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Abstract— Temperature control in buildings is a dynamic
resource allocation problem, which can be approached using
nonlinear methods based on population dynamics (i.e., replica-
tor dynamics). A mathematical model of the proposed control
technique is shown, including a stability analysis using passivity
concepts for an interconnection of a linear multivariable plant
driven by a nonlinear control system. In order to illustrate
our control strategy, some simulations are performed, and we
compare our proposed technique with another control strategy
in a model with a fixed structure.

I. INTRODUCTION

One of the focuses of the current research is the proper

use of energetic resources in control systems, where en-

ergy efficiency in buildings is one important issue. Recent

studies have shown that in some countries, buildings use

approximately 70% of total electricity usage (primarily for

heating, cooling, and lighting) and emit approximately 40%

of greenhouse gases [1], causing significant impact on the

environment. These statistics plus the fact that people spend

most of the time inside buildings, make the building energy

efficiency a topic of growing importance.

The use of appropriate control and automation techniques

in buildings is a promising approach that can lead to sig-

nificant energy savings [2], and nowadays heating, venti-

lating, and air-conditioning (HVAC) systems have the most

prevalent use of automation. However, to apply classical

control techniques like on-off, and conventional PID to

HVAC systems is not optimal [3], especially if the presence

of constraints in the energy consumption. In this paper we

focus on multizone building temperature control considering

restrictions in the total amount of power of the heating

system. Our objective is to reach the temperature setpoint

specified in each of the N rooms that comprises the building.

We address the problem from the perspective of dynamic

resource allocation, where the task is to distribute a resource

(heating power) in the rooms of the building, given a set

of setpoints. Clearly, an appropriate heating power alloca-

tion leads to energy efficiency. Dynamic resource allocation

methods have been proposed before for building temperature

control. For example in [4] a resource allocation technique

based on market mechanisms is used. In our work, we pro-

pose to use a technique based on evolutionary game theory,

i.e., the replicator dynamics [5]. This methodology has been
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used for resource allocation in a variety of applications with

successful results (e.g., [6], [7]). Replicator dynamics model

an evolutionary game which is inspired by natural selection

and use a simple population dynamics to show how the

proportion of animals (players) in a habitat (game strategy)

is affected according to the suitability perceived by each of

the individuals. In the problem discussed in this work, the

habitats correspond to each of the rooms in the building, and

the proportion of individuals that is allocated is related to a

share of the total available power for the actuators. Thus, the

suitability perceived by the individuals is associated to the

error between the temperature of each room and its setpoint.

The connection between the control technique and the build-

ing thermal model is seen as a feedback interconnection,

which allows us to use some nonlinear methods for our

analysis [8]. For this specific problem, we show that this

interconnection leads to an asymptotically stable equilibrium

point, using passivity theory [9].

The organization of this paper is as follows: a building

thermal model is established in Section II. Next, in Section

III the control goals are set, and the problem is addressed

from a dynamic resource allocation perspective. In Section

IV a comparison with another control strategy is shown via

simulations. Finally, in Sections V and VI, arguments and

conclusions of the developed work are presented.

II. BUILDING THERMAL MODEL

In [10], the authors outline a general model that considers

the two most important components that constitute a build-

ing: rooms and walls. We use these ideas in order to model

the thermal performance of a building consisting of N rooms,

where each of them is enclosed by a certain number of walls

and can be arranged according to different topologies (i.e. the

spatial location of rooms is, in general, arbitrary).

A. Thermal Model for a Wall

A wall can be divided into layers with uniform tempera-

ture. The temperature Tw
j,k of the layer k within the wall j

is described by

(ρwj,kc
w
j,kV

w
j,k)Ṫ

w
j,k = Kj,k+1(T

w
j,k+1 − Tw

j,k)+

+Kj,k(T
w
j,k−1

− Tw
j,k),

(1)

where ρwj,k, c
w
j,k, V

w
j,k are, respectively, the density, specific

heat, and volume of the layer k (the term ρwj,kc
w
j,kV

w
j,k is

associated with the termal capacitance of the layer). The

thermal conductance Kj,k, can be estimated by harmonic

mean as Kj,k = Aj/ (Lj,k−1/2λj,k−1 + Lj,k/2λj,k), where

Aj is the area of the jth wall, Lj,k denotes the thickness

of the layer k, and λj,k its thermal conductivity. Subscripts
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k + 1 and k − 1 are related to the adjacent layers. There

are some boundary conditions for layers which are in direct

contact with a room or with the external environment, these

conditions can be described as follows: i) For a layer that

is in contact with the ith room, Kj,k(T
w
j,k−1

− Tw
j,k) =

hri (T
r
i − Tw

j,k), where T r
i represents the temperature of the

ith room, and hri its coefficient of convective heat transfer. ii)

For a layer that is in contact with the external environment,

Kj,k(T
w
j,k−1

− Tw
j,k) = ha(Ta − Tw

j,k), where Ta represents

the ambient temperature, and ha the external coefficient of

convective heat transfer.

B. Thermal Model for a Room

In our model, we assume a uniform temperature in each

room. Moreover, we consider that each of the rooms has a

sensor and an actuator (heater). With these assumptions, the

temperature T r
i of the ith room can be modeled as

(ρacaV
r
i )Ṫ

r
i =

∑

j∈Ωr
i

hriAj(T
w
j,k − T r

i ) + xi + ni, (2)

where Ωr
i is the set of walls adjacent to room i, Tw

j,k is the

temperature of the layer within the wall j that is in direct

contact with the room i; Aj is the area of wall j; ρa, ca
are, respectively, the density and the specific heat of the air;

V r
i is the volume of the ith room, and hri its coefficient of

convective heat transfer; xi is the heating power supplied by

the actuator, and ni is a thermal disturbance (e.g., because

of the presence of people who are generating heat). In a

similar way as in Equation (1), the terms ρacaV
r
i and hriAj

in Equation (2) are associated with the thermal capacitance of

the room i and with the thermal conductance of the junction

between the room i and the wall j, respectively.
If we define the state vector

T = [T r
1 , ..., T

r
N , T

w
1,1, ..., T

w
1,m1

, ..., T
w
M,1, ..., T

w
M,mM

]⊤, (3)

where N is the number or rooms of the building, M is

the number of walls, and mj is the number of layers of the

jth wall, Equations (1) and (2) can be unified into a single

expression as follows

θiṪi =
∑

j∈Ωi

αij(Tj − Ti)+αia(Ta−Ti)+ si(xi+ni), (4)

where Ti is the ith element of the vector T (it corresponds to

the temperature of a room or a layer), θi > 0 is its thermal

capacitance, Ωi is the set of rooms/layers adjacent to the

ith element, Ta is the ambient temperature, αij > 0 is the

thermal conductance of the junction between elements i and

j (αij = αji), and αia ≥ 0 is the thermal conductance of the

junction between ith element and the outside environment

(αia = 0 only if this junction does not exist). The variable

si takes the value of 1 if i = 1, . . . , N , or 0 otherwise. The

model in Equation (4) yields a linear system of the form

Ṫ = AT+Bu, y = [T1, . . . , TN ]⊤, (5)

with u = [Ta, x1, . . . , xN , n1, . . . , nN ]⊤. Note that according

to the state vector defined in Equation (3), the ith output of

the system corresponds to the temperature of the ith room.

For simplicity, in the rest of the document we assume that

the ambient temperature (Ta) and the disturbances (ni) are

constant.

III. TEMPERATURE CONTROL USING

REPLICATOR DYNAMICS

Our control objective is to maintain the temperature in

each room close to a setpoint. It is well known that using

a PI controller in each zone and without restriction of

power in the actuators, the setpoints of each room can be

reached without steady state error. In practice, in building

temperature control, the power of control signals is not

unlimited (real air conditioners and heaters can supply only a

certain power). Moreover, it may have power limitations due

to the requirement to save energy, which restrict the signal

from the controller not to exceed a fixed value. In [11], it is

shown that using independent PI controllers and considering

the power constraints, it is not always possible to reach all

the setpoints (even when the total power available is enough

to this end). This adverse effect is due to the inefficient

distribution of available power, and it can be solved by

methods of dynamic resource allocation.

The replicator dynamics model [5] is the control strat-

egy that we use to optimally allocate the available power.

Replicator dynamics are a typical model of the population

dynamics, they are based on an evolutionary game, where

players can choose between N pure strategies. The popula-

tions of most successful players (compared with the average)

tend to grow, while the least ones decline. The success of

players who have chosen the ith strategy is determined by a

function fi, which is a fitness function in behavioral ecology.

Mathematically, replicator dynamics model is formulated as

ẋi = βxi(fi − f̄), (6)

where xi is the population playing the ith strategy, f̄ =
1

P

∑N

j=1
xjfj is the average fitness, P is the total population

(P =
∑N

i=1
xi), and β > 0 is a parameter related to the

population growth rate.

In order to apply the replicator dynamics model to the

building temperature control, we relax the original assump-

tions such that the population playing the ith strategy (i.e.,

xi) is the power allocated to each room, P is the total

power of the heating system, the strategies are the N rooms,

and the fitness function is defined as the difference between

the setpoint corresponding to the ith zone and its current

temperature plus a positive constant b, such that fi is always

positive. Then,

fi = Tsi − Ti + b, for i = 1, . . . , N. (7)

Note that fi is greater when the temperature of the ith

room is further from its setpoint Tsi, and viceversa. Moreover

β can be viewed as a design parameter of the controller.

A. Limitation of Power using Replicator Dynamics

Given the chosen average fitness (f̄ ), the replicator dy-

namics model possesses an important property: if x(0) ∈ ∆,

then x(t) ∈ ∆ for all t > 0, where x = [x1, . . . , xN ]⊤, and
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∆ = {x :
∑N

i=1
xi = P, xi ≥ 0} [12]. This means that the

power required is preserved over time.

Although, for building temperature control is not desirable

that the power is maintained constant over time, it is required

that the power used by the control strategy is limited. For this

purpose, a “fictitious zone” N+1 is introduced in the model,

which does not correspond to any room of the building.

If we add the fictitious zone to the replicator dynamics

model, it still satisfy the property
∑N+1

i=1
xi(t) = P , where

xN+1(t) ≥ 0 is the power allocated to the the fictitious zone,

so it is a fictitious power. The real power (power allocated

to the rooms of the building) is given by the expression
∑N

i=1
xi(t), which is clearly less than or equal to P . In

conclusion, now we have the limitation of power required:
∑N

i=1
xi(t) ≤ P, xi(t) ≥ 0.

The choice of the fitness function for the fictitious zone

influences the achievement of the control objective, given

that the replicator dynamics model tends to equalize the

fitness function of all zones (an equilibrium point of repli-

cator equation is reached when f∗
i = f̄∗). Therefore, in the

proposed controller, we choose the fitness function of the

fictitious zone as fN+1 = b. In this way, if the tempera-

tures of the rooms are bellow their respective setpoints, the

corresponding fitness functions of the real zones are greater

than b (according to Equation (7)) and therefore, the physical

zones are more attractive to players (thermal power) than

the fictitious zone. Instead, if the temperature of the rooms

exceeds its corresponding setpoint, the fitness functions of

the real zones become less than b. In this case, it is more

profitable for players to choose the fictitious zone (whose

fitness function remains at the constant value b). This fact

causes that the excess of power is allocated to the fictitious

zone, and thus, the desired temperature can be achieved in

each room.

B. Equilibrium Points

In the thermal model of a building (Equation (4)) con-

trolled via replicator dynamics (Equation (6), where fi =
Tsi−Ti+b for i = 1, . . . , N , and fN+1 = b) an equilibrium

point denoted by (T∗,x∗), with T∗ = [T ∗
1 , . . . , T

∗
N+W ]⊤ (W

is the total number of layers within the walls that comprise

the building), and x∗ = [x∗1, . . . , x
∗
N+1]

⊤, is achieved when

in each room the temperature reaches its corresponding

setpoint (i.e., T ∗
i = Tsi for i = 1, . . . , N ). At this point, f∗

i =
f∗
j = f̄∗, where f̄∗ = b, which means that, in the steady

state, each player in the game perceives the same benefit. At

equilibrium, the temperatures in the layers of the walls (i.e.,

T ∗
i for i = N +1, . . . , N +W ) are given by the solution of

the linear equation Tw = −(Aw
A)

−1(Aw
BT

r)+Bwu, where

Tw = [T ∗
N+1, . . . , T

∗
N+W ]⊤, Tr = [T ∗

1 , . . . , T
∗
N ]⊤, Aw

A and

Aw
B are submatrices formed, respectively, by the last W rows

and columns, and by the last W rows and N first columns

of the matrix A of the Equation (5), and Bw is a submatrix

formed by the last W rows of matrix B.

To complete the characterization of the equilibrium point

of the system, it is necessary to establish the value of x∗i .

If T ∗
i = Tsi for i = 1, . . . , N , then from Equation (4), and

because of
∑N+1

i=1
xi(t) = P , it follows that

x∗i = –
∑

j∈Ωi
αij(T

∗
j –Tsi)–αia(Ta–Tsi)–ni

x∗N+1 = P −
∑N

i=1
x∗i .

(8)

The value of x∗i for i = 1, . . . , N corresponds to the

needed power from each actuator such that the rooms reach

their respective setpoint. Moreover, the value of xN+1 is the

excess of power which is allocated to the fictitious zone.

According to the above if the available power is greater than

or equal to the power required in steady state, the temperature

in all rooms can reach the desired value.

C. Stability Analysis

We want to study the stability of the equilibrium point

found in Section III-B using passivity theory for intercon-

nected systems [8]. It can be established that the thermal

system (Σ1) and the system that corresponds to the replicator

dynamics (Σ2) are feedback interconnected as shown in

Figure 1. Using Equations (4), (6), and (7), the total system

Σ1

Σ2

−1

u1 y1

u2y2

Fig. 1. Feedback interconnection of the thermal system and the controller.

is described by

Σ1 :















ėTi
=

∑

j∈Ωi

αij

θi
(eTj

− eTi
)−

αia

θi
eTi

+
si
θi
exi
,

for i = 1, . . . , N +W
y1i = eTi

, for i = 1, . . . , N

Σ2 :























ėxi
= β(exi

+x∗i )



–eTi
+b+

N+1
∑

j=1

eTj
–b

P
(exj

+x∗j )





for i = 1, . . . , N + 1
y2i = −exi

, for i = 1, . . . , N,
(9)

where eTi
= Ti−T

∗
i , and exi

= xi−x
∗
i are the error coordi-

nates for the thermal system and the controller, respectively,

and eTN+1
= 0 given that fN+1 = b.

Theorem 1: If P ≥
∑N

i=1
x∗i where x∗i ≥ 0 is given

by Equation (8), the equilibrium point at the origin of the

feedback interconnected system given by Equation (9) is

asymptotically stable (AS).

Proof: In order to show that the origin of the feedback

interconnected system is AS, first we need to prove that

the multizone temperature system (Σ1) with input u1 =
[ex1

, . . . , exN
]⊤ and output y1 = [eT1

, . . . , eTN
]⊤ is strictly

passive. Then, we need to show that the replicator dynamics

system (Σ2) with input u2 = [eT1
, . . . , eTN

]⊤ and output

y2 = [−ex1
, . . . ,−exN

]⊤ is lossless [8].

For Σ1, we choose V1(eT ) = 1

2

∑N+W
i=1

θie
2
Ti

as
a positive definite storage function. The derivative of
V1(eT ) along the trajectories of Σ1 is given by V̇1 =
∑N+W

i=1

∑

j∈Ωi
αij(eTj

eTi
− e2Ti

)−
∑N+W

i=1
αiae

2
Ti

+
∑N

i=1
eTi

exi
.

In the thermal model of a building, if j ∈ Ωi then i ∈ Ωj ,
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so for each term αij(eTj
eTi

− e2Ti
) there exists another one

of the form αji(eTi
eTj

− e2Tj
). Rewriting the equation, and

given that αij = αji, we obtain

V̇1 = −





N+W
∑

i=1



αiae
2
Ti

+
1

2

∑

j∈Ωi

αij(eTi
− eTj

)2







+
N
∑

i=1

eTi
exi

The expression in parentheses is a positive definite func-

tion ψ(eT ) because for the walls that are in direct contact

with the external environment, there is at least one αia 6= 0.

Moreover,
∑N

i=1
eTi

exi
= u⊤

1 y1. In conclusion we have that

V̇1(eT ) = u⊤
1 y1 −ψ(eT ), and then the system Σ1 described

in Equation (9) is strictly passive.

For Σ2, we choose a positive definite storage function

(relative entropy function [13]), such as,

V2(ex) = −
1

β

N+1
∑

i=1

x∗i ln

(

exi
+ x∗i
x∗i

)

(10)

The derivative of V2(ex) along the trajectories of Σ2,

is given by V2 = −
∑N+1

i=1
eTi
exi

+ b
∑N+1

i=1
exi

. The last

term in this expression is zero because exi
= xi − x∗i , and

∑N+1

i=1
xi =

∑N+1

i=1
x∗i = P (according to the property of

the replicator equation given in Section III-A). Then, for

the system Σ2, u⊤
2 y2 = −

∑N

i=1
eTi
exi

. So we have that

u⊤
2 y2 = V̇2(ex) given that eTN+1

= 0, and then Σ2 is

lossless.

According to [8], if we have a strictly passive (Σ1)

subsystem and a lossless one (Σ2), then the feedback in-

terconnection of these subsystems (as shown in Figure 1) is

passive and therefore its origin is stable. In order to prove

that the origin of the feedback interconnection of Σ1 and

Σ2 is asymptotically stable, we define VS = V1 + V2 as a

Lyapunov function candidate. The derivative of VS along the

trajectories of the system is V̇S = V̇1+ V̇2. But, we have that

the subsystem Σ1 is strictly passive, then V̇1 = u⊤
1 y1−ψ(eT )

with ψ(eT ) positive definite. Also, the subsystem Σ2 is

lossless, then V̇2 = u⊤
2 y2. Therefore, V̇S = −ψ(eT ). Since

ψ(eT ) is positive definite, V̇S is negative semidefinite, given

that V̇S is also a function of ex. Let us define the set

S = {[eT , ex] : V̇S = 0}, then S = {[eT , ex] : eT = 0}.

But, from Σ1 in Equation (9) eT ≡ 0 if and only if ex = 0.

It follows that no solution can stay identically in S, other

than the trivial solution, i.e., [eT , ex] = 0. Then, from the

LaSalle’s invariance principle, the origin of the feedback

connected system is asymptotically stable (AS).

D. Introducing the Derivative of Error in the Fitness Func-

tion

Now, we relax the assumption that the fitness function is

strictly positive, and consider the case of a fitness function

that depends on the error and its derivative, that is

fi = KP eTi
+KDėTi

, for i = 1, . . . , N. (11)

The inclusion of the derivative of error in the fitness

function provides information to the controller about the rate

of change of error, and therefore it allows to anticipate the

appropriate control action (e.g., if the error is decreasing

fast, it is necessary to weaken the control signal in order to

avoid overshoots). For this case, we choose the fitness of the

fictitious zone as fN+1 = 0.

For the stability analysis of the system when we use a

fitness function as the one described in Equation (11), we

assume that all elements that comprise the building have the

same thermal capacity, i.e., θi = θ for i = 1, . . . , N +W in

Equation (4). Under this assumption, the building thermal

system controlled via replicator dynamics can be viewed

as the negative feedback interconnection of the following

subsystems (described in error coordinates with respect to

the equilibrium point (T∗,x∗) given in Section III-B):

Σ1 :

{

ėT = AeT +Bex
y1 = −(KP I

′ +KDA′)eT −KDB′ex

Σ2 :























ėxi
= β(exi

+x∗i )



fi −

N+1
∑

j=1

fj
P
(exj

+x∗j )



 ,

for i = 1, . . . , N + 1
y2i = −exi

, for i = 1, . . . , N,
(12)

where eT = [eT1
, . . . , eTN+W

]⊤, ex = [ex1
, . . . , exN

]⊤, eTi
,

and exi
are the error coordinates for the thermal system and

the control signal, respectively; A is the same as in Equation

(5) but with θi = θ, for i = 1, . . . , N + W . Therefore

A = A⊤ < 0 (in this particular case, A is negative definite

because it is symmetric, and Hurwitz as we prove in Section

III-C); A′ is the submatrix formed by the N first rows of

the matrix A; B = [ 1
θ
IN,0N×W]

⊤; B′ = 1

θ
IN; I′ = [IN,0N×W];

fi = KP eTi
+KDėTi

, for i = 1, . . . , N , and fN+1 = 0. IN

denotes the N ×N identity matrix. Note that y1i = −fi for

i = 1, . . . , N (y1i is the ith element of the vector y1).

Theorem 2: The equilibrium point at the origin of the

feedback interconnected system given by Equation (12), with

A = A⊤ < 0, is asymptotically stable (AS) if KD ≤ 0,

KP < maxi

{

αia+2
∑

j∈Ωi
αij

θ

}

KD, and P ≥
∑N

i=1
x∗i ,

where x∗i ≥ 0 is given by Equation (8).

Proof: In order to show that the origin of the feedback

interconnected system is AS, first we need to prove that

the multizone temperature system (Σ1) with input u1 =
[ex1

, . . . , exN
]⊤ and output y1 = [−f1, . . . ,−fN ]⊤ is

strictly passive. Then, we need to show that the replicator

dynamics system (Σ2) with input u2 = [−f1, . . . ,−fN ]⊤

and output y2 = [−ex1
, . . . ,−exN

]⊤ is lossless.
For Σ1, we choose the positive definite storage function

V1(eT ) =
θ
2
e⊤
T
(−KP IN+W −KDA)eT, where (−KP IN+W −

KDA) is a positive definite matrix if KD ≤ 0, and KP <

maxi

{

αia+2
∑

j∈Ωi
αij

θ

}

KD. This can be seen from the fact

that, if these conditions hold,

e⊤
T
(–KP IN+W–KDA)eT =

N+W
∑

i=1

∑

j∈Ωi

(

−KD

2θ
αij(eTi

+ eTj
)2
)

+

+

N+W
∑

i=1

(

KD

(

αia + 2
∑

j∈Ωi
αij

θ

)

−KP

)

e2Ti

is positive when eT 6= 0.
The derivative of V1(eT ) along the trajectories of Σ1 is
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given by

V̇1 = θe
⊤
x B

⊤(–KP IN+W–KDA)eT–θe
⊤
TA(KP IN+W+KDA)eT.

The rightmost term is a positive definite function ψ1(eT )
because of A(KP IN+W+KDA) is positive definite, and for

the leftmost one we have θe⊤
x
B⊤(–KP IN+W–KDA)eT =

e⊤
x
(–KP I

′–KDA′)eT, so V̇1 = e⊤
x
(–KP I

′–KDA′)eT −
ψ1(eT). Moreover u⊤

1
y1 = e⊤

x
(–KP I

′–KDA′)eT −
KDe⊤

x
B′ex with KD ≤ 0. Then V̇1 ≤ u⊤

1
y1 − ψ1(eT ),

and Σ1 is strictly passive. Let us remark that u⊤
1
y1 =

−
∑N

i=1
fiei.

Now, let us prove that the controller based on replicator

dynamics (Σ2) is lossless if we take its input and output like

u2 = [−f1, . . . ,−fN ], and y2 = [−ex1
, . . . ,−exN

]⊤, re-

spectively. For do that we use the storage function defined in

Equation (10). The derivative of V2 along the trajectories of

Σ2 is V̇2 =
∑N

i=1
fiexi

. Because of u2
⊤y2 =

∑N

i=1
fiexi

,

so we have that u2
⊤y2 = V̇2, and then Σ2 is passive.

The feedback interconection shown in Figure 1 of a strictly

passive subsystem (Σ1) with a lossless subsystem (Σ2) is

passive, and its origin is stable. In order to proof that the

origin is AS, we can use the LaSalle’s invariance principle

in the same way as in Section III-C.

We have shown that with the fitness function given in

Equation (11), which includes the derivative of the error,

it is possible to achieve the control objective by choosing

appropriate KP and KD parameters.

E. System Performance to Strong Power Limitation

When the power available is strongly limited (i.e., when

P <
∑N

i=1
x∗i , where x∗i is defined as in Equation (8)), it

is not possible to achieve the temperature setpoints of the

rooms. If that happens, it is important that all occupants

of the building’s rooms have a similar welfare. For this

reason, some authors suggest to use the variance of the error

between the temperatures of the rooms and their respective

setpoints as an index that measures the efficiency of the

control algorithm used [3]. The smaller the variance, the

better the performance of the algorithm.

When the controller based on replicator dynamics is used

with the restriction described above, another asymptotically

stable equilibrium point emerges. The main characteristics of

this equilibrium point can be expressed as follows: i) all the

available power is allocated to the real zones (i.e., x∗N+1 =
0); and ii) the fitness functions corresponding to each room

have the same value (i.e., f∗
i = f∗

j for i, j = 1, . . . , N ).

Therefore, if we use a fitness function as the one defined

in Equation (7) (that corresponds to the error between the

temperature of the room and its setpoint), at equilibrium, all

errors would be equal and the variance is reduced to zero.

In order to prove that an equilibrium point satisfying these

characteristics is asymptotically stable, we proceed in the

same way as in Section III-C. The only difference is that

now, the replicator dynamics system (Σ2) in the new error

coordinates is expressed as follows

ėxi
= β(exi

+x∗i )



–eTi
+Ei+b+

N+1
∑

j=1

eTj
–Ej– b

P
(exj

+x∗j )





for i = 1, . . . , N + 1
y2i = −exi

, for i = 1, . . . , N,
(13)

where Ei = Tsi − T ∗
i for i = 1, . . . , N , and EN+1 = 0

However, the proof uses the same ideas as before because

this system is also passive. In order to show that, we use the

storage function defined in Equation (10). The derivative of

this storage function along the trajectories of the system Σ2

described by the Equation (13) is given by

V̇2 = –

N+1∑

i=1

x
∗
i

(

−eTi
+Ei+b+

1

P

N+1∑

j=1

(eTj
–Ej–b)(exj

+x
∗
j )

)

,

but Ei for i = 1, . . . , N is a constant, because f∗
i = f∗

j , so
replacing exi

= xi − x∗i , we have

V̇2 = −

N+1∑

i=1

eTi
exi

+E









N∑

i=1

xi

︸ ︷︷ ︸

≤P

−

N∑

i=1

x
∗
i

︸ ︷︷ ︸

P









+ b

N+1∑

i=1

exi

︸ ︷︷ ︸

0

.

It is natural to suppose that E is positive because, due

to the lack of power, the steady state temperature in each

room is below its respective setpoint. Moreover, as the input

to the system Σ2 is u2 = [eT1
, . . . , eTN

]⊤ and its output

is y2 = [−ex1
, . . . ,−exN

]⊤, we have that V̇2(ex) ≤ u⊤
2 y2

given that eTN+1
= 0, and then Σ2 is passive. So, we have

proven that using a building temperature controller based

on replicator dynamics, the variance of the error between

the temperature in each room and its respective setpoint is

reduced to a value of zero.

IV. SIMULATION RESULTS AND COMPARISON

We simulate the response of a building thermal system

when the controller based on replicator dynamics is applied

with the fitness function described in Equation (11). The

simulation conditions are described as follows: the building

consists of four rooms which are arranged in a row. More-

over, we have a heating system of 8 kW, which will provide

thermal power for the four rooms. The ambient temperature

is 10oC, and the setpoints for each zone are respectively 23o,

22o, 21o and 20oC. The results based on these conditions

are presented in Figure 2.a. Notice that when the replicator

dynamics are used, it is possible to reach the reference

temperature in all rooms, even with power restrictions. In this

simulation a disturbance is introduced at t = 117 minutes,

which corresponds to a heat loss (e.g., by opening a window).

It can be noticed that the system responds to the disturbance

and achieves a satisfactory recovery.

In order to compare the performance of the control strategy

proposed in this paper, we study the response of the system

when a model predictive control (MPC) [14] is applied

(this technique is widely used in the literature for building
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TABLE I

PERFORMANCE INDICES FOR EACH CONTROL TECHNIQUE

Control Technique ISE ITSE Energy

(×105) (×107) Spent (kWh)

Replicator dynamics 1.046 1.772 22.41
MPC 1.178 2.080 22.92

temperature control). For tuning the controller, we seek to

reduce the settling time, and the overshoot of the closed

loop system response. Moreover, we consider the power

constraint. The simulation conditions are the same, and the

response of the controlled system is presented in Figure 2.b.

It may be noted that using this control technique, the temper-

ature in each room reaches its corresponding setpoint with a

similar settling time. Moreover, the control signal satisfies the

established restriction (i.e., P ≤ 8kW). The performance of

the controllers can be quantified by means of the indices ISE

(integral of squared error), ITSE (integral of time multiply

squared error), and the energy used by the actuators. Table I

summarizes the values of these indices when using each

control technique. We remark that the replicator dynamics

based controller has the best ISE and ITSE indices, and at the

same time, it consumes less energy than the MPC controller.
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Fig. 2. Response of the system and power required. a) controlled via
replicator dynamics, fi = KP e+KD ė. b) controlled via MPC.

V. DISCUSSION

Due to the limitations of power, building temperature

control cannot be approached from conventional control

techniques. To achieve the control goals, it is necessary to

use optimal resource allocation techniques such as replicator

dynamics.

Using replicator dynamics (Figure 2.a) the control objec-

tive is achieved, and it is also important to emphasize the

robustness of this strategy against disturbances, in addition to

the simplicity of the model and the possible easy implemen-

tation. The replicator dynamics model is formulated through

a set of first order ordinary differential equations, which

implies that its implementation does not require, in principle,

the use of advanced processors. In this aspect, this control

technique has an important advantage compared to other

resource allocation methods (e.g., model predictive control

(MPC), which has to perform an optimization process at each

iteration). It is also important to note that the algorithm based

on replicator dynamics is easy to extend to complex cases

(e.g., for temperature control in large buildings with a lot of

rooms).

VI. CONCLUSION

The building temperature control is a dynamic resource

allocation problem, since the heaters and air conditioner

systems have limited power. For this reason, the use of

conventional controllers does not provide satisfactory results.

Many of the dynamic resource allocation techniques are

heuristics, and thus they lack a proper mathematical basis to

ensure stability or achieving the control objective. Contrary

to this, the replicator dynamics model proposed in this

work, allows us to use some nonlinear mathematical tools

to show that under some conditions an asymptotically stable

equilibrium point is reached. Moreover, the simulations show

that the resource allocation method implemented has a good

noise rejection and its performance is similar to the one

obtained using another advanced control technique. This

paper does not consider the dynamics of the actuators, the

presence of noise in the measurements provided by sensors,

or the delay in the information transfer used by the controller.

As future work we propose to study the robustness of the

replicator dynamics algorithm under these scenarios.
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