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Abstract— We study models of chemostats where the species
compete for multiple limiting nutrients. We first consider cases
where the input nutrient concentrations, nutrient flow, and
species removal rates are all given positive constants. For
such cases, we use Brouwer degree theory to find conditions
guaranteeing that the models admit globally asymptotically
stable componentwise positive equilibria, starting from all
componentwise positive initial states. Then we use our results
to prove stabilization results for controlled chemostats with two
or more limiting nutrients. When the dilution rate and input
nutrient concentrations can be taken as controls, we show that

many possible componentwise positive equilibrium points can
be rendered globally asymptotically stable. This extends existing
control results for chemostats with one limiting nutrient. We
illustrate our methods in simulations.
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I. INTRODUCTION

Chemostats play a key role in bioengineering and popu-

lation biology. The chemostat is a type of bioreactor where

fresh medium is continuously added and culture liquid is

continuously removed. Hence, the culture volume remains

constant. It has many industrial applications, such as the

commercial production of genetically altered organisms.

Chemostat models also play a role in experimentally repro-

ducing and understanding the behavior of interacting species

in lakes and waste-water treatment plants. See [5], [6], [8],

[16], [17], [18], [32], [37] for an overview of the chemostat

literature and its role in microbial ecology. Competitive

exclusion [2] states that in well mixed chemostats with one

limiting substrate, only one species can persist generically.

This motivated a large literature that explains the discrepancy

between the competitive exclusion principle, and the fact that

multiple competing species typically survive in nature on one

limiting substrate [4], [21], [24]-[27], [29]-[30], [33].

Fewer studies have been devoted to models with two or

more limiting nutrients. Chemostats with two species and

two limiting nutrients were studied by MacArthur, Tilman,

and others using graphical approaches, leading to resource

competition theory [19], [22], [23], [31], [38], [39]. One

key testable prediction of the theory states that the number
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of coexisting species cannot exceed the number of lim-

iting resources generically, which is an extension of the

competitive exclusion principle. The predictions of resource

competition theory have been validated in experiments. There

are also several global stability results for chemostats with

two competing species and two limiting substrates. For

example, stable periodic solutions were found for Monod

kinetics [11] and later for interacting resources [3], [34].

Other numerical studies for chemostats with more than two

competing species and more than two limiting nutrients

illustrate the possibility of chaotic or oscillatory dynamics

[14], [15]. See also [13] for the existence of heteroclinic

cycles in winnerless chemostats with multiple species com-

peting for several limiting nutrients. However, to the best of

our knowledge, a full theoretical stability and stabilization

analysis for equilibria in chemostats with more than two

limiting nutrients is not available.

In this note, we report our new results for the chemostat

model [7]

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





ṡj = Ds
j
(sin

j
−sj)−

N
∑

i=1

Gi,j(S)xi , 1 ≤ j ≤ M

ẋi =



−Dx
i
+

M
∑

j=1

ηi,jGi,j(S)



 xi , 1 ≤ i ≤ N

(1)

for N species competing for M resources, where S =
(s1, s2, . . . , sM ), sj is the concentration of the jth substrate,

xi is the concentration of the ith species, Ds
j
> 0 is the

constant input rate from the feed bottle containing the jth

substrate, Dx
i
> 0 is the constant removal rate of the ith

species, the constant sin
j

> 0 denotes the concentration of

substrate j at the inlet (i.e., the jth substrate feed concen-

tration), Gi,j : [0,∞)M → R is the consumption rate of

substrate j by species i per unit of biomass of species i,
and ηi,j > 0 is the constant yield coefficient for converting

substrate j into biomass of species i for all i and j.

Determining the set of all componentwise nonnegative

equilibrium points for (1) in the closure of X = (0,∞)M+N

is difficult in general, because we must ensure that the ṡj’s

are zero, and that some of the terms in brackets are zero.

The extended competitive exclusion principle leads us to

first consider the case where M = N . In Section III, we

use Brouwer degree theory [10], [35] to prove existence

of componentwise positive equilibrium points for (1) when

M = N , under general assumptions. In Section IV, we prove

the existence of a globally asymptotically stable equilibrium

point for certain families of growth functions Gi,j , where

stability is understood relative to componentwise positive
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initial states. Our growth functions are very different from

those of [13], which are based on the law of the minimum.

While our global asymptotic stability result holds for cases

where M 6= N , it only applies when the componentwise

nonnegative equilibria are known, which is not in general

guaranteed. In Section V, we merge the results of Sections

III and IV to prove global asymptotic stability of componen-

twise positive equilibria for chemostats where N = M .

Our stability theorems require more structure for the

Gi,j’s than we need for existence of componentwise positive

equilibria. However, we can show global asymptotic stability

of equilibria under Monod uptake functions, which are

widely used in the chemostat literature. In addition, when

a suitable componentwise nonnegative equilibrium point is

known, we can allow the constants Ds
j

and Dx
i

to be distinct.

This differs from [36], which shows stability properties of

coexistence equilibria when N = 2 or N = 3 under the

assumption Ds
j
= Dx

i
= D for all i, j ∈ {1, 2, . . . , N}. See

also [40] for coexistence of multiple species in chemostats

with one limiting substrate in which the species levels do

not necessarily converge to an equilibrium point but are

guaranteed to stay between two given positive bounds; and

[1] for coexistence of any number of species along a periodic

orbit with four limiting resources.

In Sections III-V, we assume that Dx
i , Ds

j , and sjin are

given constants, in which case there are no controls, but our

results for constant Dx
i , Ds

j , and sjin lead to results for the

controlled case. Specifically, we show how if the dilution

rate and input nutrient concentrations are controllers, then

many different componentwise positive equilibria are glob-

ally asymptotically stabilizable; see Section VI. This extends

[21],[24]-[27],[29]-[30] on ways to generate coexistence of

multiple competing species in well mixed chemostats with

one limiting substrate. We demonstrate our work in simula-

tions. For complete proofs of all results to follow, see [28].

II. DEFINITIONS AND NOTATION

We omit arguments of functions when no confusion would

result. We call a point (z1, ...., zn) ∈ R
n weakly positive

provided zi ≥ 0 for all i ∈ {1, 2, . . . , n}, and positive

provided zi > 0 for all i ∈ {1, 2, . . . , n}. We use the

convention {p, . . . , q} = ∅ when p > q, and Bε(y) is the

radius ε > 0 open ball centered at y in a Euclidean space

whose dimension will be clear from the context. We use C1

to mean continuously differentiable. By C1 of a function

h being defined on a closed set S, we mean C1 on some

open set containing S. For functions f and h with the same

domain, f ≡ h means that they agree throughout the domain,

and ∂G is the boundary of any set G.

Take any system ẋ = F(x) with state space X = (0,∞)p

for some p ∈ N, where F is locally Lipschitz on the closure

clos(X ) of X , and a weakly positive equilibrium point Y∗

(meaning, Y∗ ≥ 0 and F(Y∗) = 0). We call Y∗ globally

asymptotically stable relative to X provided (i) for each

constant ε > 0, there is a constant δ > 0 such that all

trajectories for the system starting in X ∩ Bδ(Y∗) remain in

Bε(Y∗) for all nonnegative times and (ii) all trajectories for

the system starting in X converge to Y∗ asymptotically.

Consider any non-negative real number ξ∗. If ξ∗ > 0, then

we define the function ϕξ∗ : (−ξ∗,∞) → R by

ϕξ∗(ξ) = ξ − ξ∗ ln (1 + {ξ/ξ∗}) (2)

and we define ϕ0 : (0,∞) → R by ϕ0(ξ) = ξ. Then

the ϕξ∗ ’s are C1, and they are radially unbounded (i.e.,

limξ→+∞ φξ∗(ξ) = limξ→−ξ∗ φξ∗(ξ) = +∞ for all ξ∗ > 0,

and limξ→+∞ φ0(ξ) = +∞). Also, the ϕξ∗’s for ξ∗ > 0 are

all positive definite (meaning 0 at 0, and positive at all other

points in their domains). We also use the positive points

ν = (1, ...., 1)⊤ ∈ R
N , ∆ =

(

Dx
1 , ....., D

x
N

)

⊤

,

and Θ =
(

Ds
1s

in
1 , ...., Ds

MsinM
)

⊤

.
(3)

Given any a, b ∈ R
N , we use a ≤ b to mean that ai ≤ bi

for all i ∈ {1, 2, . . . , N}. For all i ∈ {1, 2, . . . , N}, we

define Pi : R
N → R

N by Pi(a) = (pi1(a), ..., p
i
N (a)) where

the components are pik(a) = 0 if k 6= i and pi
i
(a) = ai for

all a = (a1, ..., aN ) ∈ R
N . We define Qi : R

N → R
N by

Qi(a) = a − Pi(a). We also use C = [ci,j ] to denote the

matrix with generic entry ci,j in row i and column j for all i
and j. We also use Brouwer degree theory [10], [35, pp.101-

107]. We let d(f, p,S) denote the degree of a C1 function

f : clos(S) → R
n that is defined on the closure of a bounded

open set S ⊆ R
n, relative to a point p. If d(f, p,S) 6= 0,

then f(x) = p has a solution x ∈ S.

III. EXISTENCE OF POSITIVE EQUILIBRIUM POINTS

A. Statement of Result

We begin with the special case


























ṡj = Ds
j
(sin

j
−sj)−

N
∑

i=1

Gi,j(S)xi , 1 ≤ j ≤ N

ẋi =



−Dx
i
+

N
∑

j=1

ηi,jGi,j(S)



xi , 1 ≤ i ≤ N

(4)

of (1) where N = M . We assume:

Assumption 1: For all i, j, k ∈ {1, 2, . . . , N}, the function

Gi,j is C1 on [0,∞)N , Gi,j(0) = 0, Gi,j(S) > 0 for all

S ∈ (0,∞)N , (∂Gi,j/∂sk)(S) ≥ 0 for all S ∈ [0,∞)N , and

(∂Gi,i/∂si)(mPi(ν)) > 0 for all m > 0. �

Assumption 2: There are constants

B ∈

(

0, min
j∈{1,2,...,N}

sin
j

)

and ǫ ∈ (0, B) (5)

for which
N
∑

j=1

ηi,jGi,j

(

BPi(ν)
)

> Dx
i

and (6)

N
∑

j=1

ηi,jGi,j

(

BQi(ν) + ǫPi(ν)
)

< Dx
i (7)

hold for all i ∈ {1, 2, . . . , N}. Also,

N
∑

i=1,i6=k

Gi,k(S)Ds
i (s

in
i −ǫ)

Gi,i(S) < Ds
k(s

in
k −B) (8)

holds for all k ∈ {1, 2, . . . , N} and all S ∈ [ǫ, B]N . �
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In [28], we prove:

Theorem 1: If (4) satisfies Assumptions 1-2, then it admits

a positive equilibrium point. �

Remark 1: Conditions (6)-(7) roughly say that the growth

of each species xi primarily depends on the substrate si.

Also, (8) roughly says that each substrate si is mainly

consumed by species xi because Gi,i is larger relative to

Gi,k for i 6= k. This fact suggests that coexistence occurs for

any system (4) that satisfies Assumptions 1-2. Theorem 1 is

based on a rigorous proof of this intuition. �

B. Sketch of Proof of Theorem 1

The main steps of the proof are as follows. First we prove

that there is a point Ss = (ss1, . . . , s
s
N ) ∈ (ǫ, B)N for which

N
∑

j=1

ηi,jGi,j(S
s) = Dx

i ∀i ∈ {1, 2, . . . , N} . (9)

Then we show that the linear system

N
∑

i=1

Gi,j(S
s)xi +Ds

js
s
j = Ds

js
in
j , 1 ≤ j ≤ N (10)

has a solution Xs = (xs1, xs2, . . . , xsN ) ∈ (0,∞)N . This

yields the positive equilibrium Zs = (Ss, Xs) of (4).

First Step. Existence of Ss. Take the compact set C =
[ǫ, B]N and the C1 function H : C × [0, 1] → R

N defined

by H(S, l) = (H1(S, l), ..., HN (S, l))
⊤

, where

Hi(S, l) =

N
∑

j=1

ηi,jGi,j

(

lQi(S) + Pi(S)
)

. (11)

One easily checks that there does not exist a pair (S, l) ∈
(∂C)× [0, 1] for which H(S, l) = ∆, where ∆ is from (3).

To see why, note that if Sa = (sa1, ..., saN ) ∈ ∂C and i ∈
{1, 2, . . . , N} were such that sai = ǫ, then

lQi(Sa) + Pi(Sa) ≤ BQi(ν) + ǫPi(ν) (12)

for all l ∈ [0, 1]. Since the Gi,j’s are non-decreasing in each

component of S, we conclude from (7) that Hi(Sa, l) <
Dx

i . Therefore, H(Sa, l) 6= ∆. Next, consider a point

Sb = (sb1, ..., sbN ) ∈ ∂C for which there is an index i ∈
{1, 2, . . . , N} such that sbi = B. Then we can use (6) and

the fact that the Gi,j’s are non-decreasing in each component

to conclude that Hi(Sb, l) > Dx
i

, so H(Sb, l) 6= ∆.

Since there is no pair (S, l) ∈ (∂C) × [0, 1] for which

H(S, l) = ∆, we can use the homotopy invariance property

[10], [35, p. 103] to check that the Brouwer degrees satisfy

d
(

H(·, 0),∆, (ǫ, B)N
)

= d
(

H(·, 1),∆, (ǫ, B)N
)

. (13)

Also, H(S, 0) = (γ1(s1), ...., γN (sN ))⊤, where

γi(m) =
N
∑

j=1

ηi,jGi,j(mPi(ν)) (14)

for i = 1, 2, . . . , N . Using Assumption 1 and (6)-(7), we

can show that the equation H(S, 0) = ∆ admits a unique

solution Sp ∈ (ǫ, B)N , and that d(H(·, 0),∆, (ǫ, B)N ) = 1.

We conclude from (13) that there is a solution Ss ∈ (ǫ, B)N

of the equation H(S, 1) = ∆, and this satisfies (9).

Second Step. Existence of Xs. Take the compact set E =
[0, A]N , where A is any constant such that A > M and

M = max
m∈{1,2,...,N}

Ds
msinm

Gm,m(Ss) . (15)

Choose the function F : E × [0, 1] → R
N defined by

F (X, l) = (F1(X, l), ..., FN (X, l))⊤, where

Fk(X, l) =

N
∑

i=1,i6=k

lGi,k(S
s)xi + Gk,k(S

s)xk +Ds
ks

s
k (16)

for k = 1, 2, . . . , N and X = (x1, ..., xN ). We proceed by

contradiction. Let Θ be the constant vector in (3).

Suppose that there existed a pair (k, l) ∈ {1, 2, . . . , N}×
[0, 1], and a point Xe ∈ E whose kth component is equal

to A, for which F (Xe, l) = Θ. Since Assumption 1 ensures

that Gk,k(S
s) > 0, it follows from (15) that

Fk(Xe, l) ≥ Gk,k(S
s)A > Ds

ks
in
k . (17)

Therefore F (Xe, l) 6= Θ. Next suppose that there were

a pair (k, l) ∈ {1, 2, . . . , N} × [0, 1], and a point Xf =
(xf1, . . . , xfN ) ∈ E whose kth component is 0, such that

F (Xf , l) = Θ. Then

Fk(Xf , l) =

N
∑

i=1,i6=k

lGi,k(S
s)xfi +Ds

ks
s
k and (18)

Ds
msinm = Fm(Xf , l) ≥ Gm,m(Ss)xfm +Ds

mssm (19)

for all m ∈ {1, 2, . . . , N} \ {k}. Since Ss ∈ (ǫ, B)N , we

can use Assumption 1 to get

Fk(Xf , l) ≤
N
∑

i=1,i6=k

Gi,k(Ss)
Ds

i s
in
i −Ds

i ǫ

Gi,i(Ss) +Ds
kB . (20)

Hence, (8) gives Fk(Xf , l) < Ds
ks

in
k , so F (Xf , l) 6= Θ, and

there is no pair (X, l) ∈ (∂E)× [0, 1] such that F (X, l) = Θ.

We deduce from the homotopy invariance property that

d
(

F (·, 0),Θ, (0, A)N
)

= d
(

F (·, 1),Θ, (0, A)N
)

. (21)

We can easily check that the equation F (X, 0) = Θ admits

exactly one solution in (0, A)N . Arguing as we did in the first

step of our proof, we can prove that d(F (·, 0),Θ, (0, A)N ) =
1, so (21) implies that d(F (·, 1),Θ, (0, A)N ) = 1. Hence,

(10) has a solution Xs ∈ (0, A)N , as claimed.

Remark 2: The proof of Theorem 1 actually shows that

for each constant δ > 0, there is an equilibrium point

(Ss, Xs) in (ǫ, B)N × (0,M + δ]N , where ǫ and B are

from Assumption 2 and M is defined in (15).

IV. LYAPUNOV APPROACH TO PROVE GLOBAL

ASYMPTOTIC STABILITY

A. Assumptions and Result

We next give a global asymptotic stability result for a

specific class of systems (1). We do not assume that N = M .

Instead, we assume that (i) a certain stability condition holds

for a known weakly positive equilibrium point for (1), (ii) all

of the functions Gi,j are Monod, depending only on sj and

(iii) the coefficients ηi,j are all equal to 1 (but see [28] for

extensions to cases where the yield factors are not necessarily
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all equal to 1). In particular, we assume throughout this

section that the resources are non-interacting.

Hence, we take

Gi,j(S) =
ci,jsj
1+gjsj

(22)

where gj > 0 and ci,j > 0 are constants for all i and j. This

produces the system


























ṡj = Ds
j
(sin

j
− sj)−

N
∑

i=1

ci,j
sjxi

1+gjsj
, 1 ≤ j ≤ M

ẋi =



−Dx
i
+

M
∑

j=1

ci,j
sj

1+gjsj



xi, 1 ≤ i ≤ N .

(23)

To help in the analysis of the stability properties for (23),

we introduce additional notation. Take the functions

Γk(S) = Dx
k −

M
∑

l=1

ck,l
sl

1 + glsl
, 1 ≤ k ≤ N , (24)

so ẋi = −Γi(S)xi for all i. Let Lk denote the kth row of

C = [ci,j ] ∈ R
N×M and C♭

j1,...,ja
denote the submatrix of

C that is obtained by removing all rows of C except for the

rows Lj1 , . . . , Lja . For example,

C♭
1,2 =

[

L1

L2

]

.

We give sufficient conditions for (23) to have a weakly

positive globally asymptotically stable equilibrium point rel-

ative to (0,∞)M+N . In what follows, a bipartition {E1, E2}
of {1, 2, . . . , N} is any pair of sets E1 and E2 (one of which

could be empty) such that E1 ∪ E2 = {1, 2, . . . , N} and

E1 ∩E2 = ∅. Also, a matrix M is right invertible provided

there is a matrix T such that MT is an identity matrix.

Instead of Assumption 1-2, we now assume:

Assumption 3: There are a weakly positive equilibrium

point E∗ = (S∗, X∗) ∈ R
M ×R

N for (23) and a bipartition

{E1, E2} of {1, 2, . . . , N} such that (i) Γk(S∗) = 0 for all

k ∈ E1, and Γk(S∗) > 0 for all k ∈ E2 and (ii) the matrix

C♭
j1,...,jq

with E1 = {j1, ..., jq} is right invertible. �

In [28], we prove:

Theorem 2: Let (23) satisfy Assumption 3. Then E∗ is

a globally asymptotically stable equilibrium point for (23)

relative to (0,∞)M+N . �

Remark 3: If Assumption 3 holds, and if we set S∗ =
(s1∗, . . . , sM∗), then sj∗ > 0 for all j ∈ {1, 2, . . . ,M},

because Ds
j
sin
j

> 0 for all j ∈ {1, 2, . . . ,M}. Also, since

Γk(S∗) > 0 and ẋk = −Γk(S)xk hold for all k ∈ E2, we

have xk∗ = 0 for all k ∈ E2. Simulations can help determine

whether Assumption 3 holds. If simulations suggest that (23)

has a globally asymptotically stable equilibrium relative to

(0,∞)M+N , then they suggest where approximatively the

equilibrium is in the closed positive orthant. Then one can

guess what the corresponding sets E1 and E2 would be and

then check whether Assumption 3 holds for this bipartition.

�

B. Sketch of Proof of Theorem 2

By renumbering the species as needed without relabeling,

we assume without loss of generality that there is a q ∈

{1, 2, . . . , N} such that E1 = {1, 2, . . . , q} and E2 = {q +
1, ..., N}. We define the functions Kj : [0,∞) → R by

Kj(p) = Ds
j
+

N
∑

i=1

ci,j
xi∗

1+gjsj∗
1

1+gjp
, 1 ≤ j ≤ M. (25)

Set x̃j = xj − xj∗ for j = 1, . . . , N ; X̃ = (x̃1, ..., x̃N );
s̃j = sj − sj∗ for j = 1, 2, . . . ,M ; and S̃ = (s̃1, ..., s̃M ).
Since E∗ is an equilibrium point of (23), we have

˙̃sj = −Ds
j
s̃j +

N
∑

i=1

ci,j

(

xi∗
sj∗

1+gjsj∗
− xi

sj
1+gjsj

)

= −Kj(sj)s̃j −
N
∑

i=1

ci,j
sj

1+gjsj
x̃i

(26)

for all j ∈ {1, 2, . . . ,M}. Hence, simple calculations give

˙̃sj = −Kj(sj)s̃j −
N
∑

i=1

ci,j
sj x̃i

1+gjsj
, 1 ≤ j ≤ M ,

˙̃xk =

[

−Γk(S∗)+

M
∑

l=1

ck,l

1+glsl∗

s̃l
1+glsl

]

xk, 1 ≤ k ≤ N.

(27)

Set

Uf (S̃, X̃) =
M
∑

j=1

1
1+gjsj∗

ϕsj∗ (s̃j) +
N
∑

k=1

ϕxk∗
(x̃k) , (28)

where the functions ϕξ∗ are defined in (2). Then Uf is

C1 on its domain X = {(S̃, X̃) : s̃i > −si∗ ∀i ∈
{1, 2, . . . ,M} and x̃m > −xm∗ ∀m ∈ {1, 2, . . . , N}}.

Also, X is a positively invariant set for (27) because

(0,∞)M+N is positively invariant for (23). The time deriva-

tive of Uf along all trajectories of (27) in X is

U̇f =

M
∑

j=1

1
1+gjsj∗

s̃j ˙̃sj
sj

+

N
∑

k=1

x̃k
˙̃xk

xk

= −
M
∑

j=1

Kj(sj)
(1+gjsj∗)sj

s̃2
j

−
M
∑

j=1

1
1+gjsj∗

s̃j
1+gjsj

N
∑

i=1

ci,jx̃i

−
N
∑

k=1

Γk(S∗)x̃k +

N
∑

k=1

x̃k

M
∑

l=1

ck,l

1+glsl∗

s̃l
1+glsl

= −
M
∑

j=1

Kj(sj)
(1+gjsj∗)sj

s̃2
j
−

N
∑

k=q+1

Γk(S∗)x̃k ,

(29)

where the last equality holds because Assumption 3 and

our renumbering give Γk(S∗) = 0 for all k ∈ E1 =
{1, 2, . . . , q}. As we saw in Remark 3,

xm∗ = 0 ∀m ∈ E2 = {q + 1, . . . , N} . (30)

Using (29) and the forward invariance of X for (27), we then

get U̇f ≤ 0 for all t ≥ 0 along all trajectories of (27) starting

in X . Integrating U̇f ≤ 0 over [0, t] for any t ≥ 0 gives

Uf

(

S̃(t), X̃(t)
)

≤ Uf

(

S̃(0), X̃(0)
)

. (31)

We can then use Barbalat’s Lemma and the right invertibility

of C♭
1,...,q to establish attractivity of E∗.
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V. GLOBALLY ASYMPTOTICALLY STABLE POSITIVE

EQUILIBRIUM

A. Statement of Result

We next combine Theorems 1-2 to show the existence of

a globally asymptotically stable positive equilibrium for a

family of systems of the form (23).

Theorem 3: Consider the system (23). Assume that N =
M , that C = [ci,j ] is invertible, and that there exist a constant

D > 0 such that Ds
j
= Dx

i
= D for all i, j ∈ {1, 2, . . . , N}

and positive constants B and ǫ satisfying (5) such that
ci,iB

1+giB
> D ∀i ∈ {1, 2, . . . , N} , (32)

ci,iǫ

1+giǫ
+
∑

i6=j

ci,jB

1+gjB
< D ∀i ∈ {1, 2, . . . , N} , and (33)

N
∑

i=1,i6=k

ci,k(1+giǫ)
ci,i(1+gkB)

sini −ǫ

sin
k

−B
< ǫ

B
∀k ∈ {1, 2, . . . , N} . (34)

Then (23) admits a globally asymptotically stable positive

equilibrium point relative to (0,∞)2N . �

To prove Theorem 3, we first check Assumptions 1-2.

Then Theorem 1 gives a positive equilibrium (S∗, X∗) for

(23). Then we apply Theorem 2 to show that (S∗, X∗) is

globally asymptotically stable relative to (0,∞)2N .

Remark 4: Under the assumptions of Theorem 3, we can

use the formulas for the growth functions (22) to find the

components of the positive equilibrium point for (23). In

fact, we can use the formulas for ẋi and the invertibility of

C to solve for sl/{1 + glsl} and therefore also for sl for

l = 1, ..., N that make the terms in brackets in (23) all equal

to zero. Putting these values in the formulas for ṡj and again

using the invertibility of C gives the equilibrium values of

the xi’s that make all of the ṡj’s equal to zero. �

B. Simulation for Theorem 3

The assumptions of Theorem 3 hold with M = N = 3,

D = 2 , sink = 17
4 ∀k ∈ {1, 2, 3} , (35)

ck,k = 2 ∀k ∈ {1, 2, 3} , ci,k = 1
12 for i 6= k ,

gk = 1
4 ∀k ∈ {1, 2, 3}, B = 2 , and ǫ = 1

4 .
(36)

We simulated (23) with (35)-(36) and the initial state

(0.5, 1, 1.5, 0.5, 1, 1.5), and obtained the curves in Figure 1.

Our simulation shows the rapid convergence of the species

and nutrient levels to the positive equilibrium point guaran-

teed by Theorem 3.

VI. REGULATION OF SPECIES AND NUTRIENT LEVELS

A. Statement of Result

In the previous sections, we viewed the dilution rate and

input nutrient concentrations as given positive constants and

showed asymptotic stability properties of certain positive

equilibrium points. However, if D and each sin
j

can be

chosen as controls, then many different possible positive

equilibrium points can be made globally asymptotically sta-

ble. In fact, we prove the following, where ν = (1, . . . , 1)⊤ ∈
R

N as before [28]:
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Fig. 1. Simulation of (23) with N = M = 3 and (35)-(36).

Theorem 4: Assume that the system (23) with M = N is

associated with an invertible matrix C = [ci,j], and define

k1, . . . , kN ∈ R by C−1ν = (k1, k2, . . . , kN )⊤. Assume that

ki > 0 for all i ∈ {1, 2, . . . , N}. Let Ξd = (ξ1, ..., ξN ) ∈
(0,+∞)N be given and choose any constant

D ∈

(

0, min
j∈{1,2,...,N}

1

kjgj

)

(37)

and

̟j =
Dkj

1−Dkjgj

∀j ∈ {1, 2, . . . , N} . (38)

Then (23) with the dilution rate Ds
j
≡ Dx

i
≡ D and the

constants

sin
j

= ̟j + kj

N
∑

i=1

ci,jξi , j = 1, 2, . . . , N (39)

admits (̟1, ..., ̟N , ξ1, ..., ξN ) as a globally asymptotically

stable positive equilibrium point relative to (0,∞)2N . �

B. Simulation for Theorem 4

To illustrate Theorem 4, we again simulated (23) using the

parameters (36), but instead of using the values (35) for the

dilution rate and input nutrient concentration, we took D =
4.333 and sin

j
= 5 for j = 1, 2, 3. These controller values

satisfy the requirements from Theorem 4 for stabilizing the

species levels to ξ1 = ξ2 = ξ3 = 1. We took the same

initial states as in our first simulation. We obtained the curves

in Figure 2 below. This illustrates the convergence of the

species levels to the desired equilibrium states.

VII. CONCLUSIONS

Chemostat models are important in microbial ecology and

typically contain more than two competing species and more

than two limiting nutrients. We used Brouwer degree and

Lyapunov methods to prove results on the existence and

asymptotic stability of componentwise nonnegative equilibria

for chemostats with multiple competing species and multiple

limiting nutrients. Using control methods, we also showed
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Fig. 2. Simulation of (23) with N = M = 3 using the Controllers
D = 4.333 and sinj = 5 for j = 1, 2, 3 and the Parameters (36).

how many possible componentwise positive equilibria can

be rendered globally asymptotically stable when the dilu-

tion rate and input nutrient concentrations are taken as the

controls. Our results can inspire extensions to chemostats

with multiple nutrients, nonmonotone uptake functions, time

delays, and unknown perturbations.
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