
Parallel Move Blocking Model Predictive Control

Stefano Longo, Eric C. Kerrigan, Keck Voon Ling and George A. Constantinides

Abstract— This paper proposes the use of parallel computing
architectures (multi-core, FPGA, GPU) to implement a parallel
move blocking Model Predictive Control (MPC) algorithm
where multiple, but smaller optimization problems are solved
simultaneously. Since these problems are solved in parallel, the
computational delay is reduced when compared to standard
MPC. This allows for faster sampling that can outperform,
in terms of closed-loop cost, a standard MPC formulation.
Feasibility and stability are guaranteed by an appropriate
selection of so-called blocking matrices.

I. INTRODUCTION

The frustrating drawback of Model Predictive Control
(MPC) is the computational time required to solve the online
optimization problem within the sampling period. This pre-
cludes the application of MPC techniques for systems where
the platform running the control algorithm is not sufficiently
powerful. Among the proposed solutions for faster MPC im-
plementation, there is the practically and widely used Move
Blocking (MB) strategy [1]–[4]. In MB, the predicted control
trajectory is forced to remain constant over some steps,
hence the degrees of freedom are reduced by fixing some
optimization variables. Many MB strategies, despite working
well in practice, lack feasibility and/or stability proofs (which
are normally enforced by terminal constraints [5]). In [4] it is
shown that it is possible to guarantee feasibility and stability
by using a time-varying blocking strategy. Recently, in [6]–
[8], a generalized approach for enforcing feasibility of MB
MPC laws that are least-restrictive has been studied.

Besides the established approaches for faster MPC appli-
cations, there is a newly emerging concept that tackles the
speeding up process from a completely new angle. Instead
of solving one large optimization problem, this is divided
into smaller subproblems that are solved sequentially [9]
or simultaneously [10] by exploiting multi-core processors
or modern platforms like FPGAs or GPUs that inherently
allow for parallelism [11], [12]. For example, in an FPGA,
algorithms can be efficiently pipelined in order that hardware
blocks (such as adders or multipliers used for vector dot
products) are continually used. This increase in the number
of operations performed by pipelining is not due to an
increase in hardware resources but is a result of its efficient
usage.

In this paper, we propose the Parallel Move Blocking
(PMB) algorithm, which is a way to combine the strategy
of MB and the opportunity provided by parallel computing
platforms. The contributions of the paper are both theoretical

S. Longo, E. C. Kerrigan and G. A. Constantinides are
with the Department of Electrical and Electronic Engineering
(E. C. Kerrigan is also with the Department of Aeronautics), Imperial
College, London, SW7 2AZ, UK {s.longo, e.kerrigan,
g.constantinides}@imperial.ac.uk

K. V. Ling is with the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore, 639798
ekvling@ntu.edu.sg

and practical and are: i) a feasibility and stability conditions
that can be satisfied a priori (i.e. a feasible input sequence at
a particular time instant implies a feasible input sequence for
the next time step ad infinitum); ii) a potential improvement
in performance when compared to a ‘standard’ MB imple-
mentation because, from the set of solutions of different MB
problems, we can always choose the one with the smallest
predicted cost.

PMB is inspired by multiplexed MPC [9] and its parallel
variant called channel-hopping MPC [10]. Whereas multi-
plexed MPC and channel-hopping MPC are applicable to nu-
input systems (nu > 1), PMB is applicable even if nu = 1.
The applicability of PMB can be interpreted in two ways.
One is that if the processor is not fast enough to execute
a standard MPC algorithm, then it might be capable to
do so with PMB without compromising the feasibility and
stability guarantees. The other one is that PMB allows for
the selection of shorter sampling times, since the online
optimization is smaller and faster to solve (it is well-known
that faster sampling gives better disturbance rejection). In
other words, we can trade optimality with sampling time.

We first show how to set up the MB problems that will
be solved online and in parallel. The idea is that the first
input from the sequence of inputs that results in the lowest
open-loop cost is used and the problems are solved again
at the next sampling instant. The feasibility and stability of
the proposed scheme is guaranteed by appropriate choices
of ‘blocking matrices’. We carried out our design in the
sampled-data framework, from a continuous-time plant with
an associated quadratic, finite horizon cost function in the
same spirit as [13]. We find the equivalent discrete-time
representation of the plant and the cost and set up the optimal
control problem in terms of the sampling time. The relation
between sampling time and closed-loop cost for constrained
problems is not straightforward and this is investigated using
simulation examples.

II. PARALLEL MOVE BLOCKING MPC
Consider the following discrete-time LTI plant model

x(k + 1) = Ahx(k) +Bhu(k), k ∈ N0, (1)

where x(k) ∈ Rnx , u(k) ∈ Rnu and (Ah, Bh) is a
stabilizable pair. This plant can be identified from data or
obtained from a discretization of a continuous-time plant
with sampling period h. We assume full state feedback and
we suppose that constraints exist on the input moves and
on the states. They are represented by u(k) ∈ U ⊆ Rnu

and x(k) ∈ Xh ⊆ Rnx , respectively, where U and Xh are
compact polyhedral sets with the origin in their interior. The
set Xh has to be a function of the sampling period h, as
shown in [13], to guarantee constraint satisfaction between
sample instants. Let x(k) or x be the state measured at k
and xi, i ∈ N0, be the predicted state at k + i for the given

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 1239

state x(k), input sequence (u0, u1, . . . , ui−1) and prediction
horizon N ∈ N. Also, let the set X (Kh) be the maximum
constraint-admissible positively invariant set for the system
in (1) subject to control u(k) = Khx(k) [4, Definition 1],
where Kh is a pre-specified stabilizing feedback controller
such that x(k) ∈ X (Kh) implies Khx(k) ∈ U and (Ah +
BhKh)x(k) ∈ X (Kh). The vector with the predicted input
moves is defined as

u :=
[
u′0 u′1 · · · u′N−1

]′
, u ∈ RNnu . (2)

The standard MPC problem is defined as

J̄∗h(x) := min
u

{
x′NPhxN +

N−1∑
i=0

[
xi
ui

]′
Qh

[
xi
ui

]}
,

s.t. xi ∈ Xh, ui ∈ U, xN ∈ X (Kh),

xi+1 = Ahxi +Bhui, x0 = x,

∀i ∈ {0, 1, . . . , N − 1}, (3)

where Qh and Ph are weighting matrices that will be defined
in Section II-A. The terminal set constraint xN ∈ X (Kh) is
needed so that recursive feasibility is achieved [4], [5]. The
unique optimizer to the control problem above is defined
as u∗(x).

We now convert the standard problem in (3) into one with
input blocking. We do so by fixing some inputs to be constant
over a number of time steps. Let M ∈ {0, 1}N×N̂ be a binary
matrix, where N̂ < N , and let u = (M ⊗ Inu

)û. Matrix M
will be called the ‘blocking matrix’ [4]. Vector u ∈ RNnu

is the full degree of freedom vector of control moves while

û :=
[
û′0 û′1 · · · û′

N̂−1

]′
, û ∈ RN̂nu is the reduced one

(⊗ is the Kronecker product). The control problem becomes

P(M) :

J∗h(x,M) := min
û

{
x′NPhxN +

N−1∑
i=0

[
xi
ui

]′
Qh

[
xi
ui

]}
,

s.t. xi ∈ Xh, ui ∈ U, xN ∈ X (Kh),

u = (M ⊗ Inu)û,

xi+1 = Ahxi +Bhui, x0 = x,

∀i ∈ {0, 1, . . . , N − 1}. (4)

Problem P(M) in (4) will be denoted as the standard MB
problem.

Now consider a hardware platform that allows parallel
computation. This can be multi-core processors, FPGAs,
GPUs or even independent industrial PCs or microprocessor
boards (as the aim here is to demonstrate the potential ad-
vantage of such a parallel implementation). In this platform,
more than one problem P(M) can be solved in parallel.
Let {Ms|s = 0, 1, . . . , S−1} be a set of S different blocking
matrices. Let û∗s(x) and J∗h(·,Ms) be the optimizer and the
value function, respectively, of P(M) with M = Ms. S is
the number of problems that can be solved in parallel in a
particular hardware implementation and it will be a limitation
of the hardware (e.g. in FPGAs it would depend on the
number of problems that can be pipelined [11]). In the PMB
scheme proposed, S problems, each associated with blocking

Parallel
Execution

Fig. 1. Implementation of the PMB algorithm.

matrix M0,M1, . . . ,MS−1, are solved simultaneously at
each sampling instant. The PMB MPC law is given by

κ(x) :=
[
Inu

0 · · · 0
]
û∗s∗(x)(x), (5)

where s∗(x) is the index of the blocking matrix Ms∗(x) such
that

s∗(x) := argmin
s

J∗h(x,Ms). (6)

In other words, the applied input move is the one that
results in the smallest predicted cost among S optimization
problems (also shown diagrammatically in Figure 1). This is
indeed an improvement to standard MB because the open-
loop cost can only be equal or better than the case where only
one MB problem is solved. Such an improvement comes
from solving parallel problems and is achieved from the
efficient hardware usage in the aforementioned platforms.

A. Sampled-data formulation
It is desirable for our implementation to formulate the

problem as a sampled-data one. Consider the continuous-
time LTI system

ẋ(t) = Acx(t) +Bcu(t), (7)

where x(t) ∈ Rnx , u(t) ∈ Rnu and (Ac, Bc) is a stabilizable
pair. The control input u(t) is a signal created by a sample-
and-hold element for a constant sampling period h such
that u(t) = u(kh) for all t ∈ [kh, (k + 1)h) and k is the
sampling instant (the sampling period h is removed as an
argument where obvious). The system in (7) can be sampled
with a periodic interval h giving the sampled-data system,
for constant input u, in (1) where Ah = eAch and Bh =∫ h
0
eAcτdτBc. If the sampling frequency is non-pathological

(i.e. Ac does not have two eigenvalues with equal real
parts and imaginary part that differ by an integral multiple
of 2π/h, [14, Theorem 3.2.1]), then (Ac, Bc) controllable
implies (Ah, Bh) reachable. This is a sufficient condition
for preservation of reachability after discretization. If this
condition is applied only to the unstable eigenvalues of Ac,
then stabilizability is preserved after discretization.

Associated with the system in (7) consider the continuous-
time, finite horizon LQ problem defined by the cost function

Jc :=x(Tf)′Pcx(Tf)+

∫ Tf

0

[
x(t)′Q1cx(t)+u(t)′Q2cu(t)

]
dt,

(8)

where Tf is the time horizon, Q1c = Q′1c ≥ 0, Q2c = Q′2c >

0, (Q
1/2
1c , A) detectable and Pc = P ′c > 0. These matrices

1240

prediction into future

sample instant

Fig. 2. In the shifted blocked sequence of predicted inputs the points where
the inputs are allowed to change do not coincide.

are given to define a controller for an ideal closed-loop
performance of the continuous-time model. The equivalent
sampled-data cost function is

Jh := x(N)′Phx(N) +

N−1∑
k=0

[
x(k)
u(k)

]′ [
Q1 Q12

Q′12 Q2

]
︸ ︷︷ ︸

Qh

[
x(k)
u(k)

]
,

(9)

where N is the number of samples for the predicted horizon
that, for the moment, is defined as

N :=

⌈
Tf
h

⌉
, (10)

d·e is the ceiling function and expressions for Qh and Ph can
be found in [15]. Matrices Q2 and Ph are positive definite.
With the assumption that the input u(t) is constant over the
interval t ∈ [kh, (h+1)k) and the states x(k) are sampled at
the time instant t = kh without computational delays, there
is no approximation error between (8) and (9) [15].

III. FEASIBILITY AND STABILITY

We will prove here that feasibility and stability can be
guaranteed by particular selections of blocking matrices. In
standard MPC, it is well-known that if x 7→ x′Phx is a local
Lyapunov function for the closed-loop system with controller
gain Kh then stability is guaranteed [5]. The controller Kh

can be chosen to be Kh = −(B′hPhBh+Q2)−1(B′hPhAh+
Q′12) where Ph is the discrete-equivalent of Pc, and Pc is the
solution of the continuous-time algebraic Riccati equation

A′cPc + PcAc − PcBcQ−12,cB
′
cPc +Q1,c = 0 (11)

(see (8), (9) and [15]). Both feasibility and stability can be
proved by considering a shifted vector of input moves, at
time k + 1,

ũ(x) :=
[
(u∗1(x))′ · · · (u∗N−1(x))′ (Khx

∗
N (x))′

]′
, (12)

where x∗N (x) is the predicted state at time k + N . The
shifted vector ũ(x) is guaranteed to be feasible at time k+1
because of the constraint xN ∈ X (Kh) and that X (Kh) is
an invariant and constraint-admissible set. Furthermore, since
the value function J̄∗h(·) is a Lyapunov function (due to the
choice of Ph), stability is also guaranteed (this is usually
called the ‘shifting argument’ [5]).

It is well-known [4] that, for standard MB, the shifting
argument does not generally apply because, in the shifted
version of û, the points in û where the inputs u are
allowed to change do not correspond to the non-shifted
vector anymore. For example, Figure 2 shows a situation of
a blocking scheme where the inputs are allowed to change
every 3h. Clearly, at the next sampling step, the points in the

prediction horizon where the inputs change do not coincide
and the shifting argument collapses.

We now show that a particular selection of blocking
matrices and a redefinition of the control problem can re-
establish the shifting argument for PMB. Consider a standard
MB problem where the predicted input moves ui are blocked
at regular intervals and Ŝ ≤ S, Ŝ ∈ N0 indicates for
how many steps a predicted input is blocked. For example,
if Ŝ = 2 then the vector of blocked predicted inputs moves
will be

u :=
[
û′0 û′0 û′1 û′1 · · · û′

N̂−1û
′
N̂−1

]′
. (13)

Notice that for Ŝ = 1 the scheme is actually the standard
MPC scheme in (3). Let T̂f be the desired prediction horizon
and define

N̂ :=

⌈
T̂f

Ŝh

⌉
. (14)

At this point we redefine the number of steps in the discrete
horizon as

N := ŜN̂ . (15)

(For the standard MPC, i.e. for Ŝ = 1, the definitions for N
in (15) and (10) are identical.) Moreover, we let Tf := Nh
to ensure that the time horizon is an integer multiple of h
and Tf ≥ T̂f always.

Finally, define Ŝ blocking matrices as

Ms :=

[
1Ŝ−s 0

0 IN̂−1 ⊗ 1Ŝ

]
, s = 0, 1, . . . , Ŝ − 1, (16)

where 1n is the column vector of ones of length n. For s = 0,
Ms is the blocking matrix of the original standard MB prob-
lem while for 0 < s ≤ Ŝ − 1, Ms is a different ‘truncated’
blocking matrix. The blocking matrices as defined in (16)
are always ‘admissible’ according to [4, Definition 3].

The final step, before presenting the result, is to define the
control problems for PMB as

Ĵ∗h(x,M, Ŝ) := min
û

{
x′NPŜhxN +

N−1∑
i=0

[
xi
ui

]′
Qh

[
xi
ui

]}
,

s.t. xi ∈ Xh, ui ∈ U, xN ∈ X (KŜh),

u = (M ⊗ Inu)û,

xi+1 = Ahxi +Bhui, x0 = x,

∀i ∈ {0, 1, . . . , N − 1}. (17)

The difference between (4) and (17) is in the terminal
weight and terminal set constraint: Ph and X (Kh) in (4)
becomes PŜh and X (KŜh) in (17). The control law is
defined as

κ̂(x) :=
[
Inu

0 · · · 0
]
û∗ŝ∗(x)(x) (18)

where ŝ∗(x) is the index of the blocking matrix Mŝ∗(x) such
that

ŝ∗(x) := argmin
s

Ĵ∗h(x,Ms, Ŝ). (19)

Proposition 3.1: For non-pathological sampling frequen-
cies, if the PMB scheme described above is implemented by

1241

prediction into future

index

Fig. 3. By solving specific parallel problems it is possible to re-establish
the shifting argument for recursive feasibility.

Fig. 4. An example of a fixed pattern that guarantees feasibility (and
stability) for Ŝ = 3 if a parallel implementation is not available (s is the
index of Ms).

solving Ŝ problems (17) in parallel using blocking matrices
M = Ms, then the origin of the closed-loop system (7) in
feedback with (18) is an asymptotically stable equilibrium
point. The region of attraction is equal to the set of states
for which there exists an s such that P(Ms) has a solution.

Proof. First of all consider that (Ah, Bh) is stabilizable
if h is non-pathological. To prove feasibility we need to show
that the vector of predicted input moves obtained at time k
can be used to obtain a feasible solution at time k+1. From
the definition of the blocking matrices in (16) we can see that
the vector of blocked input moves (MŜ−1⊗Inu

)û is a trun-
cated version of the vector of blocked input moves (MŜ−2⊗
Inu

)û which is a truncated version of (MŜ−3 ⊗ Inu
)û and

so on, up to (M0⊗Inu)û. The input moves (M0⊗Inu)û can
also be considered as a truncated version of (MŜ−1⊗Inu

)û
with the addition, at the end, of a tail which is another degree
of freedom of Ŝ blocked inputs. This is illustrated, for an
example with Ŝ = 3, in Figure 3. If the problem for Ms is
feasible at time k then it will also be feasible at time k + 1
because the controller, at the next time step, can choose the
solution of the problem with blocking matrix Ms+1 (or M0

if s = Ŝ−1), which is the one that guarantees satisfaction of
all the constraints at time k+1. If the controller chooses the
solution of another problem because it resulted in a smaller
cost, then this solution must be feasible. Hence, at least one
feasible solution is always available, which proves recursive
feasibility.

The argument for stability follows naturally. The cho-
sen terminal weight in the problem in (17) is PŜh (i.e.
a discretization of Pc with sampling time Ŝh) and x 7→
x′PŜhx is a local Lyapunov function. Hence, the value
function Ĵ∗h(·,M, Ŝ) in (17) can be used as a Lyapunov
function [5]. �

Remark 3.1: Note that to prove recursive feasibility (and
stability), it is sufficient to solve a single problem, at each
sampling instant, with blocking matrix M following the pat-
tern M0,M1, . . . ,MŜ−1,M0,M1, . . ., as shown in Figure 4
for Ŝ = 3. However, in the interval from M0 to MŜ−1

the prediction horizon is not receding. This fixed scheme
is actually a simplified version of the one proposed in [4].

IV. PERFORMANCE

The degree of freedom reduction of the input moves
from N to N̂ results in a smaller optimization problem
that may become computationally realizable if the origi-
nal problem was not realizable. On the other hand, since
the online optimization problem is now faster to solve, a
shorter sampling period might be chosen to improve the
system closed-loop performance and its disturbance rejection
properties. Hence, with PMB, we reduce the optimization
problem size at the expense of closed-loop performance, but
then regain performance by reducing the sampling period.
However, because of (10), smaller sampling periods also
result in a potentially larger number of horizon steps N . It
will be shown by simulation that, in terms of computational
speed, the reduction in problem size achieved by PMB is
more significant than its increase due to a larger N .

V. ILLUSTRATIVE EXAMPLE

In this section we show, with simulation examples, the
potential of PMB when compared to standard MB and
standard MPC. We use as a benchmark an unstable oscillator
described by (7) with matrices

Ac =

[
0.1 0.3
−0.3 0.1

]
, Bc =

[
0
1

]
, (20)

output y(t) = [1 0]x(t) and input constraints −1 ≤ u ≤
1. No state constraints are included so that the results
are decoupled form the problem of guaranteeing constraint
satisfaction in-between sampling instants. The associated
performance measure is given by the LQ cost in (8) with
matrices Q1c = 1, Q2c = 0.1 and Pc as the solution of (11).
To satisfy our feasibility and stability conditions, the terminal
weight has been set to PŜh, (i.e. a discretization of Pc for a
sampling time Ŝh) and the maximum positively invariant
set is given by X (KŜh). The desired prediction horizon
is T̂f = 15s and therefore Tf = Nh following (14) and (15)
(Tf is large enough to ensure that the state at the end of the
horizon is in the terminal set).

To evaluate the performance of the different schemes,
the system is let to settle to the origin from the initial
conditions x(0) =

[
3 3

]′
(the input constraints are active).

Furthermore, a closed-loop cost is defined as

F :=

Nsim−1∑
k=0

[
x(k)
u(k)

]′
Qh

[
x(k)
u(k)

]
, (21)

where Qh is the performance matrix as in (9) and Nsim =
40s. As a measure of computational effort, we use the time
required by MATLAB (with the toolbox YALMIP [16]) to
solve the Quadratic Programming (QP) problem using the
built-in solver quadprog. For the parallel implementation,
since the simulation does not run in real-time, the QP
problems, at each sampling instant, are solved sequentially
and the computational time considered is the longest (worst
case) among them. Note that the performance of PMB can
be enhanced by solving the QP with different solvers that
exploit the particular structure of the problem. This will

1242

Fig. 5. Performance comparison.

be the subject of future investigation. For the moment it is
sufficient to show that the computational time is reduced by
the proposed scheme even when using a general purpose
solver.

A. Closed-loop cost and computational time
In Figure 5 we compare three MPC schemes. The first

one is the standard MPC defined in (3) (i.e. the sequence
of predicted inputs is allowed to change every step). The
second one is the proposed PMB scheme where we par-
allelize Ŝ = 5 problems, each with a blocking matrix
given by (16). Recursive feasibility is guaranteed because
of Proposition 3.1. The last one is the standard MB scheme
defined in (4). For fairness of comparison we implement the
standard MB scheme in a way that recursive feasibility is also
guaranteed. This is done, in accordance with Remark 3.1, by
using a periodic sequence of blocking matrices given by (16)
with s = s̃(k) where

k 7→ s̃(k) = (0, 1, 2, 3, 4, 0, 1, . . .). (22)

Although different blocking matrices are used, only one
problem is solved at each sampling instant, hence this is a
time-varying standard MB scheme. The top plot of Figure 5
shows the variation of the cost F as the sampling time
increases. The bottom plot shows the computational time (the
worst case for PMB) required to solve the QP problem. The
computation was performed on a desktop PC with a 2.83
GHz CPU, 8 GB of RAM and running MATLAB’s version
7.10.0.499.

The top plot of Figure 5 indicates that the cost of PMB is
always slightly higher than the one for standard MPC but, by
a small reduction of the sampling time, it is possible for PMB
to achieve a performance equal to (or better than) the one of
standard MPC. Sampling faster, however, gives less time to
solve the QP problems. The bottom plot of Figure 5 shows
that this is not an issue since in PMB the computational
time required to solve the QP problems is always sufficiently
small. In fact, we could interpret these results in a different

Fig. 6. Pareto-optimal tradeoff between computation time and cost.

way by assuming that there is a bound by how fast we can
sample. In this particular example, the theoretical bound,
shown by the line in the bottom plot of Figure 5, indicates
that sampling faster than approximately 0.2s is not possible
for standard MPC (while it is possible for the other two
schemes) because the time to solve the QP problem is longer
than the sampling time.

Let us assume now that there is a computational time
bound of 0.02s by which we have to solve the QP problem.
According to Figure 5, the fastest we can sample with such
a bound is h = 0.95s for standard MPC and h = 0.2s for
PMB. With these sampling periods, the value of the cost F
for PMB is lower than the one of standard MPC, hence PMB
can give us a better performance.

It is worth mentioning that the computational time for
standard MB is almost identical to the one of PMB because
the QP problems have the same size (this is shown in
Figure 5). However, the closed-loop cost of standard MB
deteriorates quickly as h increases. This is due to the
sequence of blocking matrices being fixed (and not a function
of the current state), as will be shown later.

The results of Figure 5 have also been presented in
Figure 6 as a scatter plot to show the Pareto-optimal tradeoff
of the closed-loop cost and computational time. From this
plot it is possible to determine: i) what cost can be achieved
for each scheme for a given computational power and ii)
how much computational power is needed for each scheme
to achieve a given cost.

B. Closed-loop performance
Choosing shorter sampling periods for PMB is possible

because the QP problems can be solved faster than for
standard MPC. We now show that, for a given bound on
the available computational time it is possible to achieve
better performance with PMB. We consider, as before, the
hypothetical case where there is a computational time bound
of 0.02s that does not allow sampling periods h < 0.95s
for standard MPC (see Figure 5). If PMB is implemented,
however, the sampling periods that are not allowed are h <
0.2s. The simulation results for standard MPC with h =
0.95s and PMB with h = 0.2s are shown in Figure 7. Clearly,
the PMB scheme performs better for the given computational
time bound.

The bottom plot of Figure 7 shows the evolution of the op-
timal index s∗ which determines the blocking matrix in (16).
It is interesting to notice that, every time the input constraints
are active, s∗ evolves following exactly the pattern of s̃(k)
in (22) i.e. the one that sufficiently guarantees recursive

1243

Fig. 7. Performance comparison between PMB and standard MPC for a
given computational time bound of 0.02s.

Fig. 8. Performance comparison between PMB and standard MB for a
given computational time bound of 0.007s.

feasibility according to Remark 3.1. However, if the input
constraints are not active, different patterns are used by the
algorithm as terminal constraint satisfaction becomes easier.

Let us now consider the case where the computational time
bound is reduced to 0.007s. From Figure 5, it is clear that it
is not possible to implement the standard MPC. However it
is possible to implement the standard MB and PMB with a
sampling time of h = 0.7s. The simulation results, given in
Figure 8, show that, also in this case, PMB performs better
than standard MB. This can be explained by inspecting the
evolution of the index s shown in the bottom plot of Figure 8.
For standard MB, s is fixed and it is given by s̃(k) (22).
However, for PMB, s is the optimal index s∗ (i.e. the index
of the problem with the lowest open-loop cost) determined
online. The results show that s∗ does not always follow the
fixed pattern of s̃(k). The ability to choose s optimally online
is the reason why PMB performs better than standard MB

for equal sampling times.

VI. CONCLUSIONS

We have proposed a method to exploit parallel computing
architectures in order to reduce the computational burden of
solving the online optimization problem required by MPC.
The theoretical advantage is that recursive feasibility (and
thus stability) can be guaranteed a priori by an appropriate
selection of problems to be solved in parallel. The practical
advantage is that, since the optimization problems are smaller
compared to standard MPC, they can be solved in less
time, allowing for faster sampling. Some examples showed
how the proposed PMB scheme can outperform standard
MPC and standard MB in terms of closed-loop performance.
Future work could include the implementation of PMB and
NPS schemes in hardware on an FPGA.

VII. ACKNOWLEDGMENTS

This research has been supported by the EPSRC grant
number EP/G031576/1, EP/F041004/1 and the European
Union Seventh Framework Programme FP7/2007-2013 un-
der grant agreement number FP7-ICT-2009-4 248940.

REFERENCES

[1] J. M. Maciejowski, Predictive control with constraints. Prentice-Hall,
2002.

[2] P. Tøndel and T. A. Johansen, “Complexity reduction in explicit linear
model predictive control,” in Proc. 15th IFAC World Congress, Spain,
2002.

[3] S. J. Qin and T. A. Badgewell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, no. 7, pp.
733–764, 2003.

[4] R. Cagienard, P. Grieder, E. C. Kerrigan, and M. Morari, “Move
blocking strategies in receding horizon control,” J. Process Control,
vol. 17, no. 6, pp. 563–570, 2007.

[5] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, no. 6, pp. 789–814, 2000.

[6] F. Oldewurtel, R. Gondhalekar, C. N. Jones, and M. Morari, “Blocking
parameterizations for improving the computational tractability of affine
disturbance feedback MPC problems,” in Proc. Joint 48th IEEE
Conference on Decision and Control and 28th Chinese Control
Conference, P.R. China, 2009, pp. 7381–7386.

[7] R. Gondhalekar, J. Imura, and K. Kashima, “Controlled invariant
feasibility - a general approach to enforcing strong feasibility in MPC
applied to move-blocking,” Automatica, vol. 45, no. 12, pp. 2869–
2875, 2009.

[8] R. Gondhalekar and J. Imura, “Least-restrictive move-blocking model
predictive control,” Automatica, vol. 46, no. 7, pp. 1234–1240, 2010.

[9] K. V. Ling, J. M. Maciejowski, A. Richards, and B. F. Wu, “Multi-
plexed model predictive control,” Cambridge University Engineering
Department, CUED/F-INFENG/TR.657, Tech. Rep., Feb 2010.

[10] K. V. Ling, J. M. Maciejowski, J. Guo, and E. Siva, “Channel-hopping
model predictive control,” in Proc. 18th IFAC World Congress, Milan,
IT, 2011.

[11] G. A. Constantinides, “Tutorial paper: Parallel architectures for model
predictive control,” in Proc. of the European Control Conference 2009,
Budapest, HU, 2009, pp. 138–143.

[12] J. L. Jerez, G. A. Constantinides, E. C. Kerrigan, and K. V. Ling,
“Parallel MPC for real-time FPGA-based implementation,” in Proc.
18th IFAC World Congress, Milan, IT, 2011.

[13] J. Yuz, G. Goodwin, A. Feuer, and J. De Doná, “Control of constrained
linear systems using fast sampling rates,” Systems & Control Letters,
vol. 54, no. 10, pp. 981–990, 2005.

[14] T. Chen and B. Francis, Optimal Sampled-data Control Systems.
Springer, London, 1995.

[15] K. Åström and B. Wittenmark, Computer-Controlled Systems, 3rd ed.
Prentice-Hall, 1997.

[16] J. Löfberg, “YALMIP : A toolbox for modeling and optimization
in MATLAB,” in Proc. CACSD Conference, Taipei, Taiwan, 2004.
[Online]. Available: http://users.isy.liu.se/johanl/yalmip

1244

