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 Abstract—Multiple-model (MM)-based methods have been 
successfully applied to many fault detection schemes; however 
systematic design of the associated model set remains an open 
question. The difficulty comes from the fact that using a large 
model set reduces the risk of undetected faults, but also 
increases the computation load drastically. In this paper we 
propose a dual-model fault detection (DMFD) algorithm aiming 
at solving the model set design problem, and apply it to detect 
actuator faults of robot manipulators. The DMFD algorithm is 
able to detect various types of unexpected actuator faults, 
including abrupt faults, incipient faults, and simultaneous faults, 
in a computationally efficient way. To evaluate the performance 
of the DMFD algorithm, upper bounds of the false alarm and 
missed detection probabilities are explicitly presented in terms 
of the tunable variables. Furthermore, experiments are 
conducted to demonstrate its ability in immediate detection of 
faults. 
 

I. INTRODUCTION 
Recent advances in intelligent robots have inspired many 

emerging applications that require close interactions with 
humans. Therefore it becomes crucial to guarantee safe 
operation of robots, especially in the presence of faults. To 
meet the stringent fail-safe requirement, a robotic system 
must be able to detect the occurrence of faults and responds 
appropriately. 

In the literature of fault detection, faults are represented as 
either additive signals [1, 2] or multiple models [3-8]. The 
latter represents each fault by a specific model that might be 
simple and structurally different from one another; thus the 
multiple-model (MM) fault representation is flexible and 
powerful, leading to the recent development of MM-based 
fault detection schemes. 

For example, eight fault models were established for the 
air-intake system of a turbo-charged engine [3]; then 
structured hypothesis tests were used to detect the occurrence 
of faults. The multiple model adaptive estimation (MMAE) 
algorithm, which runs parallel state estimators and calculates 
the probability of each model by Bayes’ rule, has been 
applied to the flight control system [4]. To improve the 
performance of MM-based fault detection schemes, the 
interacting multiple model (IMM) algorithm was 
investigated [5] and applied to the satellite’s attitude control 
system [6] as well as the aircraft lateral motion control 
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system [7].  
In principle, the set of fault models in the MM-based 

methods should contain all possible faults. If an unexpected 
fault, i.e. a fault without a corresponding model in the model 
set, has occurred, the results of the MM-based methods 
become unpredictable. However, in practice, the model set 
must be finite and thus can never be exhaustive. Moreover, 
the computation load increases drastically as the size of the 
model set increases. Therefore MM-based methods face a 
dilemma of avoiding unexpected faults by using a fine- 
grained model set while maintaining a tractable algorithm by 
limiting the size of the model set.  

To tackle the model set design problem, Ru and Li [8] 
proposed the IM3L algorithm that uses the IMM algorithm 
for estimating system state and the expectation-maximization 
(EM) algorithm for updating model parameters. Therefore 
the fault models are self-adaptive, relieving the need for a 
large model set. However only (multiple) abrupt total and 
partial faults were considered in [8]. 

In this paper, we propose the dual-model fault detection 
(DMFD) algorithm aiming at solving the model set design 
problem, and apply it to detect actuator faults of robot 
manipulators. The DMFD algorithm is able to detect various 
types of unexpected actuator faults, including abrupt faults, 
incipient faults, and simultaneous faults in a computationally 
efficient way. We also evaluate the upper bounds of the false 
alarm and missed detection probabilities in terms of tunable 
variables of the DMFD algorithm. Then experiments are 
carried out to verify the effectiveness of the DMFD 
algorithm. 

The remainder of this paper is organized as follows: 
Section II introduces the dynamic and kinematic models of 
the robot manipulator. Section III illustrates the DMFD 
algorithm. Experimental results are presented in Section IV, 
and Section V concludes this paper. 
 

II. Dynamic and Kinematic Models of the Manipulator 
The dynamic model of an n-joint manipulator is [9]: 

( ( )) ( ) ( ( ), ( )) ( ) ( ( )) ( ( )) ( )t t t t t t t t   M q q C q q q G q F q τ          (1) 

where q(t), ,   are vectors of joint positions, 

velocities, and accelerations at time t, respectively. M(q(t)), 

( )tq

))

( )tq

n n

n

( ( ), (t t C q q  are the inertia matrix, and Coriolis and 

centrifugal matrix respectively. G(q(t)), , (t)   

denote the gravitational torque vector, friction vector, and 
control torque vector, respectively.  

( ( ))tF q n

  Define the state vector of the manipulator as 

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 3718



[ , ]T T Tx q q ; then the discrete-time state space 

representation of (1) is: 

         (2) 1 ( , )

p
k k

k k v
k k k

h

  
     

    

q w
x x

f x τ w



where the subscript k denotes the kth time step,   

 1( , ) ( ) ( , ) ( ) ( )k k k k k k k k k
   f x τ M q τ C q q q G q F q  

[( ) , ( ) ]p T v T T
k kkw w w

, h is 

the sampling time, and  is the 

process noise representing the model uncertainties and the 
approximation error incurred in discretizing (1). 
  We assume that only the joint positions are measurable. 
Thus the output equation of the manipulator is 

k k y Cx vk        (3) 

where C=[Inn 0nn] and vk is the measurement noise which is 
assumed to be Gaussian distributed white noise with zero 
mean and covariance matrix R. 

In the context of the DMFD algorithm, the dynamic model 
consists of (2) and (3) along with the assumption that wk is 
zero mean Gaussian distributed with covariance matrix D

kQ . 

 
Remark 1: It should be noted that the actual distribution of 
wk may not be Gaussian; nevertheless the dynamic model 
assumes that wk is Gaussian distributed and treats the 
covariance matrix D

kQ  as a tunable parameter of the 

dynamic model, not a physical quantity of the manipulator. 
In other words, we change the “accuracy” of the dynamic 
model by tuning D

kQ . If D
kQ  is set to an inappropriate 

value, then the dynamic model behaves poorly in predicting 
the motion of the manipulator; however, it is our intention to 
reduce the “relative accuracy” of one model w.r.t. the other 
for the purpose of fault detection. See Section III for more 
details. 

 
We can also predict the motion of the manipulator through 

the kinematic relations of joints. By kinematic relations we 
mean that the joint velocity is the first derivative of the joint 
position. The kinematic relation can be approximated by the 
Euler’s method as well as the backward difference equation; 
thus the following equation holds: 

1
K K

k k  x A x G kξ         (4) 

where , K h 
  
 

I I
A

0 I 1

K

h

 
  
 

I 0
G

I I
, and 

p
k

k v
k

 
  
  

ξ
ξ

ξ
. 

 and  are the approximation errors due to the Euler’s 

method and the backward difference equation respectively. 

p
kξ

v
kξ

  In the context of the DMFD algorithm, the kinematic 
model consists of (4) and (3) along with the assumption that 

 is Gaussian distributed with zero mean and covariance 

matrix 

kξ
K
kQ . Here K

kQ  is also regarded as a tunable 

parameter of the kinematic model (c.f. Remark 1). Besides, 
we assume that vk, wk and k are independent. 

III. Dual-Model Fault Detection Algorithm 
A. MM-based Fault Detection Schemes 

The model set of the MM-based method contains all fault 
models and the normal model, i.e. (2), which implies that the 
robot is under normal operation. We say that the manipulator 
is currently in mode i if the ith model in the model set best 
fits the current behavior (from the input-output point of view) 
of the manipulator. 

Suppose that there are L models in the model set. Let 

P( i
kM ) be the probability of the event i

kM , which means 

that the manipulator is in mode i at step k, i=1,2,...,L, and k. 
We assume that i

kM  forms a Markov chain, i.e. for i,j=1, 

2,…,L and k 
1 0 ,

1 1 0 1( | , , ) ( | )ki ij i j
k k k k kP M M M M P M M i i j
      (5) 

i,j is the mode transition probability satisfying ,

1
1

L i j

j



  

for i=1,…,L. The posterior mode probability conditioning on 
all measurements up to step k is  

 1, 2,|i i
k ks P M y y y k ,  i=1,2,…L and k      (6) 

If  1max ,j L
k k ks s s  , then we conclude that the 

manipulator is in mode j at step k. Furthermore, if mode j is 
associated with a particular fault, then we infer that the 
corresponding fault has taken place. Therefore the problem 
of fault detection is equivalent to evaluating the posterior 
mode probabilities (6). 

Some useful techniques have been proposed to calculate 
(6). In this paper we use the generalized pseudo Bayesian 
method of order 2 (GPB-2) [10] because it achieves a better 
performance. But its computation load is demanding. If there 
are L models in the model set, then at each time step, the 
GPB-2 algorithm should run L2 state estimators each of 
which is based on one of the L models in the model set. 
Besides, the state estimators also calculate the following 
likelihood functions:  

 ,
1 1 1| , , ,i j i j

k k k k kL p M  y y y M , i,j,=1,2,…,L   (7) 

where p() denotes the probability density function (PDF). 
According to the information provided by the state 
estimators, the GPB-2 algorithm assesses the posterior mode 
probability of each model. The better a model can predict the 
behavior of the manipulator, the higher its posterior mode 
probability will be. 
 
B. Basic Concepts of the DMFD algorithm 

As we have mentioned in Section I, design of the model 
set is the most challenging part of the MM-based fault 
detection schemes. To solve the model set design problem, 
we propose a dual-model fault detection (DMFD) algorithm 
which contains only two models in the model set: the 
dynamic model and the kinematic model. Recall that state 
estimators based on these two models are required; therefore 
we implement the unscented Kalman filter (UKF) [11] for 
the nonlinear dynamic model and the standard Kalman filter 
for the kinematic model. Then the GPB-2 algorithm is 
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applied to evaluate the posterior mode probabilities. 
The idea behind the DMFD algorithm is easy to 

understand. Roughly speaking, we purposely increase K
kQ  

or decrease D
kQ  such that the dynamic model is more 

“accurate” than the kinematic model under normal operation. 
Consequently, the GPB-2 algorithm favors the dynamic 
model and assigns a higher posterior mode probability to it, 
indicating that the manipulator is normal. 

In the event of actuator faults, the faulty joints no longer 
satisfy the dynamic model; however the kinematic model 
remains a good approximation to the motion of all joints 
because it has nothing to do with actuators’ torques. Thus the 
posterior mode probability of the kinematic model increases. 
If the posterior mode probability of the kinematic model 
exceeds a predefined threshold TD, we assert the occurrence 
of faults. Note that TD(0,1) can be viewed as the least 
confidence level we must have when we claim that the 
manipulator has failed. 

The advantages of the DMFD algorithm are apparent. 
Firstly, the DMFD algorithm does not incorporate any 
particular fault information into the models. Thus it is able to 
detect various unexpected faults provided that the faulty 
system deviates from the dynamic model far enough to lower 
down its posterior mode probability. Secondly, the DMFD 
algorithm is computationally efficient since only two models 
are involved in the model set.  

 
C.  Analysis of the DMFD Algorithm 

According to the assumptions of the dynamic model and 
the kinematic model, the likelihood function  defined in 

(7) is a Gaussian function, i,j=D,K. However, the true 
likelihood function, i.e. the PDF of yk conditioning on 
y1,yk-1, is unknown and susceptible to faults. Let  and 

,i j
kL

N
kL

F
kL  denote the true likelihood functions under normal and 

faulty operating conditions respectively, i.e.  

 


1 1

1 1

| , , , the system is normal at step 
| , , , the system is faulty at step 

N
k k k
F
k k k

L p k
L p k








y y y
y y y


   

N
kL  and F

kL  are unknown and may not be Gaussian. 

Their means and covariance matrices are denoted by , N
kμ

F
kμ  and S , N

k
F
kS , respectively, and are unknown either. We 

explicitly distinguish , i,j=D,K, from  and ,i j
kL N

kL F
kL  to 

emphasize the difference between models and the physical 
system because the accuracy of the models are purposely 
reduced.  
 
Lemma 1: For any k , if we choose 

11,

22,

i
ki

k i
k

 
 
  

Q 0
Q

0 Q


D K
k

n

,  i=D,K,  and (8) 11, 11, 11,k kQ Q Q

where , then 11, 22,,i i n
k k

Q Q     , ,
1 1 1 1

i D i K
k k k kL L   y y for 

i=D, K, and all yk+1 . n
 

  To prove Lemma 1, just substitute the dynamic model and 
the kinematic model into the UKF and the Kalman filter, 
respectively. Then we can find that under the condition of (8), 
the conclusion of Lemma 1 holds. Because the proof is 
straightforward, it is skipped to save the space. 

If (8) holds for all k, then we define  for 

i=D,K and all k, and denote the mean and covariance matrix 
of  as  and  respectively. Furthermore, if we 

choose the mode transition probabilities defined in (5) to be 

D,D=K,K=0 and substitute  into the GPB-2 algorithm, 

then we have the following fault detection criterion: 

,i i D i
k k kL L L ,K

i
kL i

kμ
i
kS

i
kL

The fault is detected at step k 

  K
ks TD    

0
1

0
1

(1 )K K
k k D
D D
k k D

s L T

s L T








 



    k r   

where 1k k l   k  , 1

1
1 log

K
k
D
k

s
k s
 


  , log

KLk

kl  DLk

, and 
0

0

(1 )D

D

T

T

 


logr  . 

lk is the log likelihood ratio of the kinematic model to the 
dynamic model. Therefore if (8) holds, the DMFD algorithm 
is equivalent to the likelihood ratio test with a time-varying 
threshold r-k-1, which depends on the ratio of posterior 
mode probabilities at the previous time step.  

Since lk is a function of yk, its mean and variance w.r.t. 

 (N
kL F

kL ) are denoted by EN[lk] (E
F[lk]) and varN(lk) (varF(lk)) 

respectively. Let 1, ,0 i
k

i
n k     be the eigenvalues of 

 for i=D,K; then the following lemma gives the bounds of 

the Ei[lk] and vari(lk) for i=N,F.  

i
kS

 
Lemma 2: If (8) holds for all k, then for i=N,F, we have 

 

2 2

1,

, , 1,

2 2

,

1, 1, ,

1
log

2

1
log

2

i iD i iKD
k k k kki

k K D K
n k n k k

i iD i iKD
k k k kn ki i

k kK D K
k k n k

tr tr
E n

tr tr
E l n


  


  

      
 
 

        
 
 

S μ S μ

S μ S μ



 E

k

 (9) 

where ij i j
k k  μ μ μ  for i=N,F and j=D,K.   is the 

Euclidian norm and tr is the trace of a matrix. Furthermore, 
if  and N

kL F
kL  are Gaussian functions, then for i=N,F 

 
22

2

1, 1, 1, 1,

1 1
var ( )

iD iK
k ki i i i  (10) 

k k k kD K D K
k k k k

l tr tr V
   

   
           

μ μ
S S 

  
  Direct computation leads to (9), while the proof of (10) is 
based on the results of [12]. Since the proof of Lemma 2 is 
tedious and provides little insights into the following analysis, 
it is skipped to save the space. 
 
Remark 2: From UKF and the Kalman filter, we see that 

 depends on . In other words, if  increases, so 

does . Therefore we will treat 

i
kS i

kQ i
kQ

i
kS ,

i
j k , i=D,K and j=1,…,n, 

as tunable variables in the subsequent analysis. 
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Remark 3: In Lemma 2,  and N

kL F
kL  are assumed to be 

Gaussian; However it is also possible to find an upper bound 
of vari(lk), i=N,F, w.r.t. any other distributions [12]. We made 
the Gaussian assumption because it facilitates the derivation 
of the upper bound in terms of ,

i
j k . 

 
Let MD

kP  and FA
kP

C
kR

 denote the probabilities of missed 

detections and false alarms at step k, respectively. Suppose 

that Rk={ykn|k(yk)<r}`1 is the set of outputs that do not 

trigger the alarm.  denotes the complement of . 

Then 

kR

MD
kP  and FA

kP  are: 

 1 1| the system has failed, , ,
        = 1 1

k k
k

MD
k k k

F F F
k k k k

P P
L d L d E

 
     

y y
y y


R R

R

R

 1| the system is normal, , ,

      1 1
C k
k

FA C
k k k k

N N
k k

P P

L d E
 

     
y

y



R
R

R

ky

1y
  

y

where 1S is the indicator function of the set S, i.e. 1S(yk)=1 if 
ykS, and 1S(yk)=0 if ykS. The following theorem gives 

upper bounds of MD
kP  and FA

kP  in terms of (9) and (10). 

 
Theorem 1: If (8) holds, 0>TD >0.5, and  and N

kL F
kL  are 

Gaussian functions for all k, then 

 
 

1

1

,

1,

FA N
k kFA

k N
k k

P E l r
P

E l r
k






     
,   

 
1

1

,

1,

MD F
k kMD

k F
k k

P E l r
P

E l r
k






     
 

where  

 
   

2 2
12

2 2

1 1

1
1

2

        2 1

FA N N
k k k k

N N N N
k k k k k k

P E r V r
r

E V E r V



 



 

     

             
 

 

 
   

2 2
12

2 2

1 1

1
1

2

          2 1

MD F F
k k k k

F F F F
k k k k k k

P E r V r
r

E V E r V



 



 

     

             
 

 

Proof: We derive the upper bound of FA
kP  in detail. The 

upper bound of MD
kP  can be obtained by the same 

procedure. Define Mk={yk |k(yk)<0}. Since 0>TD>0.5, 

r is positive. Therefore MkRk, 

n
1

k

N N
k kEk kL d     kM

M

1
k

N NE E    M

y  

<0, and . Besides, . 

Then 
\

0
k k

R M

N
k k kL d y 1Rk



 
 

\

           1 1 1

C
k k k k

k

N N N
k k k k k k k k k k

N N
k

E L d L d

E r E

   



  

        

   NL dy y y

k

M R M R

M R

(11) 

  Apply Cauchy-Schwarz inequality to 1N
kE  kM

   21 1 1 [ ]
k

N N N N N
k kE rE E E E r        0       

k kR R R   

Note that  is a convex parabolic function of 1NE   kR
. It 

is easy to show that  has two real roots and at least one of 
them is negative. Therefore if EN[k]r, both roots are 

negative, implying that 0 for all . On the 

other hand, if EN[k]<r, then we can show that  has one 
positive root which is always less than 1. Under these 
circumstances, 0 implies 

0 1 1NE    kR 

  2 21
0 4

2

  1 1

N N
k k k

N

E E r E
r

E

            

   kR

[ ] r
    (12) 

Since 1 1
k

FA N
kP E     R

1FA
kP

, EN[k]r implies the trivial 

upper bound, i.e.  . On the other hand, if EN[k]<r, 

from (12) we have 

    
         

    

2 2
2

2 2

1
1 var

2

        var 2 var

ˆ     , var <1

FA N
k k k k

N N
k k k k k k

FA N N
k k k

P E l r l r
r

E l l E l r l

P E l l



 

     

             
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  It is straightforward to show that the partial derivatives of 
ˆ FA
kP  w.r.t. both EN[lk] and varN(lk) are always nonnegative, 

i.e. ˆ FA
kP  is a non-decreasing function of EN[lk] and varN(lk). 

Because EN[lk] and varN(lk) are upper bounded by N
kE  and 

N
kV respectively, we conclude that  ˆ ,FA FA N N

k k k kP P E V   

FA
kP  if EN[lk]<r-k-1, and  if EN[lk]r-k-1.      1FA

kP 
 

According to Lemma 2 and Theorem 1, a sufficient 
condition for the existence of nontrivial upper bounds of 
both FA

kP  and MD
kP  is  

1
N
k kE r E    F

k          (13) 

Suppose that (13) holds; then we investigate the guidelines 
for tuning ,

i
j k  to make FA

kP  and MD
kP  tighter upper 

bounds. By (9) and (10), FA
kP  and MD

kP  are functions of 

1,
D
k , ,

D
n k , 1,

K
k , and ,

D
n k . We can show that 

,

0
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k
D
n k

P






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,

0
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K
n k
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




 , 

1,
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D
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P


0


 , and 

1,

0
FA

k
K

k

P






 . Therefore FA

kP  decreases 

whenever ,
D
n k  and ,

K
n k  decrease, and 1,

D
k  and 1,

D
k  

increase. However, 1, ,
D D
k n k   and 1, ,

K K
k n k  . Thus 

minimizing FA
kP  requires that 

1, ,
D D D
k n k k       and   1, ,

K K K
k n k k          (14) 

Similarly, (14) holds for MD
kP  to be minimal. Note that D

k  

and K
k  are still undetermined.   and 

rearrange (11); then we obtain   On the other hand, if we choose ,
i
j k , i=D,K and j=1,…,n, 

such that (14) holds , then (13) becomes 
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where 
D
k
K
k




  . Suppose that 

N F
k ktr trS S , ND FD

k  μ μk , and FK N
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k  (16) 

and 
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 that satisfies (15), or equivalently, (13). This implies 

that nontrivial upper bounds of both 

0K
k 

FA
kP  and MD

kP  exist.  

  Note that (16) means that failure of the system causes a 
larger variation in the output ( ), the dynamic 

model is closer to the normal system (

N
ktr trS SF

k

ND FD
k  μ μk ), and 

the kinematic model is closer to the faulty system 

( FK N
k  μ μ K

k ). The last two conditions of (16) just 

consolidate the basic concept of the DMFD algorithm in 
adjusting the “relative accuracy” between models.  

Although it is desirable to find “optimal” D
k  and K

k  

such that FA
kP  and MD

kP  are minimized, the optimization 

problem is not solvable because many unknown variables 

(e.g.  and i
ktrS ij

kμ , i=N,F and j=D,K) are involved. 

Instead, the parameters of the DMFD algorithm are tuned on 
a trial and error basis in the experiments. Despite non- 
optimality of the parameters, experimental results show that 
the DMFD algorithm still performs well. 
 

IV. Experiments 
A. Experimental Setting 

A two-joint manipulator on a vertical plane was set up for 
experimental verifications. Each link of the manipulator is 
driven by a DC motor with an optical encoder mounted on 
the shaft. The motion controller and the DMFD algorithm are 
implemented on a 32-bit floating point DSP chip 
(TMS320F28335) with sampling time 0.01sec. The 
dynamics of the DC motors and the manipulator are lumped 
together as follows [9]: 
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where the control inputs v1 and v2 are armature voltages of 
the DC motors within the range of 24 volts. i, i=1,…,11, 
are model parameters explained in Table 1. Their values are 
determined by the system identification techniques [13], and 
are given in Table 1 too. SI unit system is adopted for all 
physical quantities of the manipulator which are shown in  
Table 2. 

A robust motion controller is implemented on the 
manipulator such that the joint position follows a desired 

trajectory. In the experiments, the desired trajectory in the 
joint space is: 
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Table 1: model parameters and their nominal values 
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Table 2: nomenclature of the model parameters 

I1, (I2) moment of inertia of the 1st (2nd) link 
m1, (m2) mass of the 1st (2nd) joint 
l1, (l2) length of the 1st (2nd) joint 
lc1, (lc2) distance from the joint to the C.G. of the 1st (2nd) link 
J1, (J2) inertia of the motor’s rotor of the 1st (2nd) joint 
r1, (r2) gear ratio of the 1st (2nd) joint 
k1, (k2) lumped constants of motors in the 1st (2nd) joint 
fc1, (fc2) Coulomb friction coefficients of the 1st (2nd) joint 
b1, (b2) combined viscous friction coefficients 
g gravity acceleration 

 
  The following parameters of the DMFD algorithm are 
chosen:  
R=0.0012I, =0.00262I, =0.00232I, = 

0.0032I, for all k, D,D=K,K=0.999, and TD=0.7.  

11,kQ 22,
D

kQ 22,
K

kQ

  We have conducted extensive experimental tests to verify 
the ability of the DMFD algorithm in detecting various types 
of actuator faults, including abrupt faults, incipient faults, 
and simultaneous faults. Due to the limited space, only two 
types of faults in Table 3 are presented in this paper. Note 
that Type 1 fault is an abrupt simultaneous fault while Type 2 
fault is an incipient fault indicating the gradual loss of the 
actuator’s torque. In the experiments, the DMFD algorithm 
stops updating posterior mode probabilities once the fault has 
been detected. The frozen posterior mode probabilities 
indicate that the manipulator used to fail, no matter whether 
the fault persists or vanishes thereafter. 

Note that it is difficult for the conventional MM-based 
method to model Type 2 fault since both the starting time and 
the time constant of the decay are uncertain. However, the 
DMFD algorithm can handle Type 2 fault easily.  
 

Table 3: Types of actuator faults 
Type Description 

Type 1 Both joints are locked simultaneously. 
Type 2 The output torque of the 2nd joint gradually decays to zero 

with time constant 1/0.15 sec. 

 
B. Experimental Results 
 Both joints are locked simultaneously (Type 1): 

Suppose that both joints are suddenly locked at t=7.2 sec. 
The positions, velocities, and armature voltages of both 
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joints are shown in Figure 1. Figure 2 illustrates the posterior 
mode probabilities. The DMFD algorithm detects the fault 
within 0.03 sec. 

 
Figure 1: Both joints are locked at t=7.2sec. (a)(d) joint positions: solid line 
(-): desired trajectory; dotted line (.): real trajectory; (b)(e) joint velocities: 
solid line (-): desired velocities; dotted line (.): estimated velocities; (c)(f): 
armature voltages of both joints. 

 
Figure 2: (a) The fault occurs suddenly at t=7.2sec. (b) posterior mode 
probabilities of the dynamic model (solid line) and the kinematic model 
(dashed line). The fault is detected at t=7.23 sec.  

 The output torque of the 2nd joint gradually decays 
(Type 2) 

  Suppose that the output torque of the 2nd joint gradually 
decays after t=7 sec. More precisely, let 2 be the output 
torque delivered by the controller to the 2nd joint, and 2a be 
the actual torque experienced by the 2nd link. We assume that 

 for t7. The results are shown in 

Figure 3. 

   0.15( 7)
2

t
a t e t   2

Because the torque of the 2nd joint gradually decays, the 
controller gradually increases the armature voltage of the 2nd 
joint to compensate for the loss of the control torque. 
Therefore, the tracking performance degenerates slightly 
before the fault is detected and the DMFD algorithm takes a 
longer time (3.21 sec) to detect the fault. However we 
consider the detection delay as acceptable since no 
significant performance deterioration was observed during 
this delay time. 
 

V. Conclusion 
  In this paper, we proposed the DMFD algorithm as a 
solution to the model set design problem, which is the most 
challenging part of the MM-based methods. By including 

only the dynamic model and the kinematic model into the 
model set, the DMFD algorithm is much more 
computationally efficient. In addition, it is applicable to 
various types of unexpected actuator faults, including abrupt 
faults, incipient faults, and simultaneous faults. Experiments 
were conducted on a two-joint robot manipulator. 
Experimental results verified the good performance of the 
DMFD algorithm.  

 
Figure 3: The output torque of the 2nd joint gradually decay, starting at t=7 
sec. (a)(d) joint positions: solid line (-): desired trajectory; dotted line (.): 
real trajectory; (b)(e) joint velocities: solid line (-): desired velocities; dotted 
line (.): estimated velocities; (c)(f): armature voltages of both joints. 
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