convergent
observer for the Lorenz attractor.

V. CONCLUSIONS

A method of observer design has been presented for a
class of non-linear systems whose non-linearity is energy
preserving. Sufficient conditions, which can be verified by
standard convex optimization methods, are given which
imply either local or global observer convergence. The results
are applied to show that there exists a globally convergent ob-
server for the Lorenz attractor. Design of globally convergent
observers for more complicated systems may be aided by the
introduction of a quadratic innovation term in the observer
dynamics. This will be the subject of future research.
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