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Abstract— The paper investigates the design problem for
detection and isolation of faults in linear parameter varying
(LPV) systems by means of dynamic inversion where the system
matrix depends affinely from the parameters. A method for the
construction of the inverse, relying on the concept of parameter
varying invariant subspaces and related concepts of classical
geometrical system theory is presented. A discretization method
is proposed for the filter implementation that exploits the struc-
ture of the original LPV model, formulated in the continuous
time, while maintaining the stability of the zero dynamics of
the original system. The proposed method is illustrated through
an application example concerning the detection of aileron and
rudder faults on a commercial aircraft.

I. INTRODUCTION

The basic objective of a fault detection methodology
applied to dynamic systems is to provide techniques for
detection and isolation of failed components. Using a math-
ematical model of the system it is possible to exploit the
principle of analytical redundancy, which allows to check
discrepancies between the real behavior of the system and
its idealized mathematical description or model. Model-
based FDI rely on analytical redundancy to generate fault
indicators, named residuals.

There are many analytical redundancy methods available
in the literature for linear and nonlinear systems. While
recent nonlinear approaches are useful for the analysis, and
partly design of detection filters, they are largely incapable
for solving synthesis problems because of the computational
burden they usually pose for the implementation.

Linear parameter varying (LPV) modeling is known to be
a capable approach to alleviate this problem; it has been
useful in many areas of control and filtering in treating
nonlinear problems in the past years. The idea suggests that
a broad class of nonlinear system models can be converted
into a quasi-linear form, obtaining the so-called quasi-linear
parameter varying (qLPV) representations, in which the
state matrix depends affinely on a parameter vector. This
approach is particularly appealing when the nonlinear plant
can be considered as linear one assuming the presence of
a set of time-varying parameters in the system matrix. The
parameters are thought not necessarily known at design time
but always measurable. Then, the natively nonlinear problem,
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embedded in the framework of the linear parameter varying
model can be solved by using traditional linear techniques.

The paper considers the class of fault affected nonlinear
systems that can be represented in the qLPV form:

ẋ(t) = A(ρ)x(t) +Bu(ρ)u(t) + Lν(t), (1)
y(t) = Cx(t), (2)

where the system matrices A,Bu are parameter varying
matrices whose entries can be dependent on the scheduling
function ρ, which is determined by the measured variables
y. C is the observation matrix, x ∈ X ⊂ Rn is the state,
u ∈ U ⊂ Rmu and y ∈ Y ⊂ Rp is the input and output
functions, respectively. The fault signals, which enter the
state space in the directions L, are represented by the vector
variable ν ∈ F ⊂ Rmf . Throughout the paper a polytopic
parameter dependence is assumed, i.e.,

M(ρ(t)) = M0 + ρ1(t)M1 + . . .+ ρN (t)MN . (3)

It is assumed that each parameter ρi ranges between its
known extremal values ρi(t) ∈ [ρ

i
, ρi]. The parameter set

(ρ1(t), · · · , ρN (t)), t ∈ [0, T ], will be denoted by P . For
notational convenience the time dependency of the matrices
A(ρ) := A(ρ(y)) will be dropped where it is possible.

In the continuous-time LPV setting a number of results
for the solution of the FDI problem were obtained in the
past years, see, e.g., [1], [2], [3], [4], [5], [6], [7], [8]. The
continuous time approach, however, pose several limitations
on the applicability and implementation of the methods.
Moreover, continuous time LPV approaches do not directly
support filter synthesis when measurement data are available
at discrete time instants, by means of sampling.

On the other hand, a number of classical linear FDI meth-
ods seem particularly useful to nonlinear detection problems,
if applied in the LPV formulation (see, e.g., [12], [13],
[14]). A typical example is the inversion based detection
filter design: in contrast to the discrete time case continuous
time system inversion, see, e.g., [9], [10], [11], involves the
knowledge of the derivatives of measurement variables in
general. This, however, despite the innovative character of
the solution, poses severe performance limitation on practical
applications. In the discrete time framework these limitations
could largely vanish.

Discretization of linear time invariant (LTI) systems is
a fairly well understood area by now. Unfortunately, these
results can not be directly transferred to the LPV domain
due to the inherently time varying nature of the parameter
varying principles of the modeling. Since the first attempts
to the qLPV formulation of nonlinear problems were derived
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in the continuous-time setting the current methodology of
controller and filter design is based on a continuous-time
state space synthesis, almost exclusively. Only a few papers
deal with the LPV discretization problem, see [15], [16],
[17], and none of them focus on the design specific issues
of FDI filters.

The paper focuses on the inversion based detection filter
design method. Discretization might destroy the relative
degree of the plant, which is closely related to the invert-
ibility conditions. Thus the straightforward approach, i.e., to
perform the design on a discretized model, is not applicable
in general. The first part of the paper selects a discretization
method that fits the needs of the inversion based FDI filter
design problem.

Since the class of discretization schemes that preserves
the structures relevant to the invertibility imposes too strict
limitations for practical purposes a novel approach is pre-
sented: the design is performed in continuous time while
the zero dynamics and the directly invertible part of the
systems are discretized separately. The advantage of the
proposed discretization method is that exploits the structure
of the continuous time problem and maintains the stability
properties of the zero dynamics of the continuous system.

The structure of the paper is the following. Section II
presents the possible qLPV discretization schemes. Section
III provides a detailed analysis of inversion based filter de-
sign for the discretized qLPV system. The paper is concluded
with an application example concerning the detection of
aileron and rudder faults on a commercial aircraft.

II. DISCRETIZATION OF LPV SYSTEMS

Discretization of the qLPV system (1) can be related to the
numerical integration of the general nonlinear time varying
differential equations. The theory of numerical methods
for the solution of general ordinary differential equations
(ODEs) has reached certain maturity in the past decades,
and algorithms, mainly based on the Runge-Kutta or linear
multistep methods, have become widely available, see [18],
[19]. Numerical solutions of the initial value problem for
the system of ordinary differential equations discretize the
equations in time and produce sequences of points that
approximate the solutions over time.

Theory of dynamical systems focuses on the behavior
of the solution trajectories in a long run, often investigat-
ing the intricate geometry in the structures formed by the
trajectories. Geometric considerations have been introduced
quite recently to the numerical analysis of ODEs: instead
of concentrating only on the numerical approximation of a
single solution trajectory, the discretization, as a numerical
method, is considered as a discrete dynamical system which
approximates the flow of the differential equation. It turned
out that preservation of geometric properties of the flow not
only produces an improved qualitative behavior, but also
allows for a more accurate long-time integration, than using
general purpose solution methods alone, see [20], [21], [22].

To stress the importance of this point recall that con-
ventional discretization schemes neither preserve the relative

degree of the continuous time system nor the stability of the
zero dynamics it generates, in general, see [23], [24]. These
factors, however, are strongly connected to invertibility, i.e.,
to the applicability of inversion based FDI approach for a
given problem.

In the investigation of the problem the first observation that
should be made is that the target of the discretization, i.e.,
the plant (design) or the controller/filter (implementation),
imposes different requirements to the discretization scheme.

A. Discretization for implementation

Previous works on LPV discretization were mainly con-
cerned with a two step approach primarily focusing on the
implementation. By using this approach, the controller (filter)
is designed, in the first step, in continuous time producing
the continuous dynamics

ξ̇ = Ac(ρ)ξ +Bc(ρ)w. (4)

The discretization is applied then to the qLPV system (4) in
the second step.

The standing assumption here is that the qLPV system can
be approximated by the replacement system

˙̄ξ = Ac(ρd)ξ̄ +Bc(ρd)w, (5)

with sufficient accuracy, featuring a similar structure but a
different scheduling variable ρd, i.e., the zero order hold
(ZOH) approximation of the true scheduling variable ρ,
obtained by the sampling process. Having a digital controller
the input w is also a piecewise constant signal.

With these assumptions the discrete equivalent of Eq. (5)
can be written as

ζk+1 = Ad(ρd, k)ζk +Bd(ρd, k)wk, (6)

with wk = w(kTs), where Ts is the sampling interval. This
discretization corresponds to the formulation

Ad(ρd, k) = eTsAc(ρk), (7)

Bd(ρd, k) =

∫ Ts

0

eτAc(ρk)Bc(ρk)dτ,

with ρk = ρ(kTS). If the inverse of Ac(ρk) exists, one has

Bd(ρd, k) = Ac(ρk)−1(eTsAc(ρk) − I)Bc(ρk).

Matrix exponentiation is a costly operation, however. More-
over, since the method rests on strong nonlinear dependence
of ρ, the preservation of the structure on the parameter
dependence can not be ensured, therefore, it is not favored
in the computation.

Under the standing assumption (5) the various discretiza-
tion schemes differ in the type of approximation of the matrix
exponent in (7). In the paper we rely on the explicit scheme
derived from the Taylor approximation, i.e.,

Ad(ρd, k) = I +

NT∑
l=1

T ls
l!
Alc(ρk), (8)

Bd(ρd, k) = Ts(I +

NT−1∑
l=1

T ls
(l + 1)!

Alc(ρk))Bc(ρk)dτ,
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with NT ≤ 4. It is not hard to figure out that this corresponds
to the explicit Runge-Kutta method of order NT . For the
algorithmic details of other, possibly useful, schemes and
properties of the approximation error, the interested reader
is directed to [16].

Remark 1: Note that the standing assumption is reason-
able for implementation. It is possible, however, to integrate
(numerically) the system between two sampling times as an
open loop nonlinear system using a suitably chosen fixed step
size. The price for the possible increased accuracy is that the
discretized system will have considerably more states, i.e.,
the increased computational load.

B. Discretization for design

For design purposes the plant itself is to be discretized.
Thus, in contrast to the implementation oriented setting, one
should also cope with the problem of the unknown initial
condition. Therefore in addition to the standing assumption
(5) a detectability condition is also required. Then, instead
of the original system (1), one has to discretize an associated
observer, e.g.,

˙̂x(t) = Ao(ρ)x̂(t) +Bu(ρ)u(t) +By(ρ)y(t) + Lν(t), (9)

where Ao(ρ) = Ac(ρ) − By(ρ)C and x̂(0) = 0, with
a suitable observer gain By(ρ). The introduction of the
fictitious system (9) has the additional benefit, that one can
tune the numerical conditioning of the original system – by
modifying the ”spectrum” of Ac(ρ), i.e., it can be considered
as a preconditioning step for the discretization.

Remark 2: For a general nonlinear system described by
a qLPV model and for a given sampling time the standing
assumption (5) might not be hold. In that case one can apply
a general discretization scheme (e.g., a 4th order Runge-
Kutta), between two sampling times of (9) with a sufficiently
high gain.

Remark 3: Due to geometrical reasons system (9) has the
same invertibilty properties as the original system, i.e., the
same relative degree and zero dynamics.

III. INVERSION BASED FAULT DETECTION

The aim of this section is to give an overview of the condi-
tions and technical considerations related to left invertibility
of general input affine nonlinear and, in particular, linear time
varying systems. As a starting point, consider the continuous
time nonlinear system, which is affine in the faults as

ẋ = f(x) +

mf∑
i=1

gi(x)νi, (yj)j=1,p = (hj(x))j=1,p. (10)

Note that, for the sake of simplicity, the control input u is
considered zero in the following discussion by letting that
the results can be extended for the presence of known u(t),
easily. It is reasonable to assume that the rank of g = [gi] is
mf and the rank of h = [hj ]

T is p.
The concept of relative degree plays a key role in the

invertibility for both linear and nonlinear systems. Recall
that a system is said to have a vector relative degree r =
{r1, · · · , rp} at x0 if

i. LgjL
k
fhi(x) = 0 for j = 1, · · · ,m, i =

1, · · · , p, and k < ri − 1.

ii. matrix A(x) =
[
LgjL

ri−1
f hi(x)

]
i=1,p, j=1,m

has

rank m at x0,

where Lϕλ(x) =
∑n
i=1

∂λ
∂xi

ϕi(x) denotes the derivative of λ
along ϕ, Lkϕλ = Lϕ(Lk−1

ϕ λ). If the system has a well defined
relative degree, the unknown inputs can be expressed from y1

(r1)

...
yp

(rm)

 =


L
r11
f h1(x)

...

L
r1m
f hp(x)

+A(x)

 ν1

...
νmf

 , (11)

for details see [25].
The maximal controlled invariant distribution in Ker dh is

V ∗ = Ker span{ dLkfhi, i = 1, p, k = 0, ri − 1} provided
that rankA(x) = mf , [26]. Our interest in V ∗ is motivated
by its role played in the question of invertibility and the
construction of the reduced inverse of controlled systems:
let ξ = (ξi)i=1,p = Ξ(x) be the diffeomorphism defined
by ξi = (Lkfhi(x))k=0,ri−1 (ξ contains the corresponding
output derivatives), that can be extended to the whole state

space as
[
ξ
η

]
= Φ(x) :=

[
Ξ(x)
Λ(x)

]
.

Then the output of the dynamic inverse is given by
the expression ν(t) = A−1(ξ, η)(y(r) − Lrfh(ξ, η)) with
the detector dynamics η̇ = ∂xΛf |Φ−1 + ∂xΛgα|Φ−1 (zero
dynamics), where α(x) is the solution of A(x)α(x) =[
Lrif hi(x)

]
i=1,p

, provided that the invertibility condition

span{ gi(x) | i = 1,m} ∩ V ∗ = 0 holds. Observe that the
inverse does not inherit the structure of the original system,
i.e., it is not necessarily input affine. For details, see [27].

In the geometrical approach of fault detection for LTI
systems, certain unobservability subspaces play an important
role, see [28], [29]. Concerning invertibility, these subspaces
are related not only to the invertibility conditions but also
to the practical construction of the inversion based filter,
[9], [11]. The notion of unobservability subspaces extends
to the unobservability (co)distribution for the larger class
of nonlinear systems, [25], [30]. Due to the computational
complexity involved, these general nonlinear methods have
limited applicability in practice.

In the past years, the various LTI invariant subspaces
of geometric theory were extended to qLPV systems by
introducing the notion of parameter varying invariant sub-
spaces. With the introduction of parameter varying invariant
subspaces an important goal was to formulate conditions
that lead to the construction of computationally tractable
algorithms for affine parameter dependent problems, see
[31].

A. Parameter varying invariant subspaces

The classical invariant subspace concept, which is the
cornerstone of the classical LTI geometric theory, can be
extended to qLPV systems in the following way:

Definition 1: A subspace V is called parameter-varying
invariant subspace for the family of the linear maps A(ρ)
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(or shortly A-invariant subspace) if

A(ρ)V ⊂ V for all ρ ∈ P, i.e., for all t ∈ I. (12)
Definition 2: Let B(ρ) denote Im B(ρ). Then a subspace

V is called a parameter-varying (A,B)-invariant subspace (or
shortly (A,B)-invariant subspace) if for all ρ ∈ P either of
the following equivalent conditions holds :

A(ρ)V ⊂ V + B(ρ); (13)

there exists a mapping F ◦ ρ : [0, T ]→ Rm×n such that:

(A(ρ) +B(ρ)F (ρ))V ⊂ V. (14)
Analogously, one can introduce the notion of parameter-
varying (C,A)-invariant subspaces (or shortly (C,A)-
invariant subspaces). Let us denote the maximal A-invariant
subspace contained in the constant subspace K by 〈K|A(ρ)〉.
For the qLPV case one may consider the following defini-
tions:

Definition 3: A subspace R is called parameter varying
controllability subspace if there exists a constant matrix K
and a parameter varying matrix F : [0, T ] → Rm×n such
that

R = 〈A+BF|Im BK〉, (15)

where A+BF denotes the system A(ρ) +BF (ρ).
A subspace S is called an unobservability subspace asso-

ciated to an LPV system if there exists a constant matrix H
and a parameter varying matrix G : P → Rn×p such that

S = 〈Ker HC|A(ρ) +G(ρ)C〉. (16)
As in the classical case, the family of controllability

subspaces contained in a given subspace K has a maximal
element R∗ while the family of unobservability subspaces
associated to an LPV system containing a given subspace L
has a minimal element denoted by S∗.

If the parameter functions are differential algebraically
independent, then the parameter invariant subspaces, defined
above, coincide with the corresponding invariant distribu-
tion or codistribution, respectively. The parameter varying
versions of these invariant spaces are suitable objects to
define the required decompositions, therefore, they can play
the same role as their time invariant counterparts. To give
sufficient conditions for the solution of observer-based filter
design problems, therefore, it is enough to require that some
decompositions of the state equations can be made.

A key observation concerning the subject of this paper
is that the invariant subspaces which correspond to the
discretized qLPV system, which can be obtained through
(8), coincide with their continuous counterparts. This fol-
lows from the definition of these subspaces, and from their
computational algorithm. For details see [31].

B. Inversion in continuous-time

Let us consider the qLPV system

ẋ(t) = A(ρ(t))x(t) + L(ρ(t))ν(t), y(t) = Cx(t),

and let V∗ be the maximal (A,L)-invariant subspace con-
tained in KerC. The invertibility conditions can be formu-
lated as dim ImL = m and V∗∩ImL = 0. If these conditions

are fulfilled, one can always choose a coordinate transform
z = Tx where

T =

[
V∗⊥
Λ

]
, Λ ⊂ (ImL)⊥,

i.e., the system will be decomposed as:

ξ̇ = A11(t)ξ +A12(t)η + L̄ν, y = C1ξ (17)
η̇ = A21(t)ξ +A22(t)η. (18)

The component ξ can be expressed as ỹ = Sξ, where ỹ =[
y1, · · · , y(r1)

1 , · · · , yp, · · · , y
(rp)
p

]T
. The dynamic inverse is:

η̇ = A22η +A21S−1ỹ, (19)

ν = Fη + L̄−1S−1( ˙̃y − (ṠS−1 + SA11S−1)ỹ), (20)

where F is a suitable feedback that makes V∗ (A+ BF,L)
invariant. The rows of the coordinate transform S can be
determined by using the recursion

S0
i (t) = ci, S

k+1
i (t) = Ṡki (t) + Ski (t)A11(t), k ≤ ri,

(21)

For details, see [2]. If additional outputs are also available
such that the system with ’eliminated’ unknown inputs is
observable, (i.e., if by the elimination of the inputs through
the algebraic relation A(x)ν = B(x), it is possible to
construct a stable observer), then one can construct an inverse
(not reduced). In such situations derivatives of the output
are still needed but the stability of the zero dynamics does
not play any role. For this class of problems the available
additional degree of freedom makes the handling of the
robustness issues possible, [9], [32].

C. Inversion of the sampled qLPV system

In obtaining an inversion based filter for the sampled
system the first solution could be a direct application of
the general scheme outlined in the previous section to the
discrete-time system obtained using (8) with a suitable choice
of the approximation order NT to a system of type (9). This
procedure, however, has the big disadvantage that the relative
degree decreases with the order of the approximation scheme,
hence the size of the zero dynamics increases. Moreover, the
obtained discrete time system will be non-minimum phase,
in general, even if the continuous time system was minimum
phase.

There is only one discretization scheme, that preserves
the relative degree, i.e., the explicit Euler scheme that corre-
sponds to the choice NT = 1 in (8). The numerical properties
(accuracy, stability) of the explicit Euler scheme, however,
are not advantageous. This fact motivates the introduction of
a mixed discretization strategy.

The starting point of the proposed discretization scheme
is the observation that unknown input depends on a dynamic
component – zero dynamics – and a static one, corresponding
to the the feedback ν = F (ρ)η + v, where the static part v
is obtained from (17), i.e., from the system

ξ̇ = A11(ρ)ξ + L̄ν, y = C1ξ. (22)
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In order to obtain v, the discretization should maintain the
relative degree of this system. Therefore, the Euler discretiza-
tion will be applied only for (22), i.e., after discretization one
has the system

ζk+1 = Aed(ρk)ζk + Ldvk, yk = C̄ζk. (23)

where Aed(ρk) = I+TsAc(ρk) with Ld = TsL̄ and C̄ = C1.
By a straightforward computation one has that the discrete

state ζk can be expressed as ỹd(k) = Sd(ρ, k)ζk, where

ỹd(k) =
[
y1(k), · · · , y1(k + r1), · · · , yp(k), · · · , yp(k + rp)

]T
.

The rows of the coordinate transform Sd can be determined
by using the recursion

S̄0
i = I, S̄k+1

i = Āed(ρk+1)S̄ki , S
k
d,i = ciS̄

k
i , k ≤ ri.

(24)

Hence, the value of the discrete state can be computed as
ζk = Sd(ρ, k)−1ỹd(k) while vk = L

{−1}
d (ζk+1−Aed(ρk)ζk).

Observe that ỹd(k) and Sd(ρ, k) requires samples forward
in time up till max ri, i.e., the implementation will contain
a delay of max ri + 1. This discretization actually leads to
the approximation of the derivatives, that are involved in
the continuous inverse, by a finite difference method. Since
the discretized dynamics itself is not used explicitely the
accuracy of the scheme is not crucial in this step: S(ρ) is
approximated by Sd(ρ, k), hence the underlying numerical
scheme should guarantee an acceptable performance only
in a reduced time window (max ri + 1 steps). This can be
achieved by reasonable choices of the sampling time.

Having the approximative values ξ(kTs) = ζk, the dy-
namical part η of the reconstructed input can be computed
based on a discretization of (18), i.e., discretization of the
zero dynamics. The advantage of the method is that the
discretization scheme for this task can be chosen arbitrary.
Since the sampling time Ts, i.e., the discretization step, is
given, this freedom can be used to ensure the stability of the
scheme (stability of the discretized dynamics), see [24].

Remark 4: In the continuous time setting the application
of an inversion based scheme is often prevented by the
unavailability of all the necessary derivative signals. The
proposed scheme provides a remedy for this problem when
the unavailable derivative signals can be replaced by their
finite difference approximations.

IV. SIMULATION EXAMPLE

As an illustrative example for the proposed LPV inversion
scheme let us consider the following simplified linearized
parameter varying model of the lateral dynamics of a com-
mercial aircraft :

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) + Laνa(t) + Lrνr(t)

y(t) = Cx(t),

where νe and νs represent failures in the aileron and rudder
actuation. The state components are the roll angle φ, side
speed Vy , roll rate p and yaw rate r.

The control inputs are the left and right aileron and rudder
signals while the measured outputs are the side speed and

0 5 10 15 20 25
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time [sec] 0 5 10 15 20 25
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

time [sec]

Fig. 1. Control inputs for ailerons and rudder (dashed) and the scheduling
variables ρh (dashed) and ρv
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Fig. 2. Measured variables Vy and r

yaw rate. The components of scheduling signal ρ are the
altitude ρh and calibrated air speed ρv normalized in the
interval [−1, 1], i.e., A(ρ) = A0 + ρhAh + ρvAv .

The control inputs, scheduling signals and the measured
outputs are depicted on Figures 1 and 2, respectively.
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Fig. 3. Applied and reconstructed aileron faults

The zero dynamics is two dimensional and the designed
continuous filter has the form

η̇ = Ai(ρ)η +Bi,u(ρ)u+Bi,z(ρ)y

ν = Ci(ρ)η +Di,u(ρ)u+Di,y(ρ)y +Di,ẏ(ρ)ẏ.

During the simulation the unmeasured derivatives were ap-
proximated by a finite difference scheme. For the discretized
filter a second order scheme (NT = 2) was used. The
simulation results are depicted on Figure 3 and Figure 4. The
red line is the fault signal the blue one is the reconstructed
fault by using the continuous-time filter.

For a fixed order the accuracy of the discretized zero
dynamics is affected by the sampling time. The simulation
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Fig. 4. Applied and reconstructed rudder faults

example demonstrates the role of accuracy in obtaining
the zero dynamics component in the performance of the
inversion based discretized detection filter.

V. CONCLUSIONS

The paper investigates the discretization of detection filter
design for the detection and isolation of faults in qLPV
systems by means of dynamic inversion where the system
matrix depends affinely from the scheduling variables. The
proposed method relies on the concept of parameter varying
invariant subspaces and the results of classical geometrical
system theory. The advantage of the proposed discretization
method is that exploits the structure of the continuous time
problem and maintains the stability properties of the zero
dynamics of the continuous system.

REFERENCES

[1] S. Ganguli, A. Marcos, and G. Balas, “Reconfigurable LPV control
design for Boeing 747-100/200 longitudinal axis,” in Proceedings of
the 2002 American Control Conference, vol. 5, 2002, pp. 3612–3617.

[2] Z. Szabo, J. Bokor, and G. Balas, “Inversion of LPV systems and
its application to fault detection.” in Proceedings of the 5th IFAC
Symposium on Fault Detection Supervision and Safety for Technical
Processes, Washington, USA, 2003, pp. 235 – 240.

[3] J. Bokor and G. Balas, “Detection filter design for LPV systems - a
geometric approach,” Automatica, vol. 40, pp. 511–518, 2004.

[4] I. Szaszi, A. Marcos, G. Balas, and J. Bokor, “LPV detection filter
design for a Boeing 747-100/200 aircraft,” AIAA Journal of Guidance,
Dynamics and Control, vol. 28, no. 3, pp. 461–470, 2005.

[5] M. Rodrigues, D. Theilliol, S. Aberkane, and D. Sauter, “Fault tolerant
control design for polytopic LPV systems,” Applied Mathematics and
Computer Science, vol. 17, no. 1, pp. 27–37, 2007.

[6] S. Armeni, A. Casavola, and E. Mosca, “Robust fault detection and
isolation for LPV systems under a sensitivity constraint,” International
Journal of Adaptive Control and Signal Processing, vol. 23, no. 1, pp.
55–72, 2008.

[7] S. Grenaille, D. Henry, and A. Zolghadri, “A method for designing
fault diagnosis filters for LPV polytopic systems,” Journal of Control
Science and Engineering, Article ID 231697, 2008.

[8] B. Kulcsár, J. Bokor, and J. Shinar, “Unknown input reconstruction for
LPV systems,” International Journal of Robust and Nonlinear Control,
2009.

[9] A. Edelmayer, J. Bokor, Z. Szabo, and F. Szigeti, “Input reconstruction
by means of system inversion: a geometric approach to fault detection
and isolation in nonlinear systems,” International Journal of Applied
Mathematics and Computer Science, vol. 14, no. 2, pp. 189–199, 2004.

[10] A. Edelmayer, J. Bokor, and Z. Szabo, “Robust detection and estima-
tion of faults by exact fault decoupling and H∞ disturbance atten-
uation in linear dynamical systems.” in Proceedings of the American
Control Conference, Minneapolis, MN, USA, 2006, pp. 5716–5721.

[11] A. Edelmayer, J. Bokor, and Z. Szabo, “Inversion-based residual
generation for robust detection and isolation of faults by means of
estimation of the inverse dynamics in linear dynamical systems,”
International Journal of Control, vol. 82, no. 8, pp. 1526–1538, 2009.

[12] J. Gertler, “Fault detection and isolation using parity relations,” Con-
trol Engineering Practice, vol. 5, no. 5, pp. 653–661, 1997.

[13] J. Gertler, “Designing dynamic consistency relations for fault detection
and isolation,” International Journal of Control, vol. 73, no. 8, pp.
720–732, 2000.

[14] G. Conte, C. Moog, and A. M. Perdon, Algebraic Methods for
Nonlinear Control Systems. Springer Verlag, 2006.

[15] P. Apkarian, “On the discretization of LMI-synthesized linear
parameter-varying controllers,” Automatica, vol. 33, no. 4, pp. 655–
661, 1997.
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