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Abstract— In this article we show that from the existence
and uniqueness of solutions to a hyperbolic partial differential
equation (p.d.e.) existence and uniqueness of parabolic and
other hyperbolic p.d.e.’s can be derived. Among others, we show
that starting with the (undamped) wave equation we obtain
existence and uniqueness of solutions for the uniform elliptic
p.d.e.’s and for the Schrödinger equation.

I. INTRODUCTION

Studying control theory for partial differential equations

(p.d.e.’s), the first question normally encountered is the

question of existence and uniqueness of solutions for the

(homogeneous) p.d.e. Since the p.d.e. is linear we have to

show the existence of a strongly continuous semigroup. In

many cases it is known from the physical problem formula-

tion that any solution will not increase in norm (energy).

This leads to the problem of showing that the operator

associated to the p.d.e. generates a contraction semigroup. In

this paper we show that knowing that one operator generates

a contraction semigroup implies that many other operators

generate a contraction semigroup as well. This goes much

further than the well-known bounded perturbation result for

semigroups. Among others, we show that the existence and

uniqueness of the diffusion equation and of the Schrödinger

equation can be obtained from the same wave equation.

II. MOTIVATIONS AND PROBLEM STATEMENT

Consider the p.d.e.

ẋ(t) = (J − GRSG∗
R) (Hx(t)) , (1)

where J is formally skew-adjoint, G∗
R is the formal adjoint

of GR, and S is non-negative and H is positive. Furthermore,

x(t) is for every t a function of the spatial variable ζ ∈ Ω
with Ω a subset of Rd. In many p.d.e.’s we can recognize

the form (1). For a hyperbolic p.d.e., S will be zero, and for

a parabolic p.d.e. J will be zero. We illustrate this with a

simple one-dimensional p.d.e.

Example 2.1: Consider the one-dimensional wave equa-

tion on the spatial domain [a, b]. One cause of damping is

structural damping. Structural damping arises from internal
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friction in the material converting vibrational energy into

heat. In this case the vibrating string is modeled by

ρ(ζ)
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∂

∂ζ

[

T (ζ)
∂w

∂ζ
(ζ, t)

]

+

ks

∂2

∂ζ2

[

∂w

∂t
(ζ, t)

]

(2)

where ρ(ζ) is the linear mass density, T (ζ) is the elasticity

modulus (taking values in a compact interval of (0,∞)) and

ks is the (positive) structural damping coefficient.

Defining the state as x =
(

ρ ∂w
∂t

∂w
∂ζ

)

the p.d.e. (2) may be

written as the p.d.e. (1) with:

H(ζ) =

( 1
ρ(ζ) 0

0 T (ζ)

)

, J =

(

0 1
1 0

)

∂

∂ζ

and

GR =

(

1
0

)

∂

∂ζ
, G∗

R = −
(

1 0
) ∂

∂ζ
, S = ks.

In this example the perturbation term indeed corresponds to

some physical dissipation of energy, and when ks = 0, or

equivalently when S = 0, we have a hyperbolic p.d.e.

Equation (1) can be seen as the linear control system

ẋ(t) = JHx(t) + GRu(t) (3)

y(t) = G∗
RHx(t), (4)

which has conjugated input and output in the sense that the

input and output maps are defined by the adjoint operators

GR and G∗
R. It defines a so-called port-Hamiltonian system,

see [3]. The p.d.e. (1) may then be regarded as closing

the loop of the linear control system (3)–(4) with u(t) =
−Sy(t). If the control system (3)–(4) is well-posed, then

the p.d.e. (1) possesses a solution according to Staffans [2]

and Weiss [4]. The precise definition of well-posedness is

not so important here. However, it is important to state that

well-posedness implies that J is the operator which is the

most unbounded. Or putting it more simply, J will be the

operator containing the highest spatial derivatives. As may

be seen from the following example, this is too restrictive.

Example 2.2 (Heat equation): Let Ω be bounded open

connected set in R3 with smooth boundary. The heat equation

on Ω is given by

∂x

∂t
(ζ, t) = ∆x(ζ, t), ζ ∈ Ω, t ≥ 0, (5)

where ∆ denotes the Laplacian, i.e., ∆x = ∂2x
∂ζ2

1

+ ∂2x
∂ζ2

2

+ ∂2x
∂ζ2

3

.

We write this Laplacian as

∆ = div · ∇ (6)
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with ∇x = ( ∂x
∂ζ1

, ∂x
∂ζ2

, ∂x
∂ζ3

)
T

and divf = ∂f1

∂ζ1

+ ∂f2

∂ζ2

+ ∂f3

∂ζ3

.

It is well-known that −∇ is the (formal) adjoint of the

divergence div, and so if we choose J = 0, H = I ,

GR = div, and S = I , then (5) is in the form (1).

Thus this example shows that the closed-loop point of view

is not the correct way of regarding the p.d.e. (1), and hence

we shall not follow this idea. Instead of this, we decompose

the right hand-side of equation (1) as the operator mapping

( e1

e2
) to

(

f1

f2

)

defined by

(

f1

f2

)

=

(

J GR

−G∗
R 0

)(

e1

e2

)

:= Jext

(

e1

e2

)

(7)

together with the closure relation

e2 = Sf2. (8)

Combining these equations it is easy to see that f1 = (J −
GRSG∗

R)e1, and thus in this way we are able to build new

p.d.e.’s even when J = 0. As explained in [5] the signals

appearing in the closed loop system form always a subset of

the signals in the open loop system. However, in our closure

this does not longer hold, as can be seen in e.g. Example 2.7

in which we transform a hyperbolic p.d.e. into a parabolic

one.

It may be noted that in the decomposition (7)–(8), the

formally skew-symmetric operator Jext appears. This op-

erator is related to the extension of Hamiltonian systems

defined on state spaces endowed with a Poisson bracket

to controlled Hamiltonian systems (called port-Hamiltonian

systems) defined on Dirac structures [3].

In this paper we study the relation between the p.d.e. (1)

and the (extended) p.d.e., (i.e. the Hamiltonian system):

ẋext(t) = JextHextxext(t). (9)

where Hext is an appropriate positive valued matrix. This

may be replaced by a coercive operator, but we don’t need

that generality in this paper. As stated in the beginning of

this section, the aim is to show that (1) possesses a unique

solution for any initial condition. For this we need boundary

conditions to the p.d.e. and a space of initial condition.

Putting it differently, we have to define operators associated

to our p.d.e.’s. By doing so, Jext becomes an operator with

a proper domain. Distinguishing between these cases, we

change the notation and use A, Aext for the operators.

Furthermore, we assume that our linear spaces are complex

valued. Thus we consider the following operator defined on

the product space of two complex Hilbert spaces X1 and

X2:

Aext =

(

A1

A21 0

)

(10)

with A1 a linear operator defined on X1 × X2 and A21 a

linear operator defined on X1. The domain of this operator

is given by

D(Aext) = {(x1, x2) ∈ X1 × X2 | x1 ∈ D(A21)

and (x1, x2) ∈ D(A1)}. (11)

Furthermore, S is a bounded operator from X2 to X2. We

make the following assumptions throughout the rest of the

paper.

Assumption 2.3: We assume that with the domain (11),

Aext generates a contraction semigroup on X1 × X2. Fur-

thermore, S satisfies

Re〈Sx2, x2〉 ≥ 0. (12)

We recall that the operator A generates a contraction

semigroup on the Hilbert space X if and only if A is

dissipative, i.e., Re〈Ax, x〉 ≤ 0 for all x in the domain of

A, and the range of A − I equals X . This result is known

as the Lumer-Phillips theorem.

With Aext and S we define the operator AS on X1 as

ASx1 = A1

(

x1

SA21x1

)

(13)

with domain

D(AS)=

{

x1∈D(A21)

∣

∣

∣

∣

(

x1

SA21x1

)

∈ D(Aext)

}

. (14)

This AS is the operator associated to J − GRSG∗
R, see

also Examples 2.7 and 2.10. In the class of p.d.e.’s (1),

the operator H corresponds to the definition of the energy

of the system and the dissipativity of the physical system

is naturally expressed with respect to the norm induced by

the energy. Although this energy characterizes an essential

physical property, we show in the following lemma that for

the proofs of the existence of a contraction semigroup, we

may assume that H = I without loss of generality.

Note that the operator H is coercive if it is bounded, self-

adjoint, and satisfies 〈x,Hx〉 ≥ ε‖x‖2 for all x and some

ε > 0.

Lemma 2.4: Let X be a Hilbert space with inner product

〈·, ·〉 and H be a coercive operator on X . With this operator

we define the new inner product

〈x1, x2〉H := 〈x1,Hx2〉. (15)

Then the following holds

1) The norms induced by 〈·, ·〉 and 〈·, ·〉H are equivalent.

2) The operator A with domain D(A) generates a con-

traction semigroup on X with respect to the norm

‖ · ‖ if and only if the operator AH with domain

D(AH) = {x ∈ X | Hx ∈ D(A)} generates a

contraction semigroup on X with respect to the norm

‖ · ‖H
In the sequel, we shall derive conditions, such that AS

generates a contraction semigroup on X1. The above lemma

implies that we may prove this under the assumption that

H = I . We begin by proving that AS is dissipative.

Lemma 2.5: Let Aext be a dissipative operator and let S

satisfy (12). The operator AS as defined by (13) and (14) is

dissipative.

Proof: Since 〈x, y〉+〈y, x〉 = 2Re 〈x, y〉, we only have

to estimate the real part of 〈ASx1, x1〉. Using its definition,
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we find for x1 ∈ D(AS):

Re〈ASx1, x1〉 = Re

〈

Aext

(

x1

SA21x1

)

,

(

x1

0

)〉

= Re

〈

Aext

(

x1

SA21x1

)

,

(

x1

SA21x1

)〉

− Re 〈A21x1, SA21x1〉

≤ 0 + 0,

where we have used that Aext is a dissipative operator, and

that S satisfies (12).

The following theorem shows that AS generates a contrac-

tion semigroup for dissipation terms S with S+S∗ coercive.

Theorem 2.6: If Aext is the generator of a contraction

semigroup, and if S satisfies Re〈Sx, x〉 ≥ ε‖x‖2 for some

ε > 0, independent of x, then AS generates a contraction

semigroup.

Proof: By Lemma 2.4, we know that AS is dissipative.

By the Lumer-Phillips theorem it remains to show that I−AS

is surjective.

Since S satisfies Re〈Sx, x〉 ≥ ε‖x‖2, we see that

Re〈y, S−1y〉 ≥ ε‖S−1y‖2 ≥ ε
‖S‖2 ‖y‖

2. So there exists a

δ ∈ (0, 1) is such that Re〈S−1x, x〉 ≥ δ‖x‖2.

Let P be defined as

P =

(

(1 − δ)I 0
0 S−1 − δI

)

.

By the choice of δ we see that Re〈Px, x〉 ≥ 0. Thus the

bounded perturbation of Aext given by Aext−P generates a

contraction semigroup. By the Lumer-Phillips Theorem this

implies that for all f ∈ X1 there exists a (x1, x2) ∈ D(Aext)
such that

(

f

0

)

= [δI − Aext + P ]

(

x1

x2

)

. (16)

Hence

f =x1 − A1 ( x1

x2
) (17)

0 = δx2 − A21x1 + S−1x2 − δx2 (18)

From equation (10) we see that x2 = SA21x1 and thus x1 ∈
D(AS). Combining this with equation (9), we find

f = x1 − A1

( x1

SA21x1

)

= (I − AS)x1. (19)

Thus I − AS has full range, and so we conclude that AS

generates a contraction semigroup.

We apply this result on uniformly elliptic p.d.e.’s

Example 2.7: Let Ω be bounded open connected set in R3

with smooth boundary. From Example 2.2, we see that the

choice for Aext is

Aext =

(

0 div
∇ 0

)

.

As domain we choose

D(Aext) =

{(

e1

e2

)

∈ L2(Ω) × L2(Ω; C3) | e2 ∈ Hdiv(Ω),

e1 ∈ H1(Ω) and e1 = 0 on ∂Ω}.

Since the adjoint of the operator ∇ with domain H1
0 (Ω)

equals −div with domain Hdiv(Ω) = {f ∈ L2(Ω; C3) |
divf ∈ L2(Ω)}, we have that Aext generates a unitary

group. We remark that this operator is associated to the

three dimensional wave equation, which is hold still at the

boundary.

Let Q(ζ) ∈ L∞(Ω; C3×3) be a matrix valued function

such that there exists an ε > 0

Re〈z, Q(ζ)z〉 ≥ ε‖z‖2, z ∈ C
3, ζ ∈ Ω (20)

With this function we associate the operator from L2(Ω; C3)
to L2(Ω; C3) defined as

(Sf) (ζ) = Q(ζ)f(ζ). (21)

The operator AS becomes, see (13),

(ASe1) (ζ) =

3
∑

k=1

∂

∂ζk

(

3
∑

ℓ=1

qkℓ(ζ)
∂e1

∂ζℓ

(ζ)

)

. (22)

with domain

D(AS) = {e1 ∈ H1(Ω) |S∇e1 ∈ Hdiv(Ω)

and e1 = 0 on ∂Ω}.

By condition (20) we see that S is coercive, and so by

Theorem 2.6 AS generates a contraction semigroup on

L2(Ω). The operator AS with S satisfying (20) is known to

be a uniformly elliptic operator written in divergence form,

see e.g. [1]. We remark that for Q(ζ) ≡ I3, we obtain the

heat equation of Example 2.2.

So for S + S∗ ≥ εI > 0, the operator AS generates a

contraction semigroup. The following example shows that

this does not hold when S + S∗ = 0
Example 2.8: Let A0 be a bounded, injective, positive,

self-adjoint operator on the Hilbert space X0, and assume

further that the (algebraic) inverse of A0 is unbounded. Let

this operator define X1 = X2 = X0 ⊕ X0,

A12 =

(

0 A0

A−1
0 0

)

, A21 =

(

0 −A−1
0

−A0 0

)

.

(23)

It is easy to see that Aext :=
(

0 A12

A21 0

)

is skew-adjoint, and

hence it generates a unitary group.

For S we take the operator

S =

(

0 I

−I 0

)

. (24)

Calculating AS gives

AS = A12SA21

=

(

0 A0

A−1
0 0

)(

0 I

−I 0

)(

0 −A−1
0

−A0 0

)

=

(

−A0 0
0 A−1

0

)(

0 −A−1
0

−A0 0

)

=

(

0 I

−I 0

)

.

Hence it is a bounded operator. However, by definition, the

domain of AS is a subset of the domain of A21. The domain
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is dense, but unequal to X1 ⊕ X2. Hence the operator AS

is not closed and therefore cannot be the generator of a

semigroup.

So if S + S∗ ≥ 0, then Theorem 2.6 does not need to

hold. However, we still have the following result.

Theorem 2.9: Let Aext =
(

0 A12

A21 0

)

with domain

D(Aext) = D(A21) ⊕ D(A12) generate a contraction semi-

group, then AS := −iA12A21 with domain D(AS) = {x1 ∈
D(A21) | A21x1 ∈ D(A12)} generates a group on X1.

We apply the above result on the Schrödinger equation.

Example 2.10: Let Ω be bounded open connected set in

R3 with smooth boundary. The Aext of Example 2.7 satisfies

the condition of Theorem 2.9. Choosing S = iI we the

associated equation given by

AS = i∆,

with domain

D(AS) = {e1 ∈ H1(Ω) | ∇e1 ∈ Hdiv(Ω)

and e1 = 0 on ∂Ω}.

By Theorem 2.9 we know that this generates a unitary group

on L2(Ω). Since positive constants will not effect this, the

Schrödinger equation on Ω for a free particle given by

∂x

∂t
(ζ, t) = i

~

2m
∆x(ζ, t), ζ ∈ Ω, t ≥ 0, x|∂Ω = 0, (25)

where ~ is the reduced Planck constant, m the mass of the

particle, has a unique solution with constant L2(Ω)-norm.

This corresponds to a particle trapped in a potential well.

III. CONCLUSION

In this paper we have presented a new idea for proving

existence and uniqueness of p.d.e.’s. We showed that starting

from the same wave equation all uniformly elliptic p.d.e.’s

and the Schrödinger equation can be recovered. However,

much more is possible, starting from two Schrödinger equa-

tions the double Laplacian −∆2 = i∆ · I · i∆ can be

constructed. Furthermore, the characterization of all bound-

ary conditions for which a hyperbolic p.d.e.’s generates a

contraction semigroup can be obtained.
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