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Abstract— For sampled-data underactuated three degree-of-
freedom ships, the design of discrete-time surge and yaw state
feedback laws that make a ship track a desired straight-line
path while maintaining a desired nonzero constant forward
speed is considered. First a line-of-sight guidance algorithm
is introduced and by using the Euler approximate model of
tracking error dynamics, discrete-time surge and yaw state
feedback laws are designed. Then by applying the nonlinear
sampled-data control theory, the designed surge and yaw
state feedback laws achieve sampled-data straight-line path
following control. Experimental results are also given to show

the efficiency of the design method.

I. INTRODUCTION

Recently analysis and synthesis of the control problems for

ships have been considered based on nonlinear continuous-

time models and the design methods of continuous-time

controllers have been mainly discussed (for details see [4]

and references therein). For fully-actuated and underactuated

ships, dynamic positioning control, trajectory tracking con-

trol, formation control and etc have been considered ([1]-[4]).

Practical and modern control systems usually use digital

computers as discrete-time controllers with samplers (A/D

converters) and zero-order holders (D/A converters) to con-

trol continuous-time systems. Such a control system is called

a sampled-data system. Recently the framework to design

controllers for nonlinear sampled-data systems based on

discrete-time approximate models is proposed (for details see

[6], [9], [10] and references therein). Several design methods

have been also given to guarantee the stability of nonlinear

sampled-data systems.

In this paper we consider sampled-data straight-line path

following control for underactuated three degree-of-freedom

(3DOF) ships, which have only two control inputs. We intro-

duce a straight-line as a reference trajectory and a reference

nonzero forward speed of a ship. Then the control objective

is to design discrete-time state feedback laws which make a

ship track a desired straight-line trajectory while maintaining

a desired nonzero constant forward speed in the continuous-

time sense. For a desired straight-line trajectory we introduce

a line-of-sight (LOS) guidance algorithm [2]. Then we can

define a cross-track error and tracking errors of the surge

velocity and the yaw angle. First we consider two tracking

error dynamics in surge and yaw and their Euler approximate
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models. We consider yaw and surge control, independently

and we design uniformly globally asymptotically (UGA)

stabilizing state feedback laws for each Euler approximate

models. Next we consider the Euler approximate models of

a cross-track error dynamics and the tracking error dynamics

in yaw and surge. Since these Euler approximate models

can be rewritten as a parameterized discrete-time cascade

interconnection and the Euler approximate models in yaw

and surge are UGA stabilized by the designed state feedback

laws in the discrete-time sense, by [8] we can show that the

Euler approximate model of a cross-track error dynamics is

also UGA stabilized. Then by the results in [6], we can show

that SPUA stability for the cascade interconnection of the

continuous-time cross-track error dynamics and the tracking

error dynamics in yaw and surge is achieved. Hence the

designed discrete-time state feedback laws achieve sampled-

data straight-line path following of underactuated ships in the

continuous-time SPUA stable sense. By experimental results,

we show the efficiency of the proposed design method.

Notation: A function α : R≥0 → R≥0 is of class K (α ∈
K) if it is continuous, zero at zero and strictly increasing. It

is of class K∞ if it is of class K and unbounded. A function

β: R≥0 × R≥0 → R≥0 is of class KL if for any fixed

t ≥ 0, β(·, t) ∈ K and for each fixed s ≥ 0, β(s, ·) is

decreasing to zero as its argument tends to infinity [5]. A

function γ: R≥0 → R≥0 is of class N if γ(·) is continuous

and nondecreasing [8].

II. PRELIMINARY RESULTS

Consider the nonlinear sampled-data system

ẋc = f(xc, uc), xc(0) = x0 (1)

where xc ∈ R
n is the state, uc ∈ R

m is the control

input realized through a zero-order hold, i.e., uc(t) = u(k)
for any t ∈ [kT, (k + 1)T ) and T > 0 is a sampling

period. Here we assume that for each initial condition and

each constant control, there exists a unique solution of (1)

defined on some bounded interval of the form [0, s). We also

assume that the sampling period is a design parameter and

can be assigned arbitrarily. Let xe(k) = xc(kT ). Then the

difference equations corresponding to the exact discrete-time

model and the Euler approximate model of (1) are given by

xe(k + 1) = F e
T (xe(k), u(k)), xe(0) = x0, (2)

ξ(k + 1) = FEuler
T (ξ(k), u(k)), ξ(0) = x0 (3)

respectively, where F e
T (xe(k), u(k)) = xe(k) +

∫ (k+1)T

kT
f(xc(s), u(k))ds and FEuler

T (ξ(k), u(k)) =
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ξ(k) + Tf(ξ(k), u(k)). To define the stability of the

parameterized discrete-time models, we first consider the

following discrete-time system

x(k + 1) = FT (x(k)), x(0) = x0. (4)

Definition 2.1: ([6], [9]) 1) The parameterized discrete-

time system (4) is semiglobally practically uniformly asymp-

totically stable (SPUAS) if there exists β ∈ KL such that for

any pair of strictly positive real numbers (D, d), there exists

T ∗ > 0 such that ‖ x(k) ‖≤ β(‖ x0 ‖, kT )+d for all k ≥ 0,

x0 ∈ R
n with ‖ x0 ‖≤ D and T ∈ (0, T ∗).

2) The parameterized discrete-time system (4) is uniformly

globally asymptotically stable (UGAS) if there exists β ∈
KL such that there exists T ∗ > 0 such that ‖ x(k) ‖≤ β(‖
x0 ‖, kT ) for all k ≥ 0, x0 ∈ R

n and T ∈ (0, T ∗).
3) The parameterized discrete-time system (4) is uniformly

globally bounded (UGB) if there exist α ∈ K∞ and c ≥ 0
such that there exists T ∗ > 0 such that ‖ x(k) ‖≤ α(‖ x0 ‖
) + c for all x0 ∈ R

n and T ∈ (0, T ∗).
4) The parameterized discrete-time system (4) is Lyapunov-

UGAS if there exist α1, α2 ∈ K∞, α3 ∈ K, L ∈ N ,

T ∗ > 0 and a continuous function VT : Rn → R≥0 for each

T ∈ (0, T ∗) such that for all x, y ∈ R
n and T ∈ (0, T ∗)

α1(‖ x ‖) ≤ VT (x) ≤ α2(‖ x ‖), (5)

VT (FT (x)) − VT (x) ≤ −Tα3(‖ x ‖), (6)

|VT (x) − VT (y)| ≤ L max {‖ x ‖, ‖ y ‖} ‖ x − y ‖ . (7)

Now we consider the design of stabilizing state feedback

laws uT (xe) for the exact discrete-time model (2). By [9]

the Euler approximate model (3) with u(k) = uT (ξ(k))
is one-step consistent with the exact discrete-time model

(2) with u(k) = uT (xe(ξ)). Moreover, if f(x, u) and a

parameterized state feedback law uT (x) are locally Lipschitz

for any T ∈ (0, T ∗), the Euler approximate model (3) with

u(k) = uT (ξ(k)) is multi-step consistent with the exact

discrete-time model (2) with u(k) = uT (xe(k)).

Theorem 2.1: ([6], [9]) If the Euler approximate model

(3) with u(k) = uT (ξ(k)) is multi-step consistent with the

exact discrete-time model (2) with u(k) = uT (xe(k)) and

the Euler approximate model (3) with u(k) = uT (ξ(x)) is

UGAS, then the exact discrete-time model (2) with u(k) =
uT (xe(k)) is SPUAS.

Remark 2.1: If F e
T is locally Lipschitz, then there exists

T ∗ > 0 such that for any T ∈ (0, T ∗), uT which SPUA

stabilizes the exact discrete-time model (2), SPUA stabilizes

(1), i.e., there exists β ∈ KL such that for any strictly

positive real numbers (D, d), there exists T ∗ > 0 such

that for any T ∈ (0, T ∗) and any xc(0) ∈ R
n satisfying

‖ xc(0) ‖≤ D, a solution xc(t) of the system ẋc =
f(xc, uT (xc(kT )) for any t ∈ [kT, (k + 1)T ) satisfies

‖ xc(t) ‖≤ β(‖ xc(0) ‖, t) + d ([6], [9], [10]). In this case

we say that the system ẋc = f(xc, uT (xc(kT ))) for any

t ∈ [kT, (k + 1)T ) is SPUAS in the continuous-time sense

or xc(t) → 0 as t → ∞ in the continuous-time SPUAS

sense.

Consider the parameterized discrete-time cascade inter-

connected system

x(k + 1) = fT (x(k), z(k)), (8)

z(k + 1) = lT (z(k)) (9)

which corresponds to a closed-loop system of the exact

discrete-time model or the Euler approximate model of

ẋc = f(xc, zc), żc = l(zc, uc) (10)

and a state feedback law uc(t) = uT (zc(kT )) for any t ∈
[kT, (k + 1)T ) where x, xc ∈ R

n, z, zc ∈ R
n̄. For the

system (8), we assume

A1: There exist γ2 ∈ N , γ1, γ3 ∈ K∞ and T ∗ > 0 such

that for all ξ = [xT zT ]T ∈ R
n+n̄ and T ∈ (0, T ∗) we

have ‖ fT (x, z) ‖≤ γ1(‖ ξ ‖) and ‖ fT (x, z) − fT (x, 0) ‖≤
Tγ2(‖ x ‖)γ3(‖ z ‖).

Theorem 2.2: ([8]) Assume A1. Then the system (8) and

(9) is UGAS if the following conditions hold

1) The system x(k + 1) = fT (x(k), 0) is Lyapunov-UGAS,

2) The system (9) is UGAS,

3) The system (8) and (9) is UGB.

The sufficient condition for UGB of the system (8) and

(9) is given by the following result.

Proposition 2.1: ([7], [8]) Consider the system (8) with

input z. Suppose that there exist α̃1, α̃2, ϕ ∈ K∞, γ̃1, γ̃2 ∈
N , T ∗ > 0, c ≥ 0 and for each T ∈ (0, T ∗) there exists

ṼT : R
n → R≥0 such that for all x ∈ R

n, z ∈ R
n̄ and

T ∈ (0, T ∗) we have

α̃1(‖ x ‖) ≤ ṼT (x) ≤ α̃2(‖ x ‖) + c, (11)

ṼT (fT (x, z)) − ṼT (x)

≤ T γ̃1(‖ z ‖)ϕ(ṼT (x)) + T γ̃2(‖ z ‖), (12)
∫ ∞

1

ds

ϕ(s)
= ∞. (13)

If, furthermore, the solutions of (9) satisfy the summability

condition

T
∞
∑

k=0

µ(‖ z(k) ‖) ≤ ρ(‖ z(0) ‖) (14)

with some ρ ∈ K∞ and µ(s) = γ̃1(s) + γ̃2(s)/ϕ(1), then

the system (8) and (9) is UGB.

III. SAMPLED-DATA STRAIGHT-LINE PATH FOLLOWING

CONTROL FOR UNDERACTUATED SHIPS

A. Model of a Ship and a Problem Formulation

We first introduce notation to describe the equation of

motion of a ship. Let [ xc yc ]T and ψc be the inertial

position and the yaw angle (orientation) of a ship, respec-

tively in Cartesian coordinate system (Figure 1) and let uc,

vc and rc be the linear velocities in surge, sway and the

angular velocity in yaw, respectively, decomposed in the

body-fixed coordinate system [4]. Let ξc = [ xc yc ψc ]
T

and νc = [uc vc rc ]
T

. Consider the following simplified

three degree-of-freedom (3DOF) model of a ship:

ξ̇c = R(ψc)νc, (15)

Mν̇c + C(νc)νc + Dνc = f (16)
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where f = [ fu fv fr ]
T

, fu is the control force in

surge, fv is the rudder force in sway, fr is the rudder

moment in yaw, R(ψc) =

[

R̄(ψc) 0
0 1

]

with R̄(ψc) =
[

cos ψc − sinψc

sin ψc cos ψc

]

is the rotation matrix in yaw, M =
[

m11 0
0 M2

]

> 0 with M2 =

[

m22 m23

m23 m33

]

is the in-

ertia matrix including hydrodynamic added inertia, D =
[

d11 0
0 D2

]

with D2 =

[

d22 d23

d32 d33

]

is the linear damping

matrix and

C(νc) =





0 0 −m22vc − m23rc

0 0 m11uc

m22vc + m23rc −m11uc 0





is the Coriolis-centripetal matrix. Here fv = fv(νc, δc) and

fr = fr(νc, δc) are functions of νc and δc where δc is the

rudder deflection. The model (15) and (16) is equivalently

rewritten as or equivalently

ẋc = uc cos ψc − vc sin ψc, (17)

ẏc = uc sin ψc + vc cos ψc, (18)

ψ̇c = rc, (19)

u̇c = du(νc) + τc, (20)

v̇c = dv(νc) + λv1(νc)δc + λv2(νc), (21)

ṙc = dr(νc) + λr1(νc)δc + λr2(νc) (22)

where [ τc λv1(νc)δc + λv2(νc) λr1(νc)δc + λr2(νc) ]
T

=
M−1f , [ du(νc) dv(νc) dr(νc) ]T = −M−1[C(νc) +
D]νc and λ∗ satisfy λ∗(0) = 0, ∗ = v1, v2, r1 and r2.

Without loss of generality we can assume λr1(νc) �= 0 for

any νc.

ψc

vc

uc

xc

yc

ψ̄c

∆

Fig. 1. A coordinate system and the LOS angle

We consider sampled-data straight-line path following

control of underactuated ships where the control inputs are

realized through a zero-order hold, i.e., τc(t) = τ(k), δc(t) =
δ(k) for any t ∈ [kT, (k +1)T ) and T is a sampling period.

We set the x-axis as a desired straight-line trajectory and

the y-axis is chosen to complete the right-handed coordinate

system (Figure 1). In this case, the y-position of a ship is

the minimal distance between the position of a ship and the

straight-line trajectory, which is called a cross-track error [2].

Let ū > 0 be a desired constant forward speed and assume

that the states of a ship at each sampling time, i.e., ξc(kT ),

νc(kT ), k = 0, 1, 2, ... are available to control a ship. Then

the control objective is to design discrete-time state feedback

laws which make (yc(t), ψc(t), uc(t) − ū, vc(t), rc(t)) → 0
as t → ∞ in the continuous-time SPUAS sense.

B. Sampled-data Straight-line Path Following Control

In this subsection we consider sampled-data straight-line

path following control based on the line-of-sight (LOS)

guidance algorithm and the nonlinear sampled-data control

theory. The LOS guidance is often used for path control of

ships [4]. We pick a point that lies a constant distance ∆ > 0
ahead of a ship, along the desired straight-line trajectory. The

line-of-sight is the line joining a ship and a selected point.

The angle describing the orientation of the line-of-sight is

called the LOS angle and ∆ > 0 is called the look-ahead

distance (Figure 1). The LOS angle is given by

ψ̄c(t) = tan−1

(

−
yc(t)

∆

)

(23)

([1], [2]). We introduce the following assumptions [2]:

B1: The surge velocity uc(t) satisfies 0 < Umin ≤ uc(t) ≤
Umax for any t ≥ 0 where Umin and Umax are the minimal

and the maximal surge velocities, respectively.

B2: For some Cv > 0 the sway velocity vc(t) satisfies

|vc(t)| ≤ min{Umax, CvUmax|rc(t)|} for any t ≥ 0.

B3: ∆ > max{CvUmax, |λv1(νc)/λr1(νc)|} for any νc.

The assumption B1 is needed to make the system controllable

in the sway direction. The assumption |vc(t)| ≤ Umax

in B2 is valid for most underactuated ships, since the

hydrodynamic damping in the sway direction is usually much

larger than the hydrodynamic damping in the surge direction.

The assumption |vc(t)| ≤ CvUmax|rc(t)| in B2 implies that

the convergence of the angular velocity to zero gives the

convergence of the sway velocity to zero. This assumption

is valid in an ideal situation of no natural disturbances such

as winds and currents. Due to natural disturbances an offset

of the sway velocity remains even if the angular velocity

converges to zero in practical situations (see Figure 4 in

Section IV).

Let ũc(t) = uc(t) − ū and ψ̃c(t) = ψc(t) − ψ̄c(t). Then

using (18)-(23), we have

˙̃uc = du(νc) + τc, (24)

˙̃
ψc = rc − r̄c − k̂ψψ̃c = −k̂ψψ̃c + r̃c, (25)

˙̃rc = dr(νc) + λr2(νc) − κ(yc, ψc, νc, ψ̄c)

+Γ(yc)τc sin ψc

+[λr1(νc) + λv1(νc)Γ(yc) cos ψc]δc (26)

where r̃c = rc − r̄c, Γ(yc) = ∆(∆2 + y2
c )−1,

r̄c = −k̂ψψ̃c + ˙̄ψc = −k̂ψψ̃c − Γ(yc)ẏc, (27)

κ = −k̂ψ
˙̃ψc +

2

∆
Γ2yc(uc sin ψc + vc cos ψc)

2

−Γ{du sin ψc + [dv + λv2] cos ψc

+(uc cos ψc − vc sin ψc)rc}

and k̂ψ > 0 is a design parameter which is assigned later.
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Let zc = 1
2y2

c . By the assumption B2, (27) and the

definition of r̃c, we have

|vc| ≤ CvUmax

(

|r̃c| + k̂ψ|ψ̃c| +
1

∆
|ẏc|

)

and by (18) we obtain

żc ≤ ycuc sin ψc + CvUmax|yc|
(

|r̃c| + k̂ψ|ψ̃c|
)

+
CvUmax

∆
|żc|.

Since

uc sin ψc = ū sin ψ̄c + ũc sin(ψ̃c + ψ̄c)

+ ū

{

cos ψ̄c

sin ψ̃c

ψ̃c

+ sin ψ̄c

cos ψ̃c − 1

ψ̃c

}

ψ̃c,

we have

żc ≤ ycū sin ψ̄c + |yc|q(ζc) +
CvUmax

∆
|żc|

where ζc = [ ũc ψ̃c r̃c ]T and

q(ζc) = |ũc| + (2ū + k̂ψCvUmax)|ψ̃c| + CvUmax|r̃c|.

Using sin ψ̄c = −yc/
√

∆2 + y2
c , we obtain

żc ≤ −
ū

√

∆2 + y2
c

y2
c + |yc|q(ζc) +

CvUmax

∆
|żc|

and
{

1 −
CvUmax

∆
sgn(żc)

}

żc ≤ −
2ū

√

∆2 + 2zc

zc+
√

2zcq(ζc)

where sgn(z) is a sign function. Let Π1 = (1 +
CvUmax/∆)−1 and Π2 = (1 − CvUmax/∆)−1. Then by

B3, Π2 > Π1 > 0 and we obtain

żc ≤ −
2ūΠ1

√

∆2 + 2zc

zc + Π2

√

2zcq(ζc). (28)

By the comparison lemma [5], a solution ηc(t) of the

differential equation

η̇c = −
2ūΠ1

√

∆2 + 2ηc

ηc + Π2

√

2ηcq(ζc) (29)

satisfies 0 ≤ zc(t) ≤ ηc(t) if 0 ≤ zc(0) ≤ ηc(0). Hence

if control inputs (τc, δc) stabilize the system (24)-(26) and

(29) with ηc(0) = 1
2y2

0, then (τc, δc) stabilize the system

(18) and (24)-(26) with yc(0) = y0, since zc = 1
2y2

c and

0 ≤ zc(t) ≤ ηc(t) for any t ≥ 0. Summing up we have the

following result.

Lemma 3.1: Assume B1-B3. Then if the control inputs

(τc(t), δc(t)) = (τ(k), δ(k)) for any t ∈ [kT, (k + 1)T )
SPUA stabilize the system (24)-(26) and (29) with ηc(0) =
1
2y2

0 , then (τc(t), δc(t)) = (τ(k), δ(k)) for any t ∈ [kT, (k+
1)T ) SPUA stabilize the system (18) and (24)-(26) with

yc(0) = y0.

Since (τc(t), δc(t)) = (τ(k), δ(k)) for any t ∈ [kT, (k +
1)T ), the Euler approximate model of the system (24)-(26)

and (29) is given by

η(k + 1) = fT (η(k), ζ(k)), (30)

ũ(k + 1) = ũ(k) + T [du(ν(k)) + τ(k)], (31)

ψ̃(k + 1) = (1 − T k̂ψ)ψ̃(k) + T r̃(k), (32)

r̃(k + 1) = r̃(k) + T {dr(ν) + λr2(ν)

−κ(y, ψ, ν, ψ̄) + Γτ sin ψ

+[λr1(ν) + λv1(ν)Γ(y) cos ψ]δ}(k)(33)

where ζ = [ ũ ψ̃ r̃ ]
T

, fT (η, ζ) = FT (η) + TG(η, ζ),
G(η, ζ) = G1(η, ζ)G2(ζ), G1(η, ζ) =

√

2ηq
1

2 (ζ), G2(ζ) =

Π2q
1

2 (ζ) and FT (η) = (1−T · 2ūΠ1/
√

∆2 + 2η)η. For the

system (31)-(33) we consider the following parameterized

surge and yaw discrete-time state feedback laws

τT (k) = −
ku

T + cu

ũ(k) − du(ν(k)) (34)

δT (k) =
1

(λr1(ν) + λv1(ν)Γ(y) cos ψ)(k)

×[−dr(ν) − λr2(ν) + κ(y, ψ, ν, ψ̄)

−
kr

T + cr

r̃ − Γ(y)τ sin ψ](k) (35)

where ku, kr, cu, cr > 0 are design parameters which are

assigned later. Let k̂ψ = kψ/(T + cψ) where kψ, cψ > 0.

Note that the control input δT (k) given by (35) is always

calculated by the assumptions B1 and B3. Then the closed-

loop system (31)-(35) is given by

ζ(k + 1) =





1 − Tku

T+cu
0 0

0 1 − Tkψ

T+cψ
T

0 0 1 − Tkr

T+cr



 ζ(k)

(36)

and we have the following result. A simple proof is omitted.

Lemma 3.2: There exists T ∗ > 0 such that the closed-

loop system (36) is globally exponentially stable for any T ∈
(0, T ∗), ku, kψ , kr ∈ (0, 2] and cu, cψ, cr > 0.

Now we shall show that the designed surge and yaw state

feedback laws SPUA stabilize the sampled-data intercon-

nected system (24)-(26) and (29) by Theorems 2.1 and 2.2.

Proofs of the following lemma and theorem are given in

Appendix.

Lemma 3.3: There exists T ∗ > 0 such that the closed-

loop system (30) and (36) is globally asymptotically stable

for any T ∈ (0, T ∗), ku, kψ, kr ∈ (0, 2] and cu, cψ, cr > 0.

Since the system (17)-(22) and the designed control laws

(34) and (35) are locally Lipschitz, by Lemmas 3.1-3.3 and

Theorem 2.1, we have the following result.

Theorem 3.1: Assume B1-B3. There exists T ∗ > 0 such

that for any T ∈ (0, T ∗) the surge and the yaw control laws

τT (k) = −
ku

T + cu

ũc(kT )− du(νc(kT )), (37)

δT (k) =
1

(λr1(νc) + λv1(νc)Γ(yc) cos ψc)(kT )
(38)

× [(−dr(νc) − λr2(νc) + κ(yc, ψc, νc, ψ̄c))(kT )
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−
kr

T + cr

r̃c(kT ) − Γ(yc(kT ))τ(k) sin ψc(kT )]

with ku, kψ , kr ∈ (0, 2] and cu, cψ, cr > 0 achieve

(yc(t), ψc(t), uc(t) − ū, vc(t), rc(t)) → 0 as t → ∞ in the

continuous-time SPUAS sense for the sampled-data system

(17)-(22) with (τc(t), δc(t)) = (τT (k), δT (k)) for any t ∈
[kT, (k + 1)T ).

Remark 3.1: We can also show that an emulation of

continuous-time state feedback laws

τ(k) = −kuũc(kT ) − du(νc(kT )), (39)

δ(k) =
1

(λr1(νc) + λv1(νc)Γ(yc) cos ψc)(kT )

×[(−dr(νc) − λr2(νc) + κ(yc, ψc, νc, ψ̄c))(kT )

−krr̃c(kT ) − Γ(yc(kT ))τ(k) sin ψc(kT )] (40)

given by [1] and [2], achieve the sampled-data straight-

line path following control of underactuated ships in the

continuous-time SPUAS sense for sufficiently small T > 0.

The designed parameterized state feedback laws (37) and

(38) are usually more useful than an emulation of continuous-

time state feedback laws (39) and (40). For example, the

choice of the design parameters ku, k̂ψ and kr in (39) and

(40) restricts the maximal sampling period T ∗ or depends

on T ∗, but the parameters ku, kψ, kr, cu, cψ and cr in

(37) and (38) can be chosen independent of T ∗ and hence a

longer sampling period can be usually used for the parame-

terized state feedback laws. Furthermore, the parameterized

controllers usually give larger regions of attraction and

(or) better performances than an emulation of continuous-

time controllers ([6], [9]) and hence the proposed design

method based on the Euler approximate models is more

beneficial than a combination of an emulation and a standard

continuous-time design method.

IV. EXPERIMENTAL RESULT

Fig. 2. A real ship (Yamaha Motor Co., Ltd) for experiments

We apply the designed state feedback laws to a real ship

(Yamaha Motor Co., Ltd) with an electric thruster and a

rudder in Figure 2. The size of the ship is about 3 meters

long and 1 meter wide. An electric thruster and a rudder

are attached at the stern. We have programmed the designed

control laws by using MATLAB/Simulink and we have

implemented them to dSPACE MicroAutoBox 1401/1501

(MABX). Real-Time Kinematic Global Positioning System

(RTK-GPS), Inertial Measurement Unit and Magnetic Com-

pass are used to measure the position and the velocity of the

ship. Each measurement and control units are controlled by

Electronic Control Units (ECUs) locally. The experiment is

executed under a weak current and a strong wind of 6 (m/s).

We set a sampling period T = 200 (msec), a look-ahead

distance ∆ = 4.5 (m) and ū = 1 (m/s) as a desired surge

velocity. We apply the state feedback laws (37) and (38)

with ku = 1, kψ = 0.5, kr = 0.1 and cu = cψ = cr =

0.3 to the ship. Let ξc(0) = [ 0 10 π/2 ]
T

and νc(0) =
[ 0.5 0 0 ]

T
be an initial condition. Then the position of

the ship with the desired straight-line trajectory (the red solid

line) is shown in Figure 3 where symbols like a ship express

the position and the attitude of the ship at every 4 (sec). The

time responses of the surge, sway velocities and the angular

velocity in yaw are shown in Figure 4 where the red line

expresses the desired surge velocity.

The designed state feedback laws make the underactuated

ship follow a straight-line path with a suitable attitude

(Figure 3). Due to a strong wind which is facing to the ship

and a weak current, small offsets of the error of the surge

velocity, i.e., uc(t)− ū and the sway velocity remain (Figure

4). But the convergence of the angular velocity in yaw to

zero is achieved. Hence the designed state feedback laws are

enough useful for sampled-data straight-line path following

control of underactuated ships from a practical point of view.
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Fig. 3. The position and the attitude of the ship at every 4 (sec) with a
desired straight-line

V. CONCLUSIONS

We have considered sampled-data straight-line path fol-

lowing control for underactuated 3DOF ships. We have

used a LOS guidance algorithm to design control laws,

which make a ship track a desired straight-line path while

maintaining a desired nonzero constant forward speed. By

using the Euler approximate models of the error dynamics in

surge and yaw, we have designed discrete-time surge and yaw

control laws, independently. Then by applying the nonlinear

sampled-data control theory, we have shown that sampled-

data straight-line path following control is achieved by the

designed control laws. Experimental results have been also

given to show the efficiency of the proposed design method.

APPENDIX

Proof of Lemma 3.3: It is enough to show that the

assumption A1 and the conditions 1)-3) in Theorem 2.2 are
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satisfied for the system (30) and (36). Let T ∗ = ∆/(2ūΠ1).
Then we have 0 < T · 2ūΠ1/

√

∆2 + 2η < 1 for any

T ∈ (0, T ∗).
First we shall show that the assumption A1 is satisfied for

the system (30). In fact, |fT (η, ζ)| ≤ |η| + TΠ2

√

2ηq(ζ) ≤
γ1(‖ η̄ ‖) and |fT (η, ζ) − fT (η, 0)| = TΠ2

√

2ηq(ζ) ≤

Tγ2(η)γ3 (‖ ζ ‖) for any η̄ = [ η ζT ]
T

where γ3(s) = Θs,

γ2(s) = Π2

√

2s, γ1(s) = s + T ∗γ2(s)γ3(s) and Θ =
1 + 2ū + (1 + kψ)CvUmax. Obviously, γ1, γ2, γ3 ∈ K∞

and hence A1 is satisfied for the system (30).

Note that the system η(k + 1) = FT (η(k)) is UGAS and

η(k) ≥ 0 for any k ≥ 0 and η(0) ≥ 0. Let VT (η) = 1
2η2.

Then we have

VT (FT (η)) − VT (η) ≤ −T
ūΠ1

√

∆2 + 2η
η2 ∈ K∞.

We also have |VT (r) − VT (s)| ≤ 1
2{|r| + |s|}|r − s| ≤

max {|r|, |s|} |r − s| and hence the system η(k + 1) =
FT (η(k)) is Lyapunov UGAS.

By Lemma 3.2 it is obvious that the condition 2) in

Theorem 2.2 is satisfied. By Proposition 2.1, we shall show

that the condition 3) is satisfied. Let ṼT (η) = |η|. Then

the condition (11) is satisfied with α̃1(s) = α̃2(s) = s and

c = 0. We also have

ṼT (fT (η, ζ)) − ṼT (η) ≤ TΘ ‖ ζ ‖ [ṼT (η) +
1

2
Π2

2].

Let ϕ(s) = s, γ̃1(s) = Θs and γ̃2(s) = 1
2Π2

2Θs. Then ϕ,

γ̃1, γ̃2 ∈ K∞ and we obtain (12). Since ϕ(s) = s, (13) is

satisfied. Since µ(s) = γ̃1(s) + γ̃2(s)/ϕ(1) = (1 + 2Π2
2)Θs

is linear and the system (36) is globally exponentially stable

for any T ∈ (0, T ∗), (14) is satisfied. Hence by Proposition

2.1, the condition 3) in Theorem 2.2 is satisfied.

Consequently by Theorem 2.2, the closed-loop system (30)

and (36) is UGAS.

Proof of Theorem 3.1: First note that there exists T ∗
1 > 0

such that the assumption B1 is satisfied for any uc(0) ∈

[Umin, Umax], since the surge control law (37) SPUA stabi-

lizes the surge dynamics (20) in the continuous-time sense.

By Lemmas 3.1, 3.3 and Theorem 2.1, there exists 0 <
T ∗

2 ≤ T ∗
1 such that for any T ∈ (0, T ∗

2 ) the surge and yaw

control laws (37), (38) achieve (yc(t), ζc(t)) → 0 as t → ∞
in the continuous-time SPUAS sense for the sampled-data

system (17)-(22). Then by (23), we also have ψ̄c(t) → 0
(and hence ψc(t) → 0) as t → ∞ in the continuous-time

SPUAS sense. Hence there exists β1 ∈ KL such that for

any positive numbers (D1, d1), there exists 0 < T ∗ ≤ T ∗
2

such that for any χc(0) with ‖ χc(0) ‖≤ D1 and any

T ∈ (0, T ∗), ‖ χc(t) ‖≤ β1(‖ χc(0) ‖, t) + d1 where

χc = [ yc ũc ψc r̃c ]
T

.

To complete the proof, it is enough to show that rc(t),
vc(t) → 0 as t → ∞ in the continuous-time SPUAS sense.

By (18) and (27), we have

|rc| ≤ |r̃c| + kψ|ψ̃c| +
1

∆
[|uc|| sin ψc| + |vc|] (41)

and using (41) with the assumptions B2 and B3, we obtain

|vc| ≤ Π2CvUmax|r̃c| + kψΠ2CvUmax|ψ̃c|

+
Π2CvUmax

∆
|uc|| sin ψc|. (42)

Applying |r̃c(t)| ≤ β1(‖ ξc(0) ‖, t)+ d1, |uc(t)| ≤ ū + β1(‖
ξc(0) ‖, t) + d1 and | sinψc(t)| ≤ |ψc(t)| ≤ β1(‖ ξc(0) ‖
, t) + d1 to (42), there exists β ∈ KL and d > 0 such that

|vc(t)| ≤ β(‖ ξc(0) ‖, t)+d where β(s, t) = Π2CvUmax[1+
kψ + 1

∆ (2d1 + ū+β1(s, t))]β1(s, t) and d = Π2CvUmax[1+
kψ + 1

∆(ū+d1)]d1. This implies that vc(t) → 0 as t → ∞ in

the continuous-time SPUAS sense. Similarly using (41) and

(42), we can show rc(t) → 0 as t → ∞ in the continuous-

time SPUAS sense. Hence we have the assertion.
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