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Abstract— This paper presents the results of using the En-
semble Kalman Filter (EnKF) for improving the ozone estima-
tions of the air quality model AURORA. The EnKF is built
around a stochastic formulation of the model, where some of
its parameters are assumed to be uncertain. These uncertainties
turn out to be the main reason behind the differences between
the model predictions and the real measurements. The filter
estimates these parameters as well as the ozone concentration
field by using ground-based measurements from the Airbase
database. The assimilation experiments are carried out over a
region that consists of Belgium, Luxembourg, and some small
parts of Germany, France and the Netherlands. The simulations
results show that the EnKF significantly reduces the error of
the ozone estimations.

I. INTRODUCTION

Data assimilation is the common name given to several

numerical techniques that combine the outputs of a numerical

model with observational data in order to improve the quality

of the model predictions. In data assimilation it is assumed

that both the model and the measurements are subject to

errors. These errors or uncertainties are defined in statistical

terms, and their specification plays a very important role in

the success or failure of the data assimilation.

Among the existing data assimilation techniques, the En-

semble Kalman Filter (EnKF) has gained a lot of popularity

since its introduction by Evensen in 1994 [1], given its

capability of handling nonlinear large-scale systems and its

relatively easy implementation compared to other approaches

where it is required to linearize the model and/or solve

an optimization problem. The Ensemble Kalman Filter is a

sequential data assimilation technique that uses Monte Carlo

or ensemble integration. By integrating an ensemble of model

states forward in time it is possible to calculate statistical

moments like mean and error covariances whenever such

information is required. Thus, all the statistical information
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about the predicted model state is contained in the ensemble

[2].

The EnKF has been successfully used in meteorology [3],

oceanography [4] and space weather forecast [5] [6]. In the

air quality field, this technique has been applied for example

to the Long Term Ozone Simulation (LOTUS) model [7] [8],

to the regional chemistry transport model LOTOS-EUROS

[9] [10] and to the TCAM (Transport Chemical Aerosol

Model) model [11]. In all the cases the technique has led

to better estimations of the pollutants under consideration.

Accurate estimation of tropospheric ozone is of great inter-

est given its harmful effects on human health and on natural

ecosystems. However this is not an easy task given that

ozone formation and accumulation are nonlinear processes

that depend on several chemical reactions. In addition, un-

certainty in the boundary conditions, meteorological patterns,

and emissions of its precursors (nitrogen oxides and volatile

organic compounds) among other factors, make this task even

harder. Here is where data assimilation techniques like the

EnKF play a very important role.

In this paper, we apply the EnKF technique to the air

quality model AURORA [12] in order to improve the ozone

estimations over a prescribed spatial domain. The approach

proposed not only estimates the ozone field but also some

uncertain correction factors.

This paper is organized as follows. Section II presents a

description of AURORA as well as the observation network

used for assimilation and validation purposes. In Section III,

a stochastic model of AURORA is derived and the EnKF

algorithm is described. Section IV presents the details of

the assimilation experiments as well as the results obtained.

Finally, in Section V we present some concluding remarks

and future research directions.

II. DESCRIPTION OF THE AURORA MODEL

AURORA (Air quality modelling in Urban Regions using

an Optimal Resolution Approach) is a three-dimensional

Eulerian model developed by VITO (Flemish Institute for

Technological Research) for simulating air pollution in the

lower troposphere at urban or regional scale [12]. The

model contains modules that describe (i) the transport by

diffusion and advection of a number of trace gas components

emitted both by anthropogenic and biogenic sources (ii) the

(photo)chemistry of this gas mixture resulting in formation

of secondary pollutants such as ozone and (iii) the loss of

these components by deposition.
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Fig. 1. Geographical location of the stations for ozone. The squares and
circles represent assimilation and validation stations respectively.

In this work AURORA was set up for a domain covering

Belgium, Luxemburg, and portions of Germany, France and

the Netherlands (see Figure 1). The horizontal domain was

divided into 11 x 15 grid-cells with a resolution of 25 km. For

the vertical domain, 15 layers were used to span an altitude

of 2000 m. The model was configured to simulate a two

week period starting at May 28th, 2005. During this period

elevated ozone concentrations were observed. The relatively

small number of grid-cells, allows us to significantly reduce

the computational burden during the simulation of the model,

and therefore it makes easier testing different settings for the

EnKF.

The air quality data for performing the assimilation ex-

periments are obtained from the Airbase database [13].

Only measurements from rural-background stations are taken

into account due to the spatial resolution of 25 km of

the AURORA model setup. Figure 1 shows the location

of the 31 air quality stations used along this study. From

this figure we can see two groups of them, namely, the

assimilation and validation stations. The first group is used

in the assimilation process to obtain the optimal estimate of

the state. The second group is not used in the assimilation,

but only to verify the results. The size of the assimilation

and validation sets is 27 and 4 respectively. The validation

set has been chosen such that the validation stations are

properly distributed along the spatial domain and surrounded

by nearby assimilation stations.

III. SEQUENTIAL DATA ASSIMILATION SCHEME

The deterministic model of AURORA can be compactly

written in the following way,

c(k + 1) = MA(c(k),u(k)) (1)

where c(k) is the state vector containing the concentrations

of the considered pollutants (O3,NOx, SO2,NH3,PM10,
etc.) at every grid-cell, u(k) is the vector that comprises

the inputs of the model such as the boundary conditions, the

emissions of several components (NOx, SO2, ETHE, PAR,

OLE, HCHO, etc.) and the meteorological conditions, and

MA(·) is the nonlinear state-space operator which computes

the concentrations at time k+1 from the concentrations given

at time k.

In order to apply the EnKF algorithm to AURORA, it

is required first to define a stochastic model of the system

that accounts for the model and measurement errors. It is

well known that the knowledge of the uncertainties both

in the model and in the measurements is crucial for a

successful data assimilation. In the next section, we discuss

the derivation of the stochastic representation of AURORA

and afterwards we describe the EnKF algorithm.

A. Stochastic state-space representation of Aurora

In AURORA, process inputs such as boundary conditions

and emissions, and model parameters such as deposition

and cloudiness, are multiplied by correction factors that in

principle can be estimated by the EnKF in order to reduce

the differences between the predictions made by the model

and the observations. The default value for these factors is

1, and they must be nonnegative. Since the idea of using

these factors is to somehow account for the uncertainty of

the boundary conditions, emissions, deposition, etc., each of

them is modelled as follows:

f(k) = max (0, 1 + λ(k)) (2)

where f(k) is the correction factor and λ(k) is a colored

noise process which has the following equation in scalar

form:

λ(k + 1) = αλ(k) +
(

σ
√

1− α2
)

w(k), (3)

w(k) ∼ N(0, 1).

Here, α ∈ [0 1] represents the time correlation parameter. If

α is set to zero, then we obtain a white noise sequence with

zero mean and standard deviation σ. When α is set to one, the

colored noise process is reduced to a constant value. In order

to ensure that a large number of samples of λ(k) maintain the

standard deviation σ, the initial sample, e.g. λ(0), should be

random distributed with the desired statistics. The temporal

covariance E (λ(k + l)λ(k)) of the colored noise is equal to

αl. λ(k) is a stationary Gaussian process with an exponential

covariance function that is parameterized by α = e(−Ts/τ)

[9], where τ is the time correlation length and Ts is the time

between two consecutive samples, which in our case is equal

to 1 hour. The fact of using colored noise for modeling the

factors avoid the introduction of rapid fluctuations that occur

when only white noise is used.

Similarly as it was done in [9] and [7], the stochas-

tic model of AURORA is built by augmenting the

state vector of the model (1) with the vector λ(k) =
[λ1(k), λ2(k), . . . , λn(k)]

T
comprising the colored noise

process of every uncertain factor. The stochastic model is
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TABLE I

PERFORMANCE OF THE ENKF FOR DIFFERENT COMBINATIONS OF

UNCERTAIN FACTORS WHEN OZONE MEASUREMENTS ARE ASSIMILATED

Assimilation Validation

Stations Stations

RMSE of AURORA 29.1223 µg/m3 27.472 µg/m3

EnKF RMSE 15.9235 µg/m3 21.404 µg/m3

Case A Error reduction 45.32 % 22.09 %

EnKF RMSE 15.8485 µg/m3 19.6083 µg/m3

Case B Error reduction 45.58 % 28.62 %

EnKF RMSE 13.8361 µg/m3 18.9379 µg/m3

Case C Error reduction 52.49 % 31.06 %

EnKF RMSE 12.6167 µg/m3 17.7398 µg/m3

Case D Error reduction 56.68 % 35.43 %

RMSE calculated by using Equation (13)

then given by
[

c(k + 1)
λ(k + 1)

]

=

[

MA (c(k),λ(k),u(k))
Ψλ(k)

]

+

[

0

Σ

]

w(k)

(4)

with

w(k) ∈ R
n ∼ N(0, In),

Ψ ∈ R
n×n = diag ([α1, α2, . . . , αn]) ,

Σ ∈ R
n×n = diag

([

σ1

√

1− α2
1, σ2

√

1− α2
2, . . .

. . . , σn

√

1− α2
n

])

,

where n is the number of uncertain factors, α1, α2, . . . , αn

and σ1, σ2, . . . , σn are the time correlation parameters and

the standard deviations of the colored noise processes asso-

ciated to the factors.

If we define x(k) =
[

c(k)T ,λ(k)T
]T

as the new aug-

mented state vector, Equation (4) can be written more

compactly as

x(k + 1) = M (x(k),u(k)) +Gw(k). (5)

The nonlinear operator M describes the time evolution of

augmented state vector x(k) from time k to k+1, and Gw(k)

is the stochastic forcing term. The relation between the model

state x(k) and the Airbase observations y(k) is explained by

means of the following expression

y(k) = C(k)x(k) + v(k), v(k) ∼ N (0,R(k)) (6)

where C(k) is a linear observation operator that assigns

the concentrations of some grid-cells (where the stations are

located) at the bottom layer of AURORA to the correspond-

ing measurements from Airbase, and v(k) is a Gaussian

white noise vector with covariance R(k) that accounts for

the uncertainties in the Airbase measurements. Given that

the stations are not providing valid measurements all the

time, C(k) and v(k) must be properly adjusted within the

assimilation algorithm in order to cope with each particular

case.

B. Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a Monte Carlo

method that is based on the representation of the probability

density of the state estimate by a finite ensemble of N
possible states, x1(k),x2(k), . . . ,xN (k). This characteristic

allow the filter to be applied to large-scale systems where the

explicit storage and manipulation of the state error covariance

are impossible or impractical. In the EnKF formulation, it

is assumed that every ensemble member is a single sample

taken from the probability distribution of the true state.

Statistical information such as mean and error covariances

can be approximated with sample statistics whenever such

information is required.

The EnKF algorithm for the model (5)-(6) can be summa-

rized as follows [2]:

1) Initialization

First, generate an initial ensemble xa
1(k − 1),xa

2(k −
1), . . . ,xa

N (k−1) that properly represent the error statis-

tics of the initial guess x(k = 0) for the model state.

2) for k = 1, . . .

a) Forecast Step

• Update every ensemble member using (5),

xf
i(k) = M (xa

i (k − 1),u(k − 1)) +Gwi(k − 1)
(7)

wi(k − 1) ∼ N(0, I), ∀i = 1, 2, . . . , N

• Calculate the forecast ensemble mean,

x̄f(k) =
1

N

N
∑

i=1

xf
i(k) (8)

• Compute the forecast error covariance matrix

P
f(k) =

1

N − 1

N
∑

i=1

ξ
i
(k)ξ

i
(k)T (9)

ξi(k) = xf
i(k)− x̄f(k)

b) Analisys Step

• Compute the Kalman Gain

K(k) = P
f(k)C(k)T

(

C(k)Pf(k)C(k)T +R(k)
)

−1

(10)

• Update xf
i(k) to xa

i (k), for i = 1, . . . , N

xa
i = xf

i +K(k)
(

y(k) + vi(k)−C(k)xf
i(k)

)

(11)

vi(k) ∼ N (0,R(k))

• Calculate the state estimation (the analysis ensemble

mean)

x̂(k) = x̄a(k) =
1

N

N
∑

i=1

xa
i (k) (12)
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Fig. 2. Root mean square error of AURORA and the EnKF (case D) at the ozone assimilation stations.
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Fig. 3. Root mean square error of AURORA and the EnKF (case D) at
the ozone validation stations.

where y(k) is a vector with the available measurements at

time k. One of the advantages of this algorithm is that it is

not required to linearize the model, since the ensembles are

propagated by using the original nonlinear model operator. It

is important to remark that in the final implementation of the

EnKF, it is not necessary to explicitly compute the forecast

error covariance matrix Pf(k) for calculating the Kalman

gain (e.g. we can compute the matrix product PfC(k)T in a

recursive manner). This fact by the way, makes this algorithm

appropriate for being used with large-scale systems.

For most practical applications, the most time consuming

part of the EnKF algorithm is the evaluation of the ensembles

in (7). Therefore, the computational load is approximately

N model evaluations. The errors in the state estimate are

of statistical nature and decrease slowly with the number

of ensemble members. This diminution is proportional to

1/
√
N [6]. This is one of the very few drawbacks of this

Monte Carlo approach.

IV. ASSIMILATION RESULTS

As it was explained in Section III-A, the stochastic model

of AURORA is constructed by considering some correction

factors uncertain, and consequently the parameters and/or

inputs that are multiplied by them. In this study, we

have worked with the factors associated to the boundary

conditions and deposition of the ozone, the cloudiness,

and the emissions of nitrogen oxides (NOx) and Volatile

Organic Compounds (VOCs). All of them play an important

role in the formation and/or destruction of the ozone. In

the current setup, the north, south, west and east boundary

conditions are multiplied by the same correction factor. For

the NOx (NO and NO2) and VOCs (ETHE, PAR, OLE,

XYL, HCHO, RCHO, TOL, CRES, and ISOP) emissions,

a single factor is used in each case. After playing with

different combinations of the aforementioned factors, we

found that the most representative results were achieved

with the following combinations:

• Case A

– Correction factor 1: Boundary conditions of the

ozone

• Case B

– Correction factor 1: Boundary conditions of the

ozone

– Correction factor 2: Deposition of the ozone

• Case C

– Correction factor 1: Boundary conditions of the

ozone

– Correction factor 2: Deposition of the ozone

– Correction factor 3: Cloudiness

• Case D

– Correction factor 1: Boundary conditions of the

ozone

– Correction factor 2: Deposition of the ozone

– Correction factor 3: Cloudiness

– Correction factor 4: NOx emissions

– Correction factor 5: VOCs emissions.

As it is stated in [7], the specification of the model

error statistics, that is, the uncertainty in the colored-noise
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processes λ’s, should be chosen on the basis of expert

opinions. In our case, a standard deviation of 0.8 was set to

the factors that multiply the boundary conditions of the ozone

and the cloudiness parameter. For the factors associated to the

deposition of the ozone and the NOx and VOCs emissions, a

standard deviation of 0.5 was considered. A time correlation

length τ of 6 hours was used for all the factors. Now, for the

ozone observations provided by Airbase, it was assumed an

error of 7% of the measured concentration with a minimum

value of 1µg/m3.

A 404 hours period starting on May 28th, 2005 at midnight

was chosen to carry out the assimilation experiments. This

period was selected because during that time a serious ozone

episode took place.

The assimilation experiments were carried out in a single

workstation, a dual Opteron 250 with 4GB of RAM memory.

The number of ensemble members has been set to 80, and in

average every assimilation experiment took about two hours

and a half.

Table I shows the global errors between the observations

and the estimations made by both the model and the EnKF.

The statistical measure used in this table for comparing the

different estimations is the Root Mean Square Error (RMSE),

which is defined as follows:

RMSE =

√

√

√

√

1

NsNh

Ns
∑

i=1

Nh
∑

k=1

(

yMi (k)− yOi (k)
)2

(13)

where Ns and Nh are the number of stations and the number

of hours respectively, and yMi (k) and yOi (k) are the estimated

and measured concentrations of the ith station at time k.

Giving that AURORA is not covering an isolated region,

the boundary conditions play a very important role in the

quality of the model predictions. This can be corroborated

by the results obtained in the case A (see Table I), where the

error in the assimilation and validation stations is reduced

by 45.32 % and 22.09 % respectively. Bear in mind that this

significant improvement was achieved just by considereing

uncertain the boundary conditions of the ozone. When the

deposition of the ozone is also considered (case B), the error

in the validation stations is smaller than in the case A, in

spite of the fact that in both cases the error reduction in

the assimilation stations is practically the same. From Table

I it is clear that adding the cloudiness (case C) to the list

of uncertain parameters improves the EnKF estimations for

all the stations. However, the best results are obtained in

the case D, where not only the boundary conditions, the

deposition and the cloudiness are assumed to be uncertain

but also the NOx and VOCs emissions. In this case, the

error is decreased by 56.68 % for the assimilation stations,

while for the validation set an error reduction of 35.43 % is

achieved.

In the remainder of this section we will present some of

the results obtained in the case D. Figures 2 and 3 show the

RMSE of every assimilation and validation station along the

period of interest for AURORA and the EnKF. This RMSE
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Fig. 4. Average of the ozone concentration over the assimilation stations.
Starting date: May 28th, 2005.
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Fig. 5. Average of the ozone concentration over the validation stations.
Starting date: May 28th, 2005.

has been computed in the following manner:

RMSEstation =

√

√

√

√

1

Nh

Nh
∑

k=1

(yM(k)− yO(k))
2

(14)

where Nh is the number of hours, and yMi (k) and yOi (k) are

the estimated and measured concentrations of a given station

at time k.

As a result of using the EnKF, the errors in the assimilation

stations have been remarkably decreased. The largest error

reduction takes place in the station 23 (69.84 %), and the

smallest one occurs in the station 17 (35.83 %). As it was

mentioned in Section II, we use the validation stations for

verifying the assimilation results and evaluating the impact of

the data assimilation on the covered region. From Figure 3,

it is clear that the error in every validation station has been

lessened after using the EnKF. The largest (49.39 %) and

the smallest (24.97 %) error reduction arise in the stations

29 and 32 respectively.

Figure 4 shows the average of the ozone concentration

over the assimilation stations. Likewise in Figure 5, we

can observe the time evolution of the average of the ozone

concentration over the validation stations. From these figures,
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it is evident that the estimations made by the EnKF are

notably more accurate than the ones made by AURORA.

Keep in mind that for the case of the validation stations, no

local measurements were used, and therefore the improve-

ment observed is the consequence of the estimation of the

correction factors by using observations from nearby stations.

Although in the current setup the EnKF increases the

quality of the ozone estimations, this does not imply that

for other pollutants the estimation error is decreased. In fact

it might be increased. We have for example the NOx case.

It was observed that the estimation error was reduced at

some monitoring stations, but increased at others. The EnKF

corrects the NOx emissions (case D) to improve the ozone

estimations regardless the effect on the estimation of the

NOx field. A straightforward way of addressing this issue

is by using not only ozone observations but also NOx mea-

surements. Nevertheless, in this case it would be expected to

get a smaller improvement in the ozone estimations since the

EnKF would have to deal with two closely related pollutants

at the same time.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the results of applying

a sequential data assimilation scheme, the EnKF, to the air

quality model AURORA. Ground-based measurements from

the Airbase database have been used to drive the assimi-

lation process. In this study, the stochastic formulation of

AURORA required by the EnKF was derived by considering

uncertain some model parameters that have a key role in

the formation/destruction of the ozone. It was observed that

one of the most critical parameters is the factor associated

to the boundary conditions. This is not a surprising result

given that the region under consideration is not isolated and

consequently the pollution of the adjacent regions have a

significant impact on the local dynamics. In addition, the

small size of the considered area and the coarse grid, raise the

importance of the boundary conditions. The EnKF managed

to significantly reduce the error in the ozone estimations.

The best results were obtained when the correction factors

associated to the boundary conditions and the deposition of

the ozone, the cloudiness and the NOx and VOCs emissions

were estimated by the filter.

Future work will be focused on incorporating more pol-

lutants in the current assimilation scheme, and on applying

the EnKF algorithm to AURORA model setups with higher

spatial resolution and for longer periods.
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