
Robust Gain-Scheduled Estimation: A Convex Solution

Joost Veenman∗ and Carsten W. Scherer∗

∗Department of Mathematics, University of Stuttgart

{joost.veenman,carsten.scherer}@mathematik.uni-stuttgart.de

Abstract— In this paper we present an algorithm for the sys-
tematic synthesis of robust gain-scheduled estimators through
convex optimization. We consider uncertain linear parameter-
varying (LPV) dynamical systems described in the standard
LFT form, while the uncertainty and scheduling blocks in the
interconnection are described by general dynamic and static
full-block IQC-multipliers respectively. It is shown how to unify
the recent results on robust L2-gain estimation with the well-
known results on LPV control, resulting in LMI conditions for
the existence of robust gain-scheduled estimators that guarantee
a given L2-gain for the closed-loop system.

I. INTRODUCTION

During the last three decades the synthesis of H∞ and

LPV controllers has received a lot of attention [1], [2], [3],

[4], [5], [6]. These methods also very naturally cover the

nominal estimator and gain-scheduled estimator synthesis

problem. However, despite the fact that the developed syn-

thesis techniques had a major impact and have been used

for many applications, they generally can only be employed

in a reliable way if the involved LTI/LPV models describe

the real system sufficiently well. If, on the other hand, the

LTI/LPV models are uncertain (i.e. inaccurate), the problem

of synthesizing controllers that are optimally robust to these

uncertainties is much harder. Fortunately, in some special

cases, additional structure in the problem can be exploited

in order to arrive at a convex solution.

A well known framework for the analysis of uncertain

systems is the Integral Quadratic Constraint (IQC) approach,

which was initially formulated in [7]. IQCs are very useful in

capturing a rich class of uncertainties. One could for example

think of repeated static nonlinearities such as saturation [8],

[9] or smoothly time-varying parametric uncertainties as well

as uncertain time-varying time-delays, both with bounds on

the rate-of-variation [10], [11], [12], [13]. Until recently,

the IQC framework could also be employed for a limited

number of synthesis applications, if the corresponding IQC-

multipliers were restricted to be static [4], [5], [6], [14],

[15]. Preliminary work on synthesis based on dynamic IQC-

multipliers has been reported in [16] and [17]. One of

the essential difficulties was the characterization of nominal

stability of the closed-loop system. This problem has been

resolved in [17], by means of a suitable positivity constraint

on the LMI-solutions.

Although the latter result also yielded a complete solution

for the robust estimator and feed-forward controller synthesis

problems [17], [18], it remained an open question how to

convexify the more general robust gain-scheduled estimator

synthesis problem. Indeed, following the usual procedure of

formulating primal and dual matrix inequalities and subse-

quently eliminating the estimator realization matrices fails,

due to the induced nonlinear coupling on the IQC-multipliers

[6]. Moreover, if the uncertainties are captured by general

dynamic IQCs, it also becomes a non-trivial question how

to characterize closed-loop stability and how to formulate the

dual matrix inequality that is required in order to eliminate

the estimator realization matrices [17], [18], [19].

As the main feature of this paper, it is shown how the

techniques presented in [6], [17], [18], [19] can be unified

in order to overcome the aforementioned difficulties and to

arrive at LMI conditions for the existence of robust gain-

scheduled estimators that guarantee a given bound on the

L2-gain for the closed-loop system. We consider uncertain

LPV systems described in the standard LFT form, while the

uncertainty and scheduling blocks in the system are described

by general dynamic and static full-block IQC-multipliers

respectively.

The remainder of this paper is organized as follows:

After having introduced some preliminaries in Section II, we

formally state the problem in Section III. Then in Section IV

we give a short recap on IQC analysis based on the results of

[7], followed by the main results in Section V. We conclude

the paper with a numerical example and some final remarks

in Section VI and VII respectively.

II. NOTATION AND PRELIMINARIES

L2 denotes the space of vector-valued square integrable

functions defined on [0,∞), with the usual inner product

given by 〈., .〉. RL
m×n
∞ (RH

m×n
∞ ) denotes the space of

all real-rational and proper (and stable) matrix functions that

have no poles on the extended imaginary axis (in the closed

right-half complex-plane). By an operator we mean a map G :

L a
2 →L b

2 , and for two given operatorsG=
(
G11G12

G21G22

)

and ∆,

the LFT ∆⋆G is defined as G22+G21∆(I−G11∆)−1
G12,

assuming (I−G11∆)−1
exists. Moreover, if (I−G11∆)−1

is

causal, the LFT is said to be well-posed. Realizations of LTI

systems are denoted by G=
[
AB

CD

]

:=C (sI−A)−1
B+D and

with G(iω)∗ we mean G(−iω)T . If G has no eigenvalues on

the extended imaginary axis and P is a symmetric matrix,

then, by the KYP-Lemma, the frequency domain inequality

(FDI) G(iω)∗PG(iω)≺0 ∀ω ∈ R∪{∞} is equivalent to the

existence of a symmetric matrix X , for which the following

LMI is feasible:




I 0
AB

C D





T



0 X 0
X 0 0
0 0 P





︸ ︷︷ ︸

M(X,P )





I 0
AB

C D



 ≺ 0. (1)

It is finally convenient to say that X is a certificate for the

FDI and to use the abbreviation (⋆)
∗
PG for G∗PG.
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III. PROBLEM FORMULATION

Consider the uncertain LPV plant in Figure 1 where G ∈
RH ∞ represents a proper, stable LTI system that admits a

minimal realization of the form






zd

zs

zp

y






=









A Bd Bs Bp

Cd Ddd Dds Ddp

Cs Dsd Dss Dsp

Cp Dpd Dps Dpp

Cy Dyd Dys Dyp









︸ ︷︷ ︸

G





wd

ws

wp



 , A∈R
n×n,

where respectively col(wd, ws, wp) ∈ L
nwd

+nws+nwp

2 and

col(zd, zs, zp, y) ∈ L
nzd

+nzs+nzp+ny
2 denote the collection

of uncertainty, scheduling and exogenous disturbance input

signals and uncertainty, scheduling, performance and mea-

surement output signals.

The plant G is subject to perturbations by the bounded

and causal operators ∆d and ∆s, also referred to as the

uncertainty and scheduling block respectively, which interact

with G through an LFT, which we assume to be well-posed.

The uncertainty block ∆d belongs to a given star-convex

set ∆d with center zero (i.e. [0, 1]∆d⊆∆d), capturing the

properties of the uncertainties and nonlinearities, while the

scheduling block ∆s := ∆̂s ◦ η is assumed to be a linear

function of an online measurable time-varying parameter

vector η : [0,∞) → Λ. Here the map ∆̂s :R
k → R

nws×nzs

is defined by ∆̂s(η) :=
∑k

i=1 ηiHi for some fixed matrices

Hi, η ∈ R
k, and we assume that η takes its values in

Λ := co{η1, . . . , ηm} ⊆ R
k, where ηj = (ηj1, . . . , η

j
k), j ∈

J :={1, . . . ,m} represent the generator points. Without loss

of generality Λ contains the origin. Then the scheduling

block ∆s is contained in the set ∆s := {∆̂s ◦ η : η ∈
Cp([0,∞),Λ)} (with Cp([0,∞),Λ) denoting the space of

piecewise continuous functions [0,∞) → Λ) and defines the

scheduling operator through ws(t)=∆̂s(η(t))zs(t).
The main goal in robust gain-scheduled estimation is the

synthesis of a filter E ⋆ ∆c that dynamically and causally

processes the measurement y and the scheduling signal η

in order to provide an estimate u of the signal zp in the

sense that the L2-gain from wp to ze = zp − u is rendered

less than an a priori given γ > 0. Here the operator ∆c

represents the so-called scheduling function that is defined

with some to-be-constructed ∆̂c : Rnws×nzs → R
nwc×nzc

as ∆c :=∆̂c(∆s). Note that ∆c defines an operator through

wc(t) = ∆̂c(∆̂s(η(t)))zc(t). Moreover, E is a proper and

stable LTI system that admits a realization of the form
(
u

zc

)

=





AE By Bc

Cu Duy Duc

Cc Dcy Dcc





︸ ︷︷ ︸

E

(
y

wc

)

, (2)

where AE is Hurwitz and where col(y, wc)∈L
ny+nwc

2 and

col(u, zc)∈L
nu+nzc
2 denote the collection of measurement

and scheduling input and the control and scheduling output

signals respectively.

Given G, Λ and ∆d, the goal of this paper can now be

formally stated as follows: Design a gain-scheduled estimator

E ⋆ ∆c such that, for all ∆d ∈ ∆d and ∆s ∈ ∆s, the

(

∆d 0
0 ∆s

)

G

E

�

-
- -

- 6
-

(

wd

ws

) (

zd

zs

)

wp

zp
ze

y u
−

+

wc zc

∆c
�

-
Closed-loop generalized plant G

Fig. 1. Robust gain-scheduled estimation problem.

interconnection of Figure 1 is well-posed, stable and the L2-

gain from wp to ze is rendered less than γ.

IV. ROBUST STABILITY AND PERFORMANCE ANALYSIS

As a preparation, consider the standard input-output set-

ting for robust stability and performance analysis in Figure

2, where G∈RH
(nκ+nze)×(nψ+nwp )
∞ represents the nominal

and stable closed-loop generalized plant, as represented by

the dashed box in Figure 1. Here κ = col(zd, zs, zc) ∈

L
nzd+nzs+nzc
2 and ψ = col(wd, ws, wc) ∈ L

nwd
+nws+nwc

2

denote the collection of scheduling and uncertainty signals

and G admits the realization

G :=

(
GκψGκp
Geψ Gep

)

=







GddGds 0 Gdp

Gsd Gss 0 Gsp

Gcd GcsGcc Gcp

Ged GesGec Gep






=









A Bd Bs Bc Bp

Cd Ddd Dds 0 Ddp

Cs Dsd Dss 0 Dsp

Cc Dcd Dcs Dcc Dcp

Ce Ded Des Dec Dep









,

(3)

where the closed-loop realization matrices are given by








A Bd Bs Bc Bp

CdDddDds 0 Ddp

Cs Dsd Dss 0 Dsp

Cc Dcd DcsDccDcp

Ce Ded DesDecDep









=











A 0 Bd Bs 0 Bp

0 0 0 0 0 0
Cd0DddDds0Ddp

Cs 0DsdDss 0Dsp

0 0 0 0 0 0
Cp0DpdDps0Dpp











+











0 0 0
I 0 0
0 0 0
0 0 0
0 0 I

0−I 0











×





AE By Bc

Cu DuyDuc

Cc DcyDcc









0 I 0 0 0 0
Cy0DydDys0Dyp

0 0 0 0 I 0



.

As a natural consequence, G is (i) stable if A and AE are

Hurwitz and (ii) subject to perturbations by the bounded and

causal operator ∆ := diag (∆d,∆s,∆c) which is contained

in the set ∆ := diag
(
∆d,∆s, ∆̂c(∆s)

)
and represents the

collection of uncertainty and scheduling blocks.

The system interconnection of Figure 2 is said to (i) be

well-posed if the operator I−Gκψ∆ has a causal inverse for

all ∆∈∆, (ii) be robustly stable if I−Gκψ∆ is well-posed

and if its inverse is bounded on L2 and (iii) have a robust

L2-gain performance of level γ, if it is robustly stable and if

for all ∆∈∆ the L2-gain from wp to ze is less than γ > 0.

Clearly, the structure of (3) reveals that I−Gκψ∆ is well-

posed if and only if

G

∆

--
-

�

wp ze

ψ κ

Fig. 2. Standard configuration for robust stability and performance analysis.
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(
I 0
0 I

)

−

(
GddGds

Gsd Gss

)(
∆d 0
0 ∆s

)

(4)

is well posed for all ∆d∈∆d, ∆s∈∆s and

I − Gcc∆c (5)

is well-posed for all ∆c∈∆̂c(∆s) respectively. By recalling

that the interconnection of G with ∆d and ∆s and hence

(4) is well-posed by assumption, we only require (5) to have

a bounded inverse for all ∆c ∈ ∆̂c(∆s), which in turn just

means that E ⋆∆c must be well-posed.

A. Analysis with IQCs

Recall that the operator ∆ is said to satisfy the IQC defined

by the multiplier Π = Π∗ ∈ RL
(nκ+nψ)×(nκ+nψ)
∞ if the

following condition holds true:
〈(

κ

∆(κ)

)

,Π

(
κ

∆(κ)

)〉

≥ 0 ∀κ ∈ L
nκ
2 . (6)

For the correct interpretation of this expression we refer the

reader to [20]. In this paper we assume that Π is factorized

as Φ∗PΦ, with P being a symmetric matrix and Φ ∈
RH

nψ×nκ
∞ a typically tall transfer matrix. In applications

one constructs a whole family of multipliers Π = Φ∗
PΦ

with a suitable set of symmetric matrices P ∈P such that

the IQC holds for all ∆ ∈ ∆. We do not make use of

any particular structure of Φ and P for the uncertainty ∆d

and restrict our attention to static full-block multipliers for

the scheduling block ∆sc := diag(∆s,∆c). Hence, let us

consider the following two IQCs:
〈(

zd
∆d(zd)

)

,Ψ∗P1Ψ

(
zd

∆d(zd)

)〉

≥0 ∀zd ∈ L
nzd
2 , (7)

〈(
zsc

∆sczsc

)

, P2e

(
zsc

∆sczsc

)〉

≥0 ∀zsc :=

(
zs
zc

)

∈L
nzs+nzc
2 .

(8)

Here Ψ :=
(
Ψ1 Ψ2

)
∈ RH

nψ×(nwd
+nzd )

∞ is partitioned

according to the structure of col(zd,∆d(zd)) and P1∈P1 is

any suitable (LMIable) set of structured symmetric matrices

such that (7) holds. Moreover, if we define the constraints

(⋆)
T








Q Q12 S S12

QT12Q22 S21 S22

ST ST21 R R12

ST12 S
T
22 R

T
12R22








︸ ︷︷ ︸

P2e

(
I

∆̂sc(η
j)

)

≻0,

(
R R12

RT12R22

)

≺0 ∀j∈J.

(9)

where ∆̂sc(η
j) := diag(∆̂s(η

j), ∆̂c(∆̂s(η
j)), then (8) is

satisfied if P2e is confined to P2e := {P2e : (9)}. Hence,

with P1∈P1 and P2e∈P2e, we infer that (6) is satisfied for

all ∆∈∆ with

Π=Φ∗PΦ=(⋆)∗









P1 0 0 0 0
0 Q Q12 S S12

0 QT12Q22 S21 S22

0 ST ST21 R R12

0 ST12 S
T
22 R

T
12 R22

















Ψ1 0 0 Ψ2 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 0 0 I









.

It is well known from [7] that robust stability and perfor-

mance of the system interconnection in Figure 2 can now be

characterized as follows.

Theorem 1: Suppose that (4) is well-posed and that ∆d

satisfies (7) for all ∆d∈∆d. Then for all ∆∈∆ the system

interconnection of Figure 2 is well-posed, robustly stable and

has a robust L2-gain performance level of γ, if there exists

P1∈P1 and P2e∈P2e for which the following FDI holds:

(⋆)
∗
(⋆)

∗
PpΦp(iω)







Gκψ(iω) Gκp(iω)
I 0

Geψ(iω) Gep(iω)
0 I






≺0 ∀ω∈R ∪ {∞}.

(10)

Here Pp = diag(P, I,−γ2I) and Φp = diag(Φ, I, I).
From now on, let us assume that there exists at least one

P1∈P1 with

Ψ1(iω)
∗P1Ψ1(iω) ≻ 0 ∀ω ∈ R ∪ {∞} (11)

and suppose that Ψ1 and Ψ2 respectively admit the minimal

realizations Ψ1=
[
A1 B1

C1D1

]

and Ψ2=
[
A2 B2

C2D2

]

, with A1 and A2

being Hurwitz. Then, by the KYP-Lemma, the FDIs (10)

and (11) are equivalent to the existence of some symmetric

matrices X and X̂ for which the following LMIs hold:

(⋆)TM(X ,Pe)





















I 0
A1 0 B1Cd B1Ddd B1Dds 0 B1Ddp

0 A2 0 B2 0 0 0
0 0 A Bd Bs Bc Bp

C1C2D1CdD1Ddd+D2D1Dds 0 D1Ddp

0 0 Cs Dsd Dss 0 Dsp

0 0 Cc Dcd Dcs Dcc Dcp

0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 Cp Dpd Dps Dpc Dpp

0 0 0 0 0 0 I





















≺0,

(12)(
AT1 X̂ + X̂A1 + CT1 P1C1 X̂B1 + CT1 P1D1

BT1 X̂ +DT
1 P1C1 DT

1 P1D1

)

≻ 0. (13)

Here we recall from (3) that the diagonal blocks of A are

given by A and AE respectively. Hence, we partition X as

X =

(

X U

UT X̄

)

=








X11X12X13 U1

XT
12X22X23 U2

XT
13X

T
23X33 U3

UT1 UT2 UT3 X̄







,

where X11, X22, X33 and X̄ have compatible dimensions

with A1, A2, A and AE respectively. It is now possible to

state the following result.

Theorem 2: Suppose that (4) is well-posed and that ∆d

satisfies (7) for all ∆d∈∆d. Then for all ∆∈∆ the system

interconnection of Figure 2 is well-posed, robustly stable and

has a robust L2-gain performance level of γ if

∃ X , X̂, P1∈P1, P2e∈P2e : (12), (13) hold. (14)

Remark 1: Note that the IQC
〈(

zs
∆szs

)

, P2

(
zs

∆szs

)〉

≥0 for

all zs ∈L
nzs
2 is satisfied for all ∆s ∈∆s, if the symmetric

matrix P2 is confined to

P2 :=

{

P2=

(
Q S

ST R

)

: (⋆)
T
P2

(
I

∆̂s(η
j)

)

≻0, R≺0 ∀j∈J

}

.

(15)
The results of this paper rely on the elimination of the real-

ization matrices of E, and, consequently, the elimination of

the scheduling function ∆̂c(∆s) from the synthesis problem.

Therefore, the so-called extended multiplier P2e ∈ P2e for

analysis results simplifies into the reduced multiplier P2∈P2

appearing in the synthesis conditions.
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B. From Analysis to Synthesis

Since the system matrices depend on to-be-designed esti-

mator variables, the conditions in (14) are no longer affine in

all variables, such that LMI solvers are unable to handle the

synthesis problem. A common procedure to resolve this prob-

lem is to eliminate the estimator variables by applying the so-

called Elimination Lemma [6, Lemma A.2]. However, there

are three main issues appearing in the robust gain-scheduling

estimator synthesis problem that need to be resolved.

1) Due to the generality of the multipliers, X ≻ 0 is no

longer the appropriate condition in order to enforce

closed-loop stability [17].

2) In order to eliminate the estimator variables by apply-

ing the Elimination Lemma, it is required to formulate

a dual solvability condition by applying the Dualiza-

tion Lemma [6, Lemma A.1]. However, the outer-

factors of the IQC-multiplier factorization Ψ∗P1Ψ are

generally tall and, hence, cannot be inverted. Since the

inverse of Ψ is essential in order to explicitly formulate

the dual of matrix inequality (12), the primal matrix

inequality (12) must be reformulated with a square fac-

torization of Ψ∗P1Ψ (i.e. Ψ∗P1Ψ = Ψ̂∗diag(I,−I)Ψ̂
with Ψ̂ being square and invertible) [18].

3) Unlike the standard H∞-controller synthesis problem

[2], [3], it is not sufficient to only eliminate the

estimator variables. The primal and dual solvability

conditions induce a non-convex constraint on the mul-

tipliers which, in general, cannot be convexified.

C. A Characterization of Nominal Stability

The first issue can be resolved by considering the char-

acterization of nominal stability as presented in [17]. Recall

that P1 ∈P1 is generally indefinite. Therefore, X ≻ 0 is no

longer an appropriate condition in order to enforce stability

on the underlying closed-loop system. The following theorem

provides a coupling constraint between (12) and (13), which

is equivalent to A being Hurwitz.

Lemma 1: [17] A is stable and FDIs (10) as well as (11)

hold if and only if there exist solutions X and X̂ of LMIs

(12) and (13) which are coupled as




X11 − X̂ X13 U1

XT
13 X33 U3

UT1 UT3 X̄



 ≻ 0. (16)

It is now possible to exploit Lemma 1 in order to state the

following result.

Theorem 3: Suppose that (4) is well-posed and that ∆d

satisfies (7) for all ∆d ∈∆d. Then there exist a stable and

causal estimator E ⋆∆c such that for all ∆∈∆ the system

interconnection of Figure 2 is well-posed, robustly stable and

the resulting L2-gain from wp to ze is rendered less than γ, if

∃ X , X̂, P1∈P1, P2e∈P2e : (12), (13), (16) hold. (17)

D. Reformulation of the Analysis LMIs of Theorem 2

As discussed in Section IV-B it is non-trivial to formulate

an explicit dual solvability condition. In order to resolve

this problem we will rely on the results of [19] and [21].

Indeed, one can show that it is possible to construct a new

factorization of Ψ∗P1Ψ that has square and invertible outer-

factors. Moreover, one can, subsequently, eliminate the initial

multiplier factorization Ψ∗P1Ψ appearing in the FDI (10)

and replace it by the new one. The key difficulty is, how

this can be done by using state-space arguments.

Lemma 2 (IQC Squaring [19]): Let us define the matri-

ces J = (0 I ) and Ĵ = (I 0 ) and suppose that (14) holds.

Then there exist matrices Ψ̂j ∈ RH ∞, j = 1, 2, 3 with

Ψ̂−∗
1 , Ψ̂−1

2 ∈RH ∞ and symmetric matrices

Z =

(
Z11 Ĵ

ĴT Z22

)

, Zǫ =

(
Z11ǫ Ĵ

ĴT Z22ǫ

)

(18)

with Zǫ → Z for ǫ→ 0 such that

Ψ∗P1Ψ =

(
Ψ̂1 Ψ̂3

0 Ψ̂2

)∗(
I 0
0−I

)(
Ψ̂1 Ψ̂3

0 Ψ̂2

)

=: Ψ̂∗P̂1Ψ̂, (19)

Ψ̂ admits the controllable realization

Ψ̂ =

(
Ψ̂1 Ψ̂3

0 Ψ̂2

)

=







A1 0 B1 0

0 Â2 0 B̂2

Ĉ1 Ĉ3 D̂1 D̂3

0 Ĉ2 0 D̂2






, (20)

Zǫ satisfies

(⋆)
T
M
(

Zǫ, diag
(
P̂1,−P1

))











I 0
A1 0
0 Ǎ2

Ĉ1 Č3

0 Č2

C1C2J

B1 0
0 B̌2

D̂1 Ď3

0 Ď2

D1D2











≺0. (21)

for all small ǫ > 0 and equality holds with Z , if ǫ = 0.

It is obvious that the initial multiplier factorization Ψ∗P1Ψ
appearing in the FDI (10) can now simply be replaced with

the factorization Ψ̂∗P̂1Ψ̂ as in (19). However, it has only

recently been shown in [21] how this can be done in state-

space, by systematically merging (12) and (21).

Lemma 3 (LMI Gluing): Suppose that (14) holds and that

Zǫ satisfies (21) for all small ǫ > 0. Then (21) and (12) imply

(⋆)TM
(
X̂ , T3

)























I 0
A1 0 B1CdB1DddB1Dds 0 B1Ddp

0 Ǎ2 0 B̌2 0 0 0
0 0 A Bd Bs Bc Bp

Ĉ1 Č3 D̂1Cd D̂1Dee D̂1Dds 0 D̂1Ddp

0 Č2 0 Ď2 0 0 0
0 0 Cs Dsd Dss 0 Dsp

0 0 Cc Dcd Dcs Dcc Dcp

0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 Cp Dpd Dps Dpc Dpp

0 0 0 0 0 0 I























≺0,

(22)

where T3=diag
(
P̂1, P2e, I,−γ

2I
)
, Dee=Ddd+D̂

−1
1 Ď3 and

X̂ =

(

X̃ Ũ

ŨT X̄

)

=








X11−Z11ǫ X12J−Ĵ X13 U1

JTXT
12−Ĵ

T JTX22J−Z22ǫJ
TX23J

TU2

XT
13 XT

23J X33 U3

UT1 UT2 J UT3 X̄







.

(23)
Since the outer-factors of the multipliers are now square

and invertible, it is possible to eliminate ĈΨ2 and D̂Ψ2 by

performing a simple congruence transformation. This yields
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(⋆)TM
(
X̂ , T3

)




















I 0 0 0 0

Â B̂d B̂s B̂c B̂p

Ĉd D̂dd D̂ds 0 D̂dp

0 I 0 0 0

Ĉs D̂sd Dss 0 Dsp

Ĉc D̂cd Dcs Dcc Dcp

0 0 I 0 0
0 0 0 I 0

Ĉp D̂pdDpsDpcDpp

0 0 0 0 I




















≺ 0, (24)

where









Â B̂d B̂s B̂c B̂p

Ĉd D̂d D̂ds 0 D̂dp

Ĉs D̂sd Dss 0 Dsp

Ĉc D̂cd Dcs Dcc Dcp

Ĉp D̂pdDpsDpcDpp










:=













A1 −B1DddĎ
−1
2 Č2 B1CdB1DddĎ

−1
2 B1Dds 0 B1Ddp

0 Ǎ2−B̌2Ď
−1
2 Č2 0 B̌2Ď

−1
2 0 0 0

0 BdĎ
−1
2 Č2 A BdĎ

−1
2 Bs Bc Bp

Ĉ1 Č3−D̂1DeeĎ
−1
2 Č2 D̂1Cd D̂1DeeĎ

−1
2 D̂1Dds 0 D̂1Ddp

0 −DsdĎ
−1
2 Č2 Cs DsdĎ

−1
2 Dss 0 Dsp

0 −DcdĎ
−1
2 Č2 Cc DcdĎ

−1
2 Dcs Dcc Dcp

0 −DpdĎ
−1
2 Č2 Cp DpdĎ

−1
2 Dps Dpc Dpp













.

(25)
It is now crucial to observe that we have appropriately refor-

mulated (12) in order to apply the Dualization Lemma [6]:

(⋆)
T
M
(
X̂ , T3

)−1




















−ÂT −ĈTd −ĈTs −ĈTc −ĈTe
I 0 0 0 0
0 I 0 0 0

−B̂Td −D̂T
dd−D̂T

sd−D̂T
cd−D̂T

ed

0 0 I 0 0
0 0 0 I 0

−B̂Ts −D̂T
ds −DT

ss −DT
cs −DT

es

−B̂Tc 0 0 −DT
cc−DT

ec

0 0 0 0 I

−B̂Tp −D̂T
dp−DT

sp−DT
cp−DT

ep




















≻ 0.

(26)

Moreover, we can eliminate the unknown realization matrices

of E from (22) and (26) by applying the Elimination Lemma

[6]. This resolves the second issue discussed in Section IV-B.

V. MAIN RESULTS

Before we state the main result, let us define the symmetric

matrices P2 and P̃2 which take their values from the set

P2 as well as the matrices T1 :=diag
(
P1, P2, I,−γ

2I
)

and

T2 :=diag
(
P1, P̃2, 0,−γ

2I
)
. Let us also define the arbitrary

basis matrix Γ of the kernel of
(
0Cy DydDysDyp

)
. Then

we have introduced all the necessary ingredients in order to

provide a finite-dimensional convex feasibility test for the

existence of robust gain-scheduled estimators that guarantee

a given L2-gain for the system interconnection of Figure 1.

Theorem 4: Statement (17) is valid if and only if there

exist matrices X , Y , X̂ , P1∈P1, P2, P̃2∈P2 for which the

following LMIs hold:

ΓTOTM (X,T1)OΓ ≺ 0, OTM (Y, T2)O ≺ 0 (27)

O=

















I 0
A1 0 B1Cd B1Ddd B1Dds B1Ddp

0 A2 0 B2 0 0
0 0 A Bd Bs Bp

C1 C2 D1Cd D1Ddd+D2D1Dds D1Ddp

0 0 Cs Dsd Dss Dsp

0 0 0 0 I 0
0 0 Cp Dpd Dps Dpp

0 0 0 0 0 I

















(
AT1 X̂ + X̂A1 + CT1 P1C1 X̂B1 + CT1 P1D1

BT1 X̂ +DT
1 P1C1 DT

1 P1D1

)

≻ 0 (28)

(
I 00
00I

)

Y

(
I 00
00I

)T

−

(

X̂ 0
0 0

)

≻0, X − Y ≻0. (29)

Here Y =Y T has a block structure identical to that of X .

Once the LMIs (27)-(29) in the variablesX , Y , X̂ , P1, P2,

P̃2 and γ2 are feasible, the estimator E and the scheduling

function ∆̂c(∆s) can be constructed according to the steps

taken in the proof which is found in the Appendix.

Remark 2: It is also straightforward to derive a convex

feasibility test for the synthesis of robust gain-scheduled

feed-forward controllers by working with the dual FDI (10).

VI. NUMERICAL EXAMPLE

In order to illustrate our results, let us consider the

uncertain LPV system





ẋ(t)
ze(t)
y(t)



=







0 −1+0.95δd −2 0
1−0.5+0.25η(t) 1 0
1 η(t) 0 0
1 0 0 0.01







(
x(t)
wp(t)

)

, (30)

where x(t) is the state, η(t)=sin 1
10 t an on-line measurable

scheduling variable, δd∈ [−1, 1] a time-invariant parametric

uncertainty and wp = col(wp1, wp2). Then the operators

∆s,∆d : L2 → L2 are defined by ws(t) = (∆szs)(t) =
η(t)zd(t) and wd(t) = (∆dzd)(t) = δdzs(t) respectively.

In complete analogy to Section III, the goal is to design a

robust gain-scheduled estimator that dynamically processes

the measurement y and the scheduling signal η in order to

provide an estimate u of the signal zp while the L2-gain

from wp to ze=zp − u is rendered less than γ.

For reasons of comparison we have designed three estima-

tors: a nominal LTI estimator Elti, a nominal gain-scheduled

estimator Enom ⋆ ∆c and a robust gain-scheduled estimator

Erob ⋆ ∆c. Figure 3 shows the estimation error for δd = 0
(left) and δd=1 (right) for a random wave disturbance input

wp1 (i.e. a sinusoid with a random uniformly distributed

frequency) and a random uniformly distributed noise input

wp2 with an amplitude of 1 and 0.0001 respectively.

It is very satisfactory to see that the gain-scheduled estima-

tors Enom⋆∆c and Erob⋆∆c outperform the LTI estimator Elti

(in the sense that the estimation error is rendered small). This

reveals that gain-scheduled estimation can be preferable over

robust estimation in practice. Nevertheless, if we simulate

the system with δd = 1, the estimators Enom, Erob and

Enomgs show a drastic performance degradation. However,

it is again very nice to see that the robust gain-scheduled
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Fig. 3. Left: estimation error for δd=0. Right: estimation error for δd=1.

estimator Erobgs keeps the estimation error small, despite

the uncertainty in the system.

We finally remark that the robust gain-scheduled estimator

design has been obtained by using dynamic DG-scalings.

Using static DG-scalings (i.e. allowing for arbitrarily fast

variations of δd) did not lead to a feasible solution. This very

nice illustrates that allowing for dynamics in the multipliers

can lead to feasible and/or less conservative designs.

VII. CONCLUDING REMARKS

In this paper we have shown that the robust gain-scheduled

estimator synthesis problem can be turned into a semi-

definite program. We have given LMI conditions for the

existence of robust gain-scheduled estimators that guarantee

a given L2-gain for the closed-loop system. We considered

uncertain dynamical LPV systems described in the standard

LFT form, while the uncertainty and scheduling blocks in

the system are described by general dynamic and static full-

block IQC-multipliers respectively. We finally demonstrated

the effectiveness of our results through a numerical example.
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[21] C. W. Scherer and I. E. Köse, “From Transfer Matrices to Realizations:
Convergence Properties and Parameterization of Robustness Analysis
Conditions,” Preprint, 2011.

VIII. APPENDIX

A. Sketch of Proof of Theorem 4: Necessity

Suppose that statement (17) is true. Then there exist

matrices X , X̂ , P1∈P1, P2e∈P2e for which (12), (13) and

(16) are feasible. Now let us reformulate (12) as (22) and

eliminate the realization matrices of E from (22) and (26)

respectively. This yields two inequalities: Iprimal and Idual.

The key observation that resolves the third issue described

in Section IV-B is to observe that inequality Idual has the

right structure in order to (again) apply the Dualization

Lemma [6]. Moreover, after subsequently applying a simple

congruence transformation and defining the new variables

Y and P̃2 one can apply the steps described in Section

IV-D in the reverse direction. This yields (27). Finally, the

stability enforcing positivity conditions in (29) come along

very naturally, thanks to the Schur Complement.

B. Sketch of Proof of Theorem 4: Sufficiency

Suppose that all conditions of Theorem 4 hold true. Then

there exist matrices X , Y , X̂ P1 ∈ P1, P2, P̃2 ∈ P2 that

render (27)-(29) feasible. Now consider the non-singular

matrices X and X − Y (slightly perturb if necessary). Then

by defining X =
(

X X − Y
X − Y X − Y

)

, we can infer (29) thanks to

the Schur complement. For the extension of the scalings we

recall from the literature [6] that, given the matrices P2 and

P̃2, it is always possible (slightly perturb if necessary) to find

a non-singular matrix N and a simple permutation matrix N̂

such that P2e ∋P2e = N̂T
(
P2 N

NT NT (P2−P̃2)
−1N

)

N̂ . This also

yields an explicit scheduling function ∆̂c(∆s) which depends

smoothly on ∆s and satisfies (9). The realization matrices

of E are finally obtained by substituting the constructed

matrices X , P1 and P2e in (12) and solving the resulting

LMI which is, after applying the Schur complement, affine

in the realization matrix variables of E.
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