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Abstract—In this paper, we show on a particular
example that any Almost Controllability Subspace can
also be interpreted as a subspace that can be made
unobservable by means of a P.D. feedback. This is
done using singularly perturbed techniques for ana-
lyzing the high gain feedbacks related to the Almost
Controllability Subspace.

Notation

Script capitals V , W , . . ., denote linear spaces with elements
v, w, . . .; {0} is the zero subspace. The dimension of a space
V is denoted dim(V ). The direct sum of independent spaces
is written as ⊕. Capital letters X, denote both, matrices
X ∈ Rϕ×ρ, and linear maps X ∈ V → W . Given a linear map
X : V → W , Im X = XV denotes its image, and Ker X denotes
its kernel. For the special map, B : U → X , its image is
denoted by B. We write X−1T for the inverse image of the
subspace T by the linear map X. I stands for the identity
operator. ei stands for the vector with a 1 in its i-th component
and 0 in its other components. {Bi}ki=1 denotes a chain in
B, namely B ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bk. AF denotes A + BF . ‖v‖
stands for the Euclidean norm,

√
vT v. d (x, S ) denotes the

distance of a vector x ∈ X to the subspace S ⊂ X , namely
inf
x′∈S

‚‚x− x′
‚‚ and d∞ (x(t), S ) = sup

t∈R+
{d (x(t), S )}.

In denotes the identity matrix of size n×n. BDM {H1, . . . , Hn}
denotes a block diagonal matrix whose block diagonal ma-
trices are {H1, . . . , Hn}. R+ = {r ∈ R : r ≥ 0} (similar for Z),
R∗+ = R+ \ {0} and N = Z+ \ {0}. C∞(R+, Rq) is the set of in-
finitely differentiable functions mapping from R+ to Rq. We
write: f(ε) = O (ϕ(ε)) when there exist ε∗ > 0 and K > 0 such
that |f(ε)| ≤ Kϕ(ε) for ε ∈ (0, ε∗) and ϕ(ε) > 0. g +O (ϕ(ε))

means: g + f(ε) with f(ε) = O (ϕ(ε)) [8].

I. Introduction

With the seminal papers of Brunovsky [7] and Morse
[10] began the structural study of linear systems. They
made it possible to tackle control problems from a very
formal point of view, and to understand how systems
structures play a deep role in the solvability of such
control problems.

In particular [10] is one of the key papers about
structure and geometric approach. More precisely, some
important structural properties can be interpreted in
terms of the (A,B)–Invariant and Controllability Sub-
spaces, which are related with the maps of the state space
representations of the systems. In a very simplistic way,
these subspaces tell us which are the parts of the system,
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which can be made unobservable (made invariant inside
the kernel of the output map) by state feedback, and
for some part with assignable dynamics. This was the
starting point for a systematic study of the structure
of linear systems. In the important works of Wonham
[13] and Basile and Marro [2] the principal results of the
geometric approach are summarized.

A second milestone occurred with Willems’ introduc-
tion of the Almost (A,B)–Invariant and Almost Control-
lability Subspaces, which are related with the maps of the
state space representations of the systems [14], [15], [16].
These subspaces are useful when non exact solutions are
looked for to some control problems. Almost Invariance
and Almost Controllability have been connected with the
use of high gain state feedback, as approximations of
distributional state feedbacks.

In this paper we continue the study of [5] with re-
spect to the comparison of the high gain control laws,
based on some Almost Controllability Subspace, with the
P.D. control laws. In Section II, we recall the principal
characteristics of the Almost Controllability Subspaces.
In Section III, we recall the characterization of the high
gains of [12]. In Section IV, we analyze the closed loop
system using the singularly perturbed techniques [9].
For the sake of shortness this is done by means of an
illustrative example. In Section V, we show that the high
gain feedback proposed by Trentelman also tends to a
P.D. feedback. In Section VI, we show that the Supremal
Almost Controllability Subspace contained in K = Ker C,
S∞K , is indeed the (supremal) differential redundant space
of the system obtained after appling a P.D. feedback, bR∗a.
And in Section VII, we conclude.

II. Almost Controllability Subspaces

In this paper we consider the input/state system [11],
Σi/s =

“
R+,U ×X , B[A,B]

”
, with behavior, B[A,B]:

B[A,B] =


(u, x) ∈ C∞(R+,U ×X )

˛̨̨
ˆ

(Id/dt−A) −B
˜ ˆ

xT uT
˜T

= 0

ff (1)

where u ∈ U ≈ Rm is the input variable and x ∈ X ≈ Rn is
the state variable; we assume that B is monic.

Let us write the definition and some geometric char-
acterizations of the Almost Controllability Subspaces:

Definition 1 ([14]): A subspace Ra ⊂ X is said to be
an Almost Controllability Subspace if ∀ x0, x1 ∈ Ra, ∃ T > 0

such that ∀ ρ > 0 ∃ (u, x) ∈ B[A,B] with the properties that
x(0) = x0, x(T ) = x1 and sup

t∈R+
inf

x′∈Ra

‖x(t)− x′‖ ≤ ρ.
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Let K be a subspace of X , then the subspace S∞K is
the limit of the non decreasing algorithm:

S 0 = {0}; S µ+1 = K ∩ (AS µ + B), µ ∈ Z+ (2)

Corollary 2 ([14], Corollary 1.23–[12]): A subspace
Ra of X is an Almost Controllability Subspace if and only
if there is a linear map F : X → U and a chain {Bi}ki=1 in
B such that Ra = B1 +AFB2 + · · ·+Ak−1

F Bk. Moreover,
there exist a k ∈ Z+, k ≤ dim Ra, a chain {Bi}ki=1 in B and
a linear map F ∗ : X → U such that (i ∈ {1, . . . , k}):

Ra = B1 ⊕AF∗B2 ⊕ · · · ⊕Ak−1
F∗ Bk, B1 = Ra ∩B

dim Bi = dimAi−1
F Bi = dim S i − dim S i−1 (3)

where the S i are the steps of algorithm (2) with K = Ra.
Theorem 3 ([14], Theorem 1.24–[12]): Let K be a

subspace of X and R∗a,K be the Supremal Almost Con-
trollability Subspace contained in K . Then:

R∗a,K =
n
x0 ∈ K

˛̨
∀ ρ > 0 ∃ (u, x) ∈ B[A,B], x(0) = x0,

such that x(T ) = 0 and d∞ (x,K ) ≤ ρ
o

(4)

Moreover, R∗a,K = S∞K .
The following Lemma gives a nice space decomposi-

tion, in terms of a suitable feedback:
Lemma 4 (Lemma 1.15–[12]): Let K be a subspace of

X . There are subspaces X1, X2 and X3 of X and U1,
U2 and U3 of U , a linear map F ∗ : X → U , an integer
k ≤ dim K and integers ri, such that: 1) S∞K = X1 ⊕X2,
2) X = X1 ⊕X2 ⊕X3, 3) AF∗X1 ⊂ X1 ⊕X2, 4) BUi ⊂ Xi,
i ∈ {1, 2, 3}, 5) When applying the state feedback
u = F ∗x+ ū to (1), then under the decompositions X

= X1 ⊕X2 ⊕X3 and U = U1 ⊕U2 ⊕U3, the state space
representation is:

dx
dt

=

24 A11 A12 A13

A21 A22 A23

0 A32 A33

35
| {z }

AF∗

x+

24 B1 0 0
0 B2 0
0 0 B3

35
| {z }

B

ū (5)

where:1 (a) X2 = Im A21 ⊕ Im B2, (b) let A21 = PA21A21,
where PA21 is the natural projection on Im A21 along
Im B2, then X1 = A−1

11 Im B1 ⊕Ker A21 and Im A21 ≈ Im B1,
(c) the associated pencil,

»
λI−A11 −B1

A21

–
, λ ∈ C, only

contains infinite elementary divisors, namely the stan-
dard controllable triple (A21, A11, B1) is prime [10].
Morse [10] introduced the prime systems, which
roughly speaking are controllable and observable sys-
tems, represented by a (C,A,B) state space form.
In his Theorem 3.1 shows that there exist, F

and L, such that: (A+BF − LC) ∼ BDM {A1, . . . , Am},
B ∼ BDM {B1, . . . , Bm}, and C ∼ BDM {C1, . . . , Cm}; where:

Ai =

264 0 1 0 · · · 0
· · · · · · ·
0 · · · · 0 1
0 · · · · · 0

375, Bi =

26664
0

.

.

.
0
1

37775, CTi =

26664
1
0

.

.

.
0

37775.

1These geometric properties directly follow from the
matricial expressions of Trentelman [12]. For example, for
item a): Ker [A21 B2]T = {0} implies X2 = Im A21 + Im B2 and
dim X2 = rank A21 + rank B2 implies X2 = Im A21 ⊕ Im B2.

III. High Gain Feedback

High gain feedback for Almost Controllability Sub-
spaces is characterized in the next Theorem:

Theorem 5 (Th. 2.32–[12], 2.35–[12], & L. 2.34–[12]):
Let S∞K be the Supremal Almost Controllability Subspace
contained in K and

˘
Bi

¯k
i=1

be a chain in S∞K ∩B.
Let F ∗ : X → U be a linear map satisfying (3).
Let, L1, · · · ,Lk, be subspaces of S∞K such that:

Li = bi ⊕AF∗bi + · · ·+⊕AF∗ni−1bi, i ∈ {1, . . . , k} (6)

where span{b1, · · · , bk} = B. Let N ∈ N and ε ∈ R∗+ such
that:2 N ≥ max {|λ| | λ ∈ σ(AF∗ )} and ε < 1/N .
Then, for each i ∈ {1, . . . , k}, there exist a sequence of
(A,B)–Invariant Subspaces, {Li(ε)}, such that3 lim

ε→0
Li(ε) =

Li, respectively, and they are generated by the sequences
of vectors,

˘
xi,1(ε, ūi), · · · , xi,ki (ε, ūi)

¯
, defined recursively

by (i ∈ {1, . . . , ki} and Būj ∈
˘
Bi

¯ki
i=1

): 4

xbi,j(ε, ūi) =
`
I− εAF∗

´−1
Būi,

xbi+1,j(ε, ūi+1) =
`
I− εAF∗

´−1
AF∗x

b
i,j(ε, ūi).

(7)

Moreover, for a given sequence of friend feedbacks [13],˘
Fi : Li(ε)→ U

¯
, such that:

Fixi,j(ε, ūj) = − (1/ε)i ūj , (8)

let (Fx, x) ∈ B[AF∗ ,B], where F |Li(ε) = Fi and with
x(0) = x0 ∈ S∞K , then for all ρ ∈ R∗+ there exists a K ∈ N
such that for all ε ≤ 1/K: d∞

`
x,S∞K

´
≤ ρ

A. Illustrative Example (Part 1)

Let us consider the state space representation (5) with
the following matrices:5

A11 =

24 0 0 0
0 0 1
0 0 0

35 , A12 = A13 = A32 =

24 0 0 0
1 1 1
0 0 0

35 ,

A21 =

24 1 0 0
0 1 0
0 0 0

35 , A22 =

24 0 1 0
0 0 1
0 0 0

35 , B2 = B3 =

24 0
0
1

35 ,

A23 =

24 1 1 1
1 1 1
0 0 0

35 , A33 =

24 −1 0 0
1 0 1
0 0 0

35 , B1 =

24 1 0
0 0
0 1

35 ,

(9)
with: x =

ˆ
xT1 xT2 xTa

˜T , x1 =
ˆ
x1,1 x1,2 x1,3

˜T ,
x2 =

ˆ
x2,1 x2,2 x2,3

˜T and xa =
ˆ
xa,1 xa,2 xa,3

˜T ;
the subspace K is defined as follows:

K = Ker

»
0 0 0 0 0 0 0 a b
0 0 0 0 0 0 0 c d

–
| {z }

C

, (10)

where: ad 6= cb. Note that: σ(AF∗ ) =
˘

2.15, −0.57± 0.37ı,

−1, 0, 0, 0, −1, 0
¯
.

Following Theorem 5, hereafter we synthesize the high
gain feedback.

2This condition guarantees the invertibility of (I− εAF∗ ).
3See Appendix II.
4See Section 2.4–[12]
5Let us note that (3.a) implies that: S∞K ⊂ 〈AF∗ |K ∩B 〉, then

the couple (A22, B2) is also controllable, and it can be carried into
its Brunovsky canonical form.
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1) Subspaces Li and Li(ε): From (5), (9) and (6),
we get (ei ∈ R9): B1 = span{e1, e3, e6}, B2 = span{e1, e3},
B3 = span{e3}, AF∗B2 = span{e4, e2}, A2

F∗B3 = span{e5}.
Then, L1 = span{b1, AF∗b1} = span{e1, e4}, L2 = span{b2,

AF∗b2, A2
F∗b2

¯
= span{e3, e2, e5}, L3 = span{b3} = span{e6}.

Thus, the matrix, X0 ∈ R9×9, associated to the subspaces
Li is (R9 = L1 ⊕ L2 ⊕ L3 ⊕ span{e7, e8, e9}):

X0 =
ˆ
e1 e4 e3 e2 e5 e6 e7 e8 e9

˜
(11)

From (5), (9) and (7), we get (xbi,j ∈ R9):6

xb1,1 =
h

1 ε2

α1
0 − εα3

α1
− 2ε3η5
α1α5

0 0 ε2

α1α5
0
iT

xb1,2 =h
0 − 2εα2

α2
1

0 α4α5
α2

1

6ε2α6
(α1α5)2

0 0 − 2εα7
(α1α5)2

0
iT

xb2,1 =
h

0 − εα3
α1

1 − ε3

α1

ε2β5
α1

0 0 − ε3

α1
0
iT

xb2,2 =
h

0 α4α5
α2

1
0 3ε2α8

α2
1

− 2εα9
α2

1
0 0 3ε2α8

α2
1

0
iT

xb2,3 =
h

0 − 3εβ1
α3

1
0 − 3εβ2

α3
1

β3
α3

1
0 0 − 3εβ2

α3
1

0
iT

xb3,1 =h
0 − εβ4

α1
0 2ε2η5

α1
− εβ6
α1α5

1 0 − εβ4
α1α5

0
iT

(12)
Then, L1(ε) = span

n
xb1,1, x

b
1,2

o
, L2(ε) = span

n
xb2,1, x

b
2,2, x

b
2,3

o
,

L3(ε) = span
n
xb3,1

o
. Thus, the matrix, X(ε) ∈ R9×9,

associated to the subspaces Li(ε) is (R9 =

L1(ε)⊕ L2(ε)⊕ L3(ε)⊕ span{e7, e8, e9}):

X(ε) =
ˆ
xb1,1 xb1,2 xb2,1 xb2,2 xb2,3 xb3,1 e7 e8 e9

˜
(13)

2) High gain feedback: From (5), (9), (8), (12) and
(13), the high gain feedback, FTr(ε), is:6

FTr(ε) =

26664
−1/ε −1/ε2 0 0 0

0 0 −1/ε −1/ε2 −1/ε3

0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0 0

−1/ε 0 0 0

0 0 − δ1γ9
β7

−
“

1 + δ1γ9
β7

”
37775

L1(ε) -� L2(ε) -�

L3(ε)
-�

(14)
FTr(ε) = FTr(ε)X

−1
(ε) =2666664

−
2

ε
−3 −0 −

„
1

ε2
− 3

«
−
„

3

ε
− 6

«
1 −

„
3

ε2
− 7

«
−

3

ε
5 −

„
1

ε3
−

3

ε
− 6

«
0 0 0 0 0
0 0 0 0 0

−1 0 0 0

−
„

1

ε2
+

1

ε
− 6

«
0 0 0

−
1

ε
0 0 0

0 0 −1 −2

3777775+O (ε)

(15)

6 See Appendix I for the coefficients’ definitions. Note that all
the coefficients tend to 1 when ε→ 0.

3) Closed loop system: From (5), (9) and (15), the
closed loop system is represented by:

d
dt

2666666666664

ε2x1,1

x1,2

ε3x1,3

x2,1

x2,2

ε x2,3

xa,1
xa,2
xa,3

3777777777775
=

24 X11(ε) X12(ε) A13

A21 X22 A23

0 A32 X33

35x+

2666666666664

ε3vT1,1x
0

ε4vT1,3x

0
0

ε2vT2,3x

0
0
0

3777777777775
X11(ε) =

24 −2ε −3ε 0
0 0 1
ε3 −(3ε− 7ε3) −3ε2

35 , X12(ε) =24 −(1− 3ε2) −(3ε− 6ε2) −ε2
1 1 1

5ε3 −(1− 3ε2 − 6ε3) −(ε+ ε2 − 6ε3)

35 ,
X22 = A22 −B2BT2 , X33 = A33 +B3F3, F3 =

ˆ
0 −1 −2

˜
(16)

where: vi,j ∈ R9[ε].

IV. Singularly Perturbed Model

Let us express the closed loop representation (16) by
means of a singularly perturbed model [9]:

d
dt

2666664
x1,2

x2,1

x2,2

xa,1
xa,2
xa,3

3777775 =

2666664
0 1 1 1 1 1
0 0 1 1 1 1
1 0 0 1 1 1
0 0 0 −1 0 0
0 1 1 1 0 1
0 0 0 0 −1 −2

3777775

2666664
x1,2

x2,1

x2,2

xa,1
xa,2
xa,3

3777775

+

2666664
0 1 1
1 0 0
0 0 1
0 0 0
0 0 1
0 0 0

3777775
24 x1,1

x1,3

x2,3

35
(17)24 ε2 0 0

0 ε3 0
0 0 ε

35 d
dt

24 x1,1

x1,3

x2,3

35 =

24 −3ε2 −(1− 3ε2)
−(3ε− 7ε3) 5ε3

0 0

−(3ε− 6ε2) 0 0 0
−(1− 3ε2 − 6ε3) 0 0 0

0 0 0 0

35
2666664
x1,2

x2,1

x2,2

xa,1
xa,2
xa,3

3777775+

24 −2ε
ε3

0

0 −ε2
−3ε2 −(ε+ ε2 − 6ε3)

0 −1

3524 x1,1

x1,3

x2,3

35+

24 ε3vT1,1
ε4vT1,3
ε2vT2,3

35x
(18)

Let us note that:

det

0@λ
24 ε2 0 0

0 ε3 0
0 0 ε

35−
24 −2ε 0 −ε2

ε3 −3ε2 −(ε+ ε2 − 6ε3)
0 0 −1

351A
= ε3(ελ+ 1)(ελ+ 2)(ελ+ 3)

(19)

A. Slow Model

The slow model is obtained doing ε = 0 in (17) and
(18), namely:
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x̄2 = 0

d
dt
x̄a =

24 −1 0 0
1 0 1
0 −1 −2

35 x̄a
x̄1 =

24 −1 −1 −1
−1 −1 −1

−( d
dt

+ 1) −( d
dt

+ 1) −( d
dt

+ 1)

35 x̄a
(20)

The trajectories solution of (20) are:

x̄2(t) = 0

x̄a(t) = e−t
24 1 0 0`

t+ 1
2
t2
´

(1 + t) t
− 1

2
t2 −t (1− t)

35 x̄a(0)

x̄1(t) = −e−t
24 (1 + t) 1 1

(1 + t) 1 1
1 0 0

35 x̄a(0)

(21)

B. Fast Model

For obtaining the fast model we define the
boundary layer correction variables: x̂1,1 = x1,1 − x̄1,1,
x̂1,3 = x1,3 − x̄1,3 and x̂2,3 = x2,3 − x̄2,3, and the fast time
scale: τ = t/ε, namely (see (18) and (19)):

d
dτ

24 x̂1,1

x̂1,3

x̂2,3

35 =

24 −2 0 −ε
ε −3 −(1/ε+ 1− 6ε)
0 0 −1

3524 x̂1,1

x̂1,3

x̂2,3

35
(22)

The trajectories solution of (22) are:24 x̂1,1(τ)
x̂1,3(τ)
x̂2,3(τ)

35 = e−τ
24 e−τ 0
ε
`
e−τ − e−2τ

´
e−2τ

0 0

−ε
`
1− e−τ

´
−
`

1
ε

+ 1− 6ε+ ε2
´
− ε2e−τ +

`
1
ε

+ 1− 6ε− ε2
´

e−2τ

1

35 ·
·

24 x̂1,1(0)
x̂1,3(0)
x̂2,3(0)

35
(23)

C. Closed Loop Trajectories

From (21), (23) and Theorem 5.1-[9], there exists ε∗ > 0

(recall (19)) such that, for all ε ∈ (0, ε∗], the closed loop
trajectories solution of the singularly perturbed model
(17) and (18), are approximated for all t > 0 by:

xa(t) = e−t
24 1 0 0`

t+ 1
2
t2
´

(1 + t) t
− 1

2
t2 −t (1− t)

35xa(0) +O (ε)

x2(t) = e−t/ε
24 0

0
1

35 x̂s,3(0) +O (ε)

x1(t) = −e−t
24 (1 + t) 1 1

(1 + t) 1 1
1 0 0

35xa(0) +O(ε)+

e−
t
ε

264 e−
t
ε 0

0 0

ε
“
e−

t
ε − e−2 t

ε

”
e−2 t

ε

−ε
“

1− e−
t
ε

”
0

−
`

1
ε

+ 1− 6ε+ ε2
´
− ε2e−

t
ε +

`
1
ε

+ 1− 6ε− ε2
´

e−2 t
ε

375 ·
·

24 x̂1,1(0)
x̂1,3(0)
x̂2,3(0)

35
V. Trentelman’s P.D. Feedback

Let us note that the same average behavior, (x̄1, x̄2, x̄a),
of the slow model (20), with trajectories solution (21), is
also obtained by means of the following P.D. feedback:

u∞ =

24 0 BT1 X12(0) 0

0 −BT2 0
0 0 F3

35
| {z }

Fp

x+

24 BT1 0 0

0 BT2 0
0 0 0

35
| {z }

Fd

d
dt
x

(24)
Indeed, applying (24) to (5) and (9), we get the closed
loop system described by the implicit representation:

24 Y1 0 0
0 Y2 0
0 0 I3

35
| {z }

E∗

d
dt
x =

24 X11(0) X12(0) A13

A21 X22 A23

0 A32 X33

35
| {z }

A∗

x

Y1 = I3 − B1BT1 , Y2 = I3 − B2BT2

(25)

Comparing (25) with (16), we realize that (c.f. (20)):
If we do ε = 0 in (16), we precisely get the slow model
(25). Let us note that the P.D. feedback (24) is also
directely obtained from the Trentelman’s high gain feed-
back (15). Indeed, rewritting (15) as follows:

u =

24 0 0 0
0 0 0
0 0 F3

35
| {z }

Fp1

x+

»
BDM

˘
1/ε2, 1/ε3, 1/ε

¯
0

0 0

–
| {z }

G(ε)

·

·

0BBBBB@
24 0 BT1 X12(0) 0

0 −BT2 0
0 0 0

35
| {z }

Fp2

+O (ε)

1CCCCCAx

(26)
we get:

Fp = Fp1 + Fp2 and Fd = G(1)BT (27)

From (27.b), we have that (see (25) and (9)):

X = Im E∗ ⊕Ker E∗ and Ker E∗ = K ∩B (28)

VI. Approximation of Almost Controlled
Invariant Subspaces

In this Section we show that the Supremal Almost
Controllability Subspace contained in K = Ker C, S∞K ,
is indeed the Supremal Almost (E∗, A,B) Controllability
Subspace contained in K , bR∗a.
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a) The Supremal Almost (E, A) Controllability Sub-
space Contained in Ker C ( bR∗a0): Consider an implicit
representation, Σimp(E,A,B,C):

Edx/dt = Ax+Bu and y = Cx, (29)

where: E : X → X , A : X → X , B : U → X and
C : X → Y , and u ∈ C∞(R+,U ). The subspace,bR∗a0 = inf(bR0(E,A)), bR0(E,A) := { bR ⊂ K | bR = E−1A bR},

(30)
is the limit of the non-decreasing geometric algorithm:bR0

0 = K ∩Ker E; bRµ+1
0 = K ∩ E−1A bRµ

0 , µ ∈ Z+ (31)

bR∗a0 characterizes (together with A bR∗a0) the set of all the
trajectories, x ∈ C∞(R+,X ), of (29) due to pure differ-
ential actions, diu/dti, with no influence on the input-
output trajectories, namely: x = U0u+

Pν
j=1 Ujd

ju/dtj and
x(t) ∈ bR∗a0 ⊂ Ker C for all t ≥ 0. Bonilla et al [4] called bR∗a0
the differential redundant subspace (see also [3]).

b) The Supremal Almost (E, A, B) Controllability
Subspace Contained in Ker C ( bR∗a): The subspace,bR∗a = inf(bR(E,A,B)),bR(E,A,B) := { bR ⊂ K | bR = E−1(A bR + B)},

(32)

is the limit of the non-decreasing geometric algorithm:bR0 = K ∩Ker E; bRµ+1 = K ∩ E−1(A bRµ + B), µ ∈ Z+

(33)bR∗a characterizes the infimal subspace which can be
done differential redundant by means of a propor-
tional and derivative descriptor variable feedback,
u = Fpx+ Fddx/dt. The set of pairs, (Fp, Fd), for whichbR∗a = min(bR0((E −BFd), (A+BFp))) is called the friends set
of bR∗a, this set is denoted by F( bR∗a).

c) Equivalence between S∞K and bR∗a: Hereafter, we
prove that for E = E∗:

S∞K = bR∗a (34)

1) Let us first note that algorithms, (2) and (33), are
invariants under proportional feedback.

2) Let us show that bR∗a ⊂ S∞K : Indeed, applying
algorithm (33) to the implicit representation (29), we
get (recall (28) and (2)): bR0 = K ∩Ker E∗ = K ∩B

= S 1, and assuming that bRi ⊂ S i+1 for all 1 ≤ i ≤ µ,bRµ+1 = K ∩ E∗−1(A bRµ + B) ⊂ K ∩ E∗−1(AS µ+1 + B) =

K ∩ (I−BFd)−1(AS µ+1 + B) = K ∩ (AS µ+1 + B) = S µ+2.
Then: bRµ ⊂ S µ+1, for all µ ≥ 0.

3) Let us show the reverse inclusion S∞K ⊂ bR∗a:
Indeed, applying algorithm (33) to the implicit represen-
tation (29), we get (recall (28) and (2)): S 1 = K ∩B

= K ∩Ker E∗ = bR0 , and assuming that S i ⊂ bRi−1 for
all 2 ≤ i ≤ µ, S µ+1 = K ∩ (AS µ + B) ⊂ K ∩ (A bRµ−1 + B)

= K ∩ (I−BFd)−1(A bRµ−1 + B) = K ∩ E∗−1(A bRµ−1 + B) =bRµ. Then: S µ ⊂ bRµ−1, for all µ ≥ 1.
Let us note that Fp2 is indeed a projection on X2

(see (27), Lemma 4 and (9)). This fact guarantees
that: bR∗a = min(bR0(E∗, A∗)) (see also (35) and (36)), thus
(Fp, Fd) ∈ F( bR∗a) (c.f. (24)).

In Appendix III, we show some subspace computations
and numerical simulations for our illustrative example.

VII. Conclusion

In this paper, using singularly perturbed techniques,
we have shown on a particular example that the Trentel-
man’s high gain feedback (8), issued from Theorem 5,
also tends (when ε tends to zero) to a P.D. feedback,
which is directly obtained from (8) (see (27), (26) and
(14)). Thus, an Almost Controllability Subspace can also
be interpreted as a subspace that can be made unobserv-
able (when K = Ker C) by means of a P.D. feedback. In
fact, there are works relating S∞K with P.D. feedbacks
(c.f. [17] and [1]).

We have also shown that the Supremal Almost Control-
lability Subspace contained in K = Ker C, S∞K , is indeed
the Supremal Almost (E∗, A,B) Controllability Subspace
contained in Ker C, bR∗a. The importance of this fact is
that the subspace bR∗a, is also the limit of the sequences
of (A, B)–Invariant Subspaces, {Li(ε)}. So, the high gain
state feedback (8) is also an effective approximation of a
given P.D. state feedback ((26) for instance).
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[9] Kokotović, P. (1999). Singular Perturbation Methods in
Control: Analysis and Design. London: SIAM.

[10] Morse, A.S. (1973). Structural Invariants of Linear Multivari-
able Systems. SIAM J. Control 11(3), 446–465.

[11] Polderman, J.W., and J.C. Willems (1998). Introduction
to Mathematical Systems Theory: A Behavioral Ap-
proach. New York: Springer–Verlag.

[12] Trentelman, H.L. (1985). Almost Invariant Subspaces and
High Gain Feedback. Ph.D. Thesis, may 31, 1985. De-
partment of Mathematics & Computing Science, Eindhoven
Universityof Technology, Netherlands.

[13] Wonham, W.M. (1985). Linear Multivariable Control: A
Geometric Approach. New York: Springer-Verlag, 3rd ed.

[14] Willems, J.C. (1980). Almost A(mod)B–invariant subspace.
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Appendix I
Coefficients’ Definitions

α1 = ε3 − 2ε2 + ε+ 1, α2 = − ε
3

2
+ ε

2
+ 1, α3 = −ε2 + ε+ 1,

α4 = −ε3 + 3ε2 + 3ε+ 1, α5 = −ε+ 1, α6 = − 1
6
ε4 + ε3 − ε2

− 2
3
ε+ 1, α7 = ε4 − 3ε3

2
+ 1, α8 = − 2ε2

3
+ 2ε

3
+ 1, α9 = − 3ε3

2

+ε2 + 2ε+ 1, β1 = − ε
5

3
+ 2ε4 − ε3 − 5ε2

3
− ε+ 1, β2 = 2ε5

3
−ε4 − 2ε3 + ε2 + ε+ 1, β3 = 3ε6 − 3ε5 − 9ε4 − 2ε3 + 9ε2 + 3ε
+1, β4 = ε2 − ε+ 1, β5 = ε+ 1, β6 = −2ε+ 1, β7 = 3ε3 + 4ε2

+ε+ 1, δ1 = 3ε+ 1, γ9 = 3ε2 + 3ε+ 1, η5 = 1− ε
2

Appendix II
Convergence of Subspaces

In Trentelman’s thesis [12] is provided the following
useful criterion for the convergence of subspace:7

Lemma 6 (Lemma 2.29–[12]): Let {Vε}ε∈R∗+ and V be
subspaces of X of a given dimension. Then lim

ε→0
Vε = V if

and only if there is a basis {v1, . . . , vq} for V and bases
{v1(ε), . . . , vq(ε)} for Vε such that lim

ε→0
vi(ε) = vi, i = 1, . . . , q.

Appendix III
Subspaces computation and simulations

In order to light computations, let us define the

isomorphism, T =

24 T11 X11(0) 0
T21 T22 0
T31 X11(0) I3

35, where: T11 =24 −1 0 0
1 1 1
0 0 −1

35, T21 =

24 0 0 1
0 0 0
0 0 0

35, T22 =

24 1 0 0
0 1 1
0 0 −1

35,

and T31 =

24 0 0 0
1 0 1
0 0 0

35, then (see (25)):8

TA∗ =

24 X11(0) X12 A13

A21 X22 A23

0 0 X33

35 =, TE∗ = E∗, (35)

where: X12 =

24 1 0 0
0 0 0
0 1 0

35 and X22 =

24 0 0 0
0 0 0
0 0 1

35. Let

us compute (TE∗)−1TA∗ bR∗a (recall that S∞K = bR∗a):

(TE∗)−1TA∗ bR∗a = (TE∗)−1TA∗span{e1, e2, e3, e4, e5, e6}
= (TE∗)−1span{f4, f5, f2, f1, f3, f6} = bR∗a

(36)
Let us compute bR∗a0, S∞K and bR∗a (see (31), (33), (2), (35),
(25) and (10), and also (9) and (11)):bR0 = K ∩Ker E∗ = span{e1, e3, e6}bR1 = K ∩ (E∗)−1(AF∗ bR0 + B) = span{e4, e2; e1, e3, e6}bR2 = K ∩ (E∗)−1(AF∗ bR1 + B) = span{e5, e4, e2; e1, e3, e6}bR3 = K ∩ (E∗)−1(AF∗ bR2 + B) = bR2 = bR∗abR0

0 = K ∩Ker E∗ = span{e1, e3, e6} = span{b1, b2, b3} = S 1bR1
0 = K ∩ (TE∗)−1TA∗ bR0

0 = span{e4, e2; e1, e3, e6}
= span{b1, AF∗b1, b2, AF∗b2, b3} = S 2bR2

0 = K ∩ (TE∗)−1TA∗ bR1
0 = span{e5, e4, e2; e1, e3, e6}

= span
˘

b1, AF∗b1, b2, AF∗b2, A2
F∗b2, b3

¯
= S 3 = S∞KbR3

0 = K ∩ (TE∗)−1TA∗ bR2
0 = bR2

0 = bR∗a0 = S∞K = bR∗a
(37)

In Figs. 1 and 2, we show the behaviors of the tra-
jectory, x, in S∞K = L1 ⊕ L2 ⊕ L3 and L(ε) = L1(ε)⊕ L2(ε)⊕
L3(ε), of the system represented by (9) and fed back by
(14)-(13), ε = 1/100, with the initial condition: x(0)T =

X(ε)
h

1 25
103

1√
2

25√
2×103

5√
2×104 1 0 0 0

i
∈ L(ε).

7To be understood in the usual Grassmannian sense [6]; see
Section 2.4–[12] for details.

8We change the co-domain basis, {e1, . . . , e9} → {f1, . . . , f9}.

In Fig. 3, we compare the behaviors obtained with the
high gain feedback (14)-(13) and with the P.D. feedback
(24), (we use (21)), with the initial condition: x(0)T =

X(ε)
h

1 25
103

1√
2

25√
2×103

5√
2×104 1 1 1 1

i
.

t
‖L‖

‖X
/
L
‖

Fig. 1. Behavior of S∞K = L1 ⊕ L2 ⊕ L3

t
‖L(ε)‖

‖X
/
L

(ε
)‖

Fig. 2. Behavior of L(ε) = L1(ε)⊕ L2(ε)⊕ L3(ε).

(a) (b) (c)

ttt

(d) (e) (f)

tt
t

(g) (h) (i)

ttt

Fig. 3. (a) ‖x1‖, (b) ‖x2‖, (c) ‖xa‖, (d) ‖x̄1‖ (blue trajectory) and
‖x1‖ (green trajectory), (e) ‖x̄2‖ and ‖x2‖, (f) ‖x̄a‖ and ‖xa‖, (g)
‖x1‖ − ‖x̄1‖, (h) ‖x2‖ − ‖x̄2‖, (i) ‖xa‖ − ‖x̄a‖.
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