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Abstract— When faults turn the nominal operation to an
unstable post-fault regime, the accommodation procedure must
recover stability and as much performance of the reference
model as possible, ideally attaining perfect Model Matching
(MM). In this paper, the authors develop the Modified Pseudo-
Inverse Method (MPIM) with the Generalized Linear Quadratic
Regulator (GLQR) stabilization using the weighting matrices
derived from the Robust Optimal Model Matching (ROMM)
approach and show that the MPIM-GLQR technique is the
best candidate to solve the MM problem extended with the
prescribed stability degree property, as opposed to the classical
MPIM with simple LQR stabilization using arbitrary penalties,
as was proposed in the original method. The theoretical devel-
opment presented in the paper is illustrated by an aeronautical
example, namely the longitudinal motion control of the B747
aircraft impaired by a structural and an actuator fault.

I. INTRODUCTION

Fault Tolerant Control (FTC) refers to the approach by

which the controlled system is able to exhibit desired prop-

erties, e.g., Model Matching / Model Following (MM/MF),

both in normal operation and in the presence of faults [1],

[2], [3].

Model Matching assumes that the closed-loop matrix of

the actual system is identical with the closed-loop one of

the reference model, while in Model Following the identity

should hold for the state trajectories, in both cases, the

matching / following conditions being mathematically ex-

pressed by zeroing the corresponding matrix- / vector- norms

of the error [4], [5]. Unfortunately, MM/MF stresses an

idealistic objective in relation with the FTC design, because

achieving exactly the same closed-loop performance as in

the nominal case after the system impairment is most often

impossible and approximate quality has to be accepted [6].

In this paper, the Modified Pseudo-Inverse Method

(MPIM) [4] with the Generalized Linear Quadratic Reg-

ulator (GLQR) stabilization using the weighting matrices

derived from the Robust Optimal Model Matching (ROMM)

approach [7] is developed.
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The authors show that the MPIM-GLQR technique is the

only pertinent approach to solving the MM problem extended

with the Prescribed Degree of Stability (PDS) property,

contrary to the classical MPIM with simple LQR stabilization

using arbitrary penalties, as suggested in the original MPIM-

LQR method.

Moreover, two fault accommodation schemes under the

form of the MPIM-G/LQR algorithms are proposed - also,

the authors improve at the theoretical level and organize

better the previous version of the paper [8], and provide

it with an application example from aeronautics for the

numerical and graphical illustration of the advantage of using

MPIM-GLQR to solving MM-PDS, contrary to the MPIM-

LQR which fails.

The paper is organized as follows: Section II addresses the

perfect MM problem with the Pseudo-Inverse Method (PIM)

solution, recalling its instability drawback, while Section III

tackles the approximate MM problem with the Modified

Pseudo-Inverse Method (MPIM), recalling its inability to

satisfy the PDS property and proposes the MPIM-GLQR

solution. Also, an application example for the fault tolerant

model matching of the B747 longitudinal motion control

is provided in Section IV and the paper is concluded in

Section V. In the end, Appendix I provides the reader with

the particular solution given by the ROMM procedure.

II. PSEUDO-INVERSE MODEL MATCHING

A. Nominal Operation

Consider the continuous linear time-invariant (LTI) deter-

ministic system whose nominal operation is modeled by

Mn : ẋ(t) = Anx(t)+ Bnu∗n(t) , with x(t0 = 0) = x0 , (1)

where An ∈Rn×n and Bn ∈Rn×m are the nominal system and

control matrices, x(t) ∈ Rn and u∗n(t) ∈ Rm are the state and

control vectors, and x0 ∈ Rn is the initial condition.

In nominal operation, the linear state-feedback control law

u∗n(t) = −K∗
n x(t) , (2)

conducts to the closed-loop system

M̂∗
n : ẋ(t) = Â∗

nx(t) , with Â∗
n = An −BnK∗

n , (3)

which is stable and provides the ideal dynamic performance,

where by α∗
n , |λ (Â∗

n)| the maximum absolute value of the

real-part of the eigenvalues of Â∗
n is denoted.
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Model M̂∗
n is taken as the reference model whose dynamics

is to be matched in any other operating conditions different

from the ideal one, while α∗
n indicates the minimum distance

imposed between the eigenvalues position to the imaginary

axis in the complex plane, namely the Prescribed Degree of

Stability (PDS) [9].

B. Post-Fault Operation

Whether parametric faults are considered, assuming that

an LTI model is still able to capture its behavior, the system

to be controlled is described by the pair (A f ,B f ) provided

by an on-line Fault Detection, Isolation, and Identification /

Estimation (FDIE) module [10].

That is, after the fault estimation time t f , the post-fault

system operation is modeled by

M f : ẋ(t) = A f x(t)+ B f u f (t) . (4)

In post-fault operation, the Exact Model Matching (EMM)

technique with state-feedback aims at designing the linear

control law

u f (t) = −K f x(t) , (5)

such that the resulting closed-loop behavior matches that

of the reference model from (3) (full state is assumed to

be available and known after the fault - otherwise, state

estimation must be performed before controller redesign).

The solution to the EMM problem is obtained by solving

the matrix equation

Â f , A f −B f K f = Â∗
n , (6)

whose necessary and sufficient condition for a solution to

exist is expressed as (see [11])

Im
(

A f − Â∗
n

)

⊆ Im
(

B f

)

, (7)

and the solution is given by

(KPIM
f ,)K f = B

†
f (A f − Â∗

n) , (8)

where (.)† stands for the pseudo-inverse matrix.

C. Pseudo-Inverse Method

Regarding the pseudo-inverse control (8), condition (7)

will obviously hold only for very particular faults and

therefore no exact solution will exist in most fault cases;

for this reason, approximate solutions rather than exact ones

might be of interest.

When exact model matching is impossible
(

Â f 6= Â∗
n

)

, an

approximate control solution may be computed as K̃ f =
arg minK f

J f (K f ) by minimizing the criterion (see [4])

J f (K f ) = ‖Ê f ‖F , (9)

with the impairment matrix

Ê f = Â∗
n − (A f −B f K f ) (⇔ Â f = Â∗

n − Ê f ) , (10)

where ‖.‖F is the Frobenius matrix-norm.

Unfortunately, for certain fault cases, PIM encounters

instability problems (see also [12]); besides that, using this

approach, no action to make the prescribed degree of stability

tangible can be taken.

III. MODIFIED PSEUDO-INVERSE MODEL MATCHING

A. Modified Pseudo-Inverse Method without Stabilization

and without Correction

The improved PIM, namely the Modified Pseudo-Inverse

Method (MPIM), counteracts the above instability drawback,

that is it restricts the computation of K f such that to

guarantee the stability of the post-fault system Λ(Â f ) ⊆ C−

while achieving as much of the closed-loop nominal perfor-

mance as possible, i.e., minK f
J f (K f ), where Λ(.) denotes

the spectrum of the matrix-argument.

Unfortunately, there is no closed-form solution working

for general multi-input multi-output (MIMO) systems but

just for the single-input multi-output (SIMO) case, that is

in the case when m = 1.

This is the situation that will be tackled in the paper -

though B f ∈ R
n×1, it still is appropriate for the control of

the longitudinal motion of an aircraft, classically done using

just the elevator input, which will be the application example.

Therefore, in MPIM, the control gain KMPIM
f (for j =

1,2, . . . ,n) computed as

kMPIM
f j

= kPIM
f j

, if |kPIM
f j

| ≤ δ̃ PIM
f , (11a)

kMPIM
f j

= sgn
(

kPIM
f j

)

δ̃ PIM
f , otherwise , (11b)

solves the reconfigurable control problem with stability guar-

antees, where δ̃ PIM
f represents the truncated robust stability-

margin, computed as δ̃ PIM
f = δ PIM

f − εPIM
f , for some small

εPIM
f , and sgn(.) stands for the sign-function of the real-

argument (for details on the computation of δ PIM
f , and of

δ PIM-G/LQR
f used later in the next subsection, see below in

this subsection).

This comes from the fact that if the post-fault closed-loop

system designed with PIM, described as

ẋ(t) = ÂPIM
f x(t) = (A f −B f K

PIM
f )x(t) ,

is unstable, then the pseudo-inverse control must be re-

designed with the modified-pseudo inverse method such that

the MPIM closed-loop system, described as

ẋ(t) = ÂMPIM
f x(t) = (A f −B f K

MPIM
f )x(t)

= (A f − δ PIM
f B f KPIM

f )x(t) ,

becomes stable, from where KMPIM
f = f (KPIM

f ).

The idea is to see the closed-loop matrix in the post-fault

case ÂMPIM
f as a perturbed matrix ÂMPIM

f = A f −B f KMPIM
f ,

A f − EMPIM
f , where the perturbation matrix, denoted by

EMPIM
f , is taken as EMPIM

f , B f KMPIM
f = B f f (KPIM

f ), and

assumed to be bounded by δ PIM
f , from where it will follow

that KMPIM
f = δ PIM

f KPIM
f .

Thus, choosing the stability bound to be δ PIM
f = δ fY [13],

the right-hand side of (12),

|k f j
|<

1

supω≥0 ρ((jωIn −Af )−1Ef )
, δ fY , for j = 1,2, . . . ,n ,

(12)
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which involves the evaluation of the resolvent-matrix at the

limit but the bound is less restrictive than those proposed

in other results [14] (see also [15]), where ρ(X) denotes

the spectral-radius of the matrix-argument, precisely the

magnitude of the largest eigenvalue of X , condition

|kMPIM
f j

| ≤ δ̃ PIM
f , for j = 1,2, . . . ,n , (13)

guarantees the stability of Â f in the impaired operation.

B. Modified Pseudo-Inverse Method with Stabilization and

with Correction

Unfortunately, one of the deficiencies of MPIM is that

the robust stability margin cannot be always used but in the

case in which matrix A f remains stable after the fault, i.e.,

Λ(A f ) ⊆ C−, otherwise the system must first be stabilized

using another method.

1) Fault Accommodation Control with LQR Stabilization

and MPIM Correction: Hence, for certain instability cases,

in the classical paper on MPIM [4], it was suggested to use

first an efficient method to get the stabilizing gain, e.g.,

through solving the corresponding Continuous Algebraic

Riccati Equation (CARE) associated with the post-fault pair

(A f ,B f ), that is

CARE f : (14)

AT
f XCARE

f + XCARE
f A f −XCARE

f B f R−1
f BT

f XCARE
f + Q f = 0 ,

where the solution to CARE f is computed as

KCARE
f = R−1

f BT
f XCARE

f , (15)

and then to make a control correction as

K
MPIM-LQR
f = KCARE

f + δ̃ PIM-LQR
f ∆K

PIM-LQR
f , (16)

where the control accommodation difference ∆K
PIM-LQR
f is

obtained as

∆K
PIM-LQR
f = B

†
f

(

Â
LQR
f − Â∗

n

)

= B
†
f

(

(A f −B f K
CARE
f )− Â∗

n

)

; (17)

as no restrictions are indicated in that paper, see that the

penalty matrices QT
f = Q f = Q̄T

f Q̄ f ≥ 0 and RT
f = R f > 0

might be chosen as in (32a)-(32b).

For this situation, the fault accommodation control re-

design scheme with simple LQR stabilization and MPIM

correction becomes a two step procedure as follows [4].

Algorithm 1: MPIM-LQR Scheme

(1-1) Stabilize the post-fault system using the classical LQR

procedure of (14) with the weighting matrices Q f ,R f

as in (32a)-(32b), provide KCARE
f from (15).

(1-2) Make the appropriate control correction using the

difference matrix ∆K
PIM-LQR
f as in (17), provide

K
MPIM-LQR
f from (16).

However, again, look that there is no touch onto the

imposed degree of stability using this approach.

2) Fault Accommodation Control with GLQR Stabilization

and MPIM Correction: Contrary to the simple LQR stabi-

lization from the original approach and with direct regard on

the model matching problem with prescribed stability degree,

in this paper, the authors propose to obtain the initial stabiliz-

ing post-fault control matrix through solving the Generalized

Continuous Algebraic Riccati Equation (GCARE) (similar to

(30)) associated with the faulty pair (A f ,B f ), that is

GCARE f : (18)

ÃT
f XGCARE

f + XGCARE
f Ã f −XGCARE

f B f R−1
f BT

f XGCARE
f + Q̃ f = 0 ,

where the solution to GCARE f is computed as

KGCARE
f = R−1

f (BT
f XGCARE

f + S f ) , (19)

and then to make a control correction as

K
MPIM-GLQR
f = KGCARE

f + δ̃ PIM-GLQR
f ∆K

PIM-GLQR
f , (20)

where the control accommodation difference ∆K
PIM-GLQR
f is

obtained as

∆K
PIM-GLQR
f = B

†
f

(

Â
GLQR
f − Â∗

n

)

= B
†
f

(

(A f −B f K
GCARE
f )− Â∗

n

)

, (21)

again after an appropriate choice of the penalty matrices

Q f ,R f ,S f as in (32) (for details on the computation of

Q f ,R f ,S f , see Appendix I, Review on Robust Optimal

Model Matching).

For this situation, the fault accommodation control re-

design scheme with generalized GLQR stabilization and

MPIM correction becomes a two step procedure as follows.

Algorithm 2: MPIM-GLQR Scheme

(2-1) Stabilize the post-fault system using the generalized

GLQR procedure of (18) with the weighting matrices

Q f ,R f ,S f as in (32), provide KGCARE
f from (19).

(2-2) Make the appropriate control correction using the

difference matrix ∆K
PIM-GLQR
f as in (21), provide

K
MPIM-GLQR
f from (20).

From Algorithms 1 and 2, it appears clear now that

only following the steps of the second one, namely MPIM-

GLQR, the model matching problem with the imposition

of prescribed stability degree is solved, as this property is

inherently assured by the GLQR stabilization and it is not

affected by the MPIM correction - this is also to be proven

numerically in the case study for the impaired model of the

aircraft longitudinal motion.

C. Interpretation of MPIM-G/LQR Control Actions and Fu-

ture Research

The authors have showed in [8] that, after making use

of the weighting matrices Q f ,R f from (32a)-(32b) for the

simple LQR stabilization respectively of Q f ,R f ,S f from (32)

for the generalized GLQR stabilization, the PIM-LQR and

the PIM-GLQR control accommodation matrices ∆K
PIM-LQR
f

and ∆K
PIM-GLQR
f from (17) and (21) get special forms.
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Following that development, the corresponding control

matrices become

K
MPIM-LQR
f = δ̃

PIM-LQR
f KPIM

f +(1− δ̃
PIM-LQR
f )KCARE

f ,

(22)

K
MPIM-GLQR
f = KPIM

f +(1− δ̃
PIM-GLQR
f )KCARE

f , (23)

where the MPIM-LQR control provides to have somehow a

bi-objective form, and remark the clear difference between

the two which is proved through the fact that in the MPIM-

GLQR control the PIM component is penalized no more.

Moreover, see that if the stability-bounds δ̃ PIM-G/LQR
f are

much smaller than unity, their influence becomes negligible,

such that (22) and (23) get the approximate forms

K
MPIM-LQR
f ⋍ KCARE

f , (24)

K
MPIM-GLQR
f ⋍ KPIM

f + KCARE
f ; (25)

in any case, having δ̃
PIM-G/LQR
f ≪ 1 is not always the case.

Also, if the fault is severe and the ideal performance

imposed through Â∗
n is too demanding, the control effort

spent for stabilization will conduct to such KCARE
f that might

be several orders of magnitude bigger than KPIM
f in norm,

which will imply in (25) that the PIM correction becomes

insignificant regarding the GLQR stabilization, that is

K
MPIM-GLQR
f ≈ K

MPIM-LQR
f ; (26)

of course, this is a too qualitative analysis and further inves-

tigation on the magnitude of the corresponding Frobenius-

norms of both control accommodation matrices must be

done.

In the sequel, the design of a controller for the longitudinal

model of the B747 civil aircraft is considered, with the aim of

proving the advantages of using the modified pseudo-inverse

method with generalized linear quadratic stabilization and

post-fault penalty matrices provided by the robust optimal

model matching approach for better fault tolerant model

matching performance with prescribed stability degree over

the method with simple linear quadratic stabilization, after a

structural and an actuator fault.

IV. APPLICATION OF MPIM-G/LQR CONTROLS FOR THE

B747 AIRCRAFT LONGITUDINAL MODEL

A. Flight Condition

Consider an aircraft Boeing 747 in gradual maneuvering

without precision tracking (Class I cruise flight, Category B

flight phase) and assume a straight and constant level flight

at 40000 f t fixed altitude and 0.8 Mach - the corresponding

steady-state speed is 774 f ps; the aircraft mass is 19792

slug.

B. Nominal System

1) Open-Loop Model: The aircraft longitudinal dynamics

is described by the state vector x =
[

u w q θ
]T

,

where u ( f t/sec) and w ( f t/sec) represent the inertial

velocities in the x- and z- directions of FB reference frame;

(FB denotes body-axis reference); also, q (rad/sec) and θ
(rad) represent respectively the pitch rate and the pitch angle.

The control input δE (rad) is the elevator deflection.

The linearized model of the system is given by the nominal

pair of system and control matrices (An,Bn) as (see [16], for

the aircraft longitudinal model)

An =









−0.0069 0.0139 0 −32.2000

−0.0904 −0.3147 773.9766 0

0.0001 −0.0010 −0.4284 0

0 0 1.0 0









,

Bn =
[

−0.0002 −18.0610 −1.1577 0
]T

.

2) Closed-Loop Reference Model: Consider the reference

model Â∗
n (≡ Ân) as

Â∗
n =









−0.0069 0.0139 −0.0006 −32.2006

0.0469 −0.3996 720.6443 −54.2101

0.0089 −0.0064 −3.8470 −3.4748

0 0 1.0000 0









,

computed with the full state-feedback control gain

K∗
n =

[

0.0076 −0.0047 −2.9529 −3.0015
]

,

which gives the stable spectrum

Λ(Â∗
n) = {−0.0685±0.0899ı,−2.0582±2.2066ı} ,

for the nominal closed-loop matrix Â∗
n = An −BnK∗

n .

The reference model Â∗
n provides ideal dynamic perfor-

mance for the natural modes of the longitudinal motion

of the aircraft, precisely for the short-period (SP) mode

eigenvalues λ SP
1,2 = −2.0582±2.2066ı this provides the pair

of natural undamped frequency (rad/sec) and damping coef-

ficient (ωSP,ζ SP) ≈ (3,0.6) and for the phugoid (PH) mode

eigenvalues λ PH
1,2 = −0.0685± 0.0899ı this gives the pair

(ωPH ,ζ PH) ≈ (0.1,0.6) [17].

C. Impaired System

1) Post-Fault Model: Consider an actuator fault defined

by the loss-of-effectiveness with 50% in the elevator de-

flection; that can be modeled in the post-fault system by

multiplying the control matrix with a factor (1− τ f ) = 0.5,

for τ f = 0.5, i.e., B′
f = (1−τ f )Bn. Also, assume a structural

fault modeled in the system matrix as A′
f = An + ∆A f × I4,

with ∆A f = σmax
n ×10−3, where σmax

n = 773.9774 is the max-

imum singular value of the nominal matrix An. Furthermore,

consider also that the actual post-fault matrices provided by

the FDIE module are A f = (1− γ f )A
′
f and B f = (1− γ f )B

′
f ,

with γ f = 0.1, thus denoting a 10% structured identification

error (see [18], for the aircraft fault models).

2) Pseudo-Inverse Solution: The Pseudo-Inverse Method

(PIM) provides the control gain

KPIM
f =

[

0.0158 −0.0997 2.9162 −6.6700
]

,

which is unacceptable, as it gives an unstable spectrum

Λ(ÂPIM
f ) = {0.6811±0.0655ı,0.7292±6.3188ı} ,

for the closed-loop matrix ÂPIM
f = A f −B f K

PIM
f .
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3) Modified Pseudo-Inverse Solution: The Modified

Pseudo-Inverse Method (MPIM) provides the control gain

KMPIM
f =

[

0.0158 −0.0195 0.0195 −0.0195
]

,

which still is unacceptable, as it is not able to provide a

stable spectrum

Λ(ÂMPIM
f ) = {0.2966±2.7770ı,0.6847±0.1016ı} ,

for the closed-loop matrix ÂMPIM
f = A f −B f KMPIM

f ; this is

due to the fact that matrix A f is unstable, with the spectrum

Λ(A f ) = {0.3619±0.7887ı,0.6937±0.0592ı} .

D. Accommodated System

1) Post-Fault Weighting Matrices: The penalty matrices

derived as in the Robust Optimal Model Matching procedure,

described in Appendix I, are identified as

Q f =









0.0000 −0.0000 0.0004 −0.0001

−0.0000 0.0000 −0.0031 0.0007

0.0004 −0.0031 5.1994 −0.4034

−0.0001 0.0007 −0.4034 0.0695









×105 ,

(27a)

R f = 66.3268 , (27b)

S f =
[

1.0467 −6.6100 193.4236 −442.4004
]T

,
(27c)

and the minimal decay rate α f = 2.0 is chosen according to

its definition, precisely a little bit smaller than α∗
n = 2.05.

2) MPIM-LQR Solution: The simple LQR stabilization,

using just the two penalties Q f ,R f from (27a)-(27b), with

MPIM correction, the MPIM-LQR technique, provides the

control gain

K
MPIM-LQR
f =

[

46.1534 −1.4070 −73.4641 636.2251
]

,

which still is not acceptable, as it provides the stable spec-

trum

Λ(ÂMPIM-LQR
f )= {−1.4017,−44.9486,−0.6211±0.1858ı} ,

for the closed-loop matrix Â
MPIM-LQR
f = A f −B f K

MPIM-LQR
f ,

but it does not manage to obey the superior limit for the

negative values of the real-parts of the eigenvalues in its

spectrum, i.e., −2.0.

3) MPIM-GLQR Solution: The generalized GLQR stabi-

lization, using all the three penalties Q f ,R f ,S f from (27),

with MPIM correction, the MPIM-GLQR technique, pro-

vides the control gain

K
MPIM-GLQR
f =

[

0.0219 −0.0016 0.0234 1.2047
]

×105 ,

which is finally acceptable, as it provides the stable spectrum

Λ(ÂMPIM-GLQR
f )= {−2.6426,−49.0031,−5.2219±3.6603ı} ,

for the closed-loop matrix Â
MPIM-GLQR
f = A f −

B f K
MPIM-GLQR
f , being the only approach that stabilizes the

system and achieves the prescribed stability degree.
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Fig. 1. MPIM-G/LQR Accommodation of the B747-SP Mode

4) MPIM-GLQR vs. MPIM-LQR Control: Unfortunately,

both fault tolerant model matching techniques provide large

values for the differences between the corresponding closed-

loop matrices and the reference model one, but this is to

be explained by the fact that both generalized / classical

quadratic regulators provide large control gains.

However, there is one major advantage of the MPIM-

GLQR approach over the MPIM-LQR in that it provides real-

parts of the closed-loop eigenvalues smaller than −α f , which

makes MPIM-GLQR the best candidate if, in the post-fault

operation, the prescribed degree of stability is also imposed

for the performance to be followed as well, as a plus to the

primary minimum Frobenius-norm requirement.

5) Closed-Loop Simulation: Due to the limited space in

the paper, only the simulations for the short-period (SP)

mode behavior (vertical inertial velocity and pitch rate)

when applying the MPIM-G/LQR accommodating controls

are shown in Fig. 1, during the post-fault period (restricted

on the graphs to t f = 0). At least from the graph of the pitch

rate, there is to be seen that the MPIM-GLQR is a better

follower than MPIM-LQR.

V. CONCLUSION

This paper interrogated the Modified Pseudo-Inverse

Method (MPIM) used as an accommodation technique that

recovers as much performance as before the faults in the

situation of impairments turning the ideal nominal operation

to an unstable post-fault regime.

The authors have developed the MPIM with the General-

ized Linear Quadratic Regulator (GLQR) stabilization using

the penalty matrices derived from the Robust Optimal Model

Matching (ROMM) procedure and have shown that this is the

only successful approach for the model matching problem

extended with the prescribed stability degree property, as

opposed to the classical MPIM used in conjuction with

simple LQR stabilization.
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Moreover, an application example for the fault tolerant

model matching of the B747 longitudinal motion control is

also provided.

APPENDIX I

REVIEW ON ROBUST OPTIMAL MODEL MATCHING

Let Â∗
n be the ideal nominal closed-loop matrix from (3)

and denote by α∗
n , |λ (Â∗

n)| ≥ α f the maximum absolute

value of the real-part of the eigenvalues of Â∗
n.

One of the solutions to the model matching problem

with prescribed stability degree from (1)-(3) known in the

literature, with some robustness and optimality properties

attached, designs the post-fault state-feedback so to minimize

the performance index (see [7])

J f (α f , Â
∗
n) =

∫ ∞

t f

e2α f t
(

‖ẋ(t)− Â∗
nx(t)‖2

2 +‖Â∗
nx(t)‖2

2

)

dt ;

(28)

the exponent α f ≤ α∗
n is defined as the desired minimal

decay-rate of the post-fault closed-loop system, namely the

exponential convergence rate of system state to the equilib-

rium point [19].

In this case, the optimal control u f (t) = −K f x(t) which

minimizes J f (α f , Â
∗
n) from (28) subject to (A f ,B f ) is com-

puted as

K f = R−1
f (BT

f X f + S f ) , (29)

where the unique stabilizing symmetric positive-semidefinite

matrix X f represents the solution to the Generalized Contin-

uous Algebraic Riccati Equation (GCARE)

GCARE f : ÃT
f X f + X f Ã f −X f B f R−1

f BT
f X f + Q̃ f = 0 , (30)

with the buffer matrices

Ã f = A f + α f In −B f R
−1
f S f , Q̃ f = Q f −ST

f R−1
f S f , (31)

where the required post-fault weighting matrices from (30)-

(31), are identified as (see also [20])

Q f = AT
f A f −AT

f Â∗
n − Â∗T

n A f + 2Â∗T
n Â∗

n , (32a)

R f = BT
f B f , (32b)

S f = BT
f (A f − Â∗

n) , (32c)

obtained after the reduction of the performance integral in

(28) to the corresponding generalized form

J f (α f )=

∫ ∞

t f

e2α f t
(

‖x(t)‖2
Q f

+‖u f (t)‖
2
R f

+ 2u f (t)
T S f x(t)

)

dt ,

(33)

for the squared Q f - and R f - state- and control- vec-

tors norms, i.e., ‖x(t)‖2
Q f

= x(t)T Q f x(t) and ‖u f (t)‖
2
R f

=

u f (t)
T R f u f (t), and S f the control-state coupling matrix.
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