
  

  

Abstract— This paper addresses the important topic of joint 

flexibility identification. Three dynamic models depending on 

measurements availability are compared. The parameters are 

estimated by using the ordinary least squares of an over linear 

system obtained from the sampling of the dynamic model along 

a closed loop tracking trajectory. An experimental setup 

exhibits the experimental identification results. 

I. INTRODUCTION 

CCURATE dynamic robots models are needed to control 
and simulate their motions. Identification of rigid robots 

has been widely investigated in the last decades. The usual 
identification process is based on the inverse dynamic model 
and the ordinary or weighted least squares estimation. This 
method has been performed on several prototypes and 
industrial robots with accurate results  [1] [2] [3] [4] [5]. 

Identification of flexibilities is complex because only a 
subset of state variables is measured  [6] and one can not use 
directly linear regressions  [5]. This can be solved by adding 
sensors  [7] and/or external excitations  [8]. However, this 
solution is harder to apply because it can be quite expansive 
and the experiments can be quite involved with additional 
mounting sensors and signals to measure. In  [9], the authors 
use the System Identification Toolbox for Matlab  [10] [11] to 
identify both joint and structural flexibilities of one axis of 
an industrial robot. Inertia and stiffness parameters are well 
identified, but friction repartition and data filtering are not 
addressed. 

In  [12] and  [13], the authors have calculated some 
minimal identification models depending on the 
measurements availability, and they have developed a 
methodology to tune the bandpass filtering for joint stiffness 
identification. Experimental results are convincing, but the 
regroupings of friction parameters are not discussed and the 
results obtained with the different minimal models are not 
compared. 

Tacking all these remarks into account, this paper deals 
with joint stiffness identification performed on an 
experimental setup. Three minimal identification models 
depending on the measurements availability are developed. 
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The identification results are compared and the regroupings 
of friction parameters are presented and experimentally 
validated. 

This paper is divided into five sections. Section II 
describes the experimental setup and its modeling. Section 
III presents three minimal identification models depending 
on the measurements availability. Section IV is devoted to 
the identification based on the inverse dynamic model. 
Finally, experimental results obtained with the experimental 
setup show the efficiency of the different methods.  

II. MODELING OF A FLEXIBLE JOINT ROBOT 

A. Experimental setup 

The EMPS is a high-precision linear Electro-Mechanical 
Positioning System (see Fig. 1). It is a standard configuration 
of a drive system for prismatic joint of robots or machine 
tools. It is connected to a dSPACE digital control system for 
easy control and data acquisition using Matlab and Simulink 
software. 

 
Fig. 1. EMPS prototype to be identified 

 

Its main components are: 
- A Maxon DC motor equipped with an incremental 

encoder. This DC motor is position controlled with a PD 
controller. 

- A Star high-precision low-friction ball screw drive 
positioning unit. An incremental encoder at its extremity 
supplies information about the angular position of the screw. 

- A load in translation. 
- An accelerometer placed on the load supplies 

information about the load acceleration. 
These components are presented Fig. 2. 

 
Fig. 2. EMPS Components 

 

All variables and parameters are given in ISO units on the 
load side. 
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B. Rigid inverse dynamic model 

In this case, the system is modeled with one inertia and 
frictions. The inverse dynamic model (IDM) expressing the 
motor torque according to the state and its derivatives is: 

( )1 1 1 1 1 1 1R v R c RZZ q F q F sign qτ = + +&& & &  (1) 

Where, 1q , 1q& , 1q&&  are respectively the motor position, 

velocity and acceleration; 1τ  is the motor torque; RZZ1 is the 

total inertia; RvF 1  and RcF 1  are the total viscous and 

Coulomb friction parameters.  

C. The flexible inverse dynamic model 

In this case, the mechanical system can be modeled with 
two inertias, a spring and a structural damping, Fig. 3. 
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Fig. 3. EMPS modeling and DHM frames 

 
With the Newton – Euler equations, we obtain the 

following IDM  [5]: 

1 1 1 v1 1 c1 1 12 2 12 2

2 12 v2 12 c2 12 12 2 12 2

ZZ q F q F sign( q ) K q F q

0 ZZ q F q F sign( q ) K q F q

τ = + + − −

= + + + +

&& & & &

&& & & &
 (2) 

Where: 1q , 1q& , 1q&&  are respectively the motor position, 

velocity and acceleration; 1τ  is the motor torque; 12q , 12q& , 

12q&&  are respectively the load position, velocity and 

acceleration; 2q , 2q& , 2q&&  are respectively the elastic DOF 

position, velocity and acceleration with, 12 1 2q q q= + , 

12 1 2q q q= +& & &  and 12 1 2q q q= +&& && && ; 1ZZ  is the motor inertia, 1vF  

and 1cF  are respectively the viscous and Coulomb motor 

friction parameters; 2ZZ  is the load inertia, 2vF  and 2cF  are 

respectively the viscous and Coulomb load friction 
parameters; 12K  is the stiffness and 12F  the damping. 

The dynamic model (2) can be written in a linear relation 
to the dynamic parameters as follows: 

STD STDY D χ=  (3) 

With: ( )
T

1Y 0τ= ( )
T

STD 1 v1 c1 12 12 2 v2 c2χ ZZ F F K F ZZ F F=  

1 1 1 2 2

STD

2 2 12 12 12

q q sign( q ) q q 0 0 0
D

0 0 0 q q q q sign( q )

− − 
=  
 

&& & & &

& && & &
 

There are 8 parameters to be identified called standard 

parameters. The flexible IDM can be written as follows: 

( ) ( ),M q q N q q Kq BqΓ = + + +&& & &  (4) 

With: 1
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The direct dynamic model (DDM) is then described by: 

( ) ( ),M q q N q q Kq Bq= Γ − − −&& & &  (5) 

Now, we present the minimal identification models 
depending on the available measurements. 

III. DIFFERENT MINIMAL IDENTIFICATION MODELS 

DEPENDING ON THE AVAILABLE MEASUREMENTS 

A. Identification model using motor and load positions 

This is the idealistic case. The minimal model corresponds 
to the standard model given by (3). So, we have: 

1 STDD D= , 1 STDχ χ= and ( )
T

1 1y 0τ=  (6) 

B. Identification model with load acceleration and motor 

position 

This is a realistic case in industrial applications because 
accelerometers are often used to identify flexibilities. Since 
the load acceleration is measured, we could integrate this 
signal twice to get the load position. But, difficulties arise 
with the estimation of initial conditions. An efficient way 
consists in using the derivative of the motor torque. 12q&  

being not accessible, 2cF  is regrouped with 1cF . 

The non linear function sign  in (2) is a problem for 

derivative computation. The friction torque described by 
viscous and Coulomb parameters is not valid for velocities 
close to zero  [5]. Thus, they are eliminated making the 
derivative of the function sign  null. Finally, to identify 

RcF 1 , the rigid model is introduced. The minimal 

identification model is thus given by: 
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and ( )
T

2 1 v1 c1R 12 v12 2 v2χ ZZ F F K F ZZ F=  (7) 

C. Identification model with only motor position 

This is the common case in industrial applications. 
Equation (2) must be rewritten. The flexible DOF 2q  must 

be written according to 1q  and its derivatives. To make it 

possible, 2vF  and 2cF  are regrouped with 1vF  and 1cF  

respectively. Hence: 

12 2 v12 2 1 1 1 v1R 1 c1R 1K q F q ZZ q F q F sign( q )τ− − = − − −& && & &  (8) 
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( )2 1 12 2 v12 2 2q q K q F q ZZ= − + − −&& && &  (9) 

This gives: 

( )2 1 1 1 1 v1R 1 c1R 1 2q q ZZ q F q F sign( q ) ZZτ= − + − − −&& && && & &  (10) 

By eliminating velocities close to zero and by derivating 
(10) once and (8) twice, we obtain: 

( )2 1 1 1 1 v1R 1 2q q ZZ q F q ZZτ= − + − −&&& &&& & &&&& &&  (11) 

1 1 1 v1R 1 12 2 v12 2ZZ q F q K q F qτ = + − −&& &&&& && && &&&  (12) 

Finally, the minimal identification model is given by: 

3 1y τ= , ( )( )3 1 1 1 1 1 1 1D q q q q sign qτ τ= − −&& & &&&& &&& && & &  

( )3 2 1 4 3 2 1 0χ b b a a a a a=  (13) 

With: 2 2 12b ZZ / K= , 1 v12 12b F / K= , 4 1 2 12a ZZ ZZ / K= , 

( )3 v1R 2 v12 2 v12 1 12a F ZZ F ZZ F ZZ / K= + +

2 v12 v1R 12 1 2a F F / K ZZ ZZ= + + , 1 v1a F= , 0 c1Ra F= . 

The dynamic parameters are calculated as follows: 

1 4 2/ZZ a b= , ( )2 2 1 1 4 2/ZZ a b a a b= − +  

( )( )12 2 1 1 4 2 2/ /K a b a a b b= − + ( )( )12 2 1 1 4 2 1 2/ /vF a b a a b b b= − +  

IV. IDENTIFICATION METHOD AND DATA FILTERING 

A. Identification method 

The identification method developed for the manipulator 
robots is applied for joint stiffness identification. The vector 
χ is estimated with ordinary least squares (OLS) technique 

from an over determined system built from the sampling of 
(6), (7) and (13): 

Y = Wχ + ρ  (14) 

Where: Y  is the (rx1) measurement vector, W  the (rxb) 
regressor, χ is the (bx1) vector of parameters to be identified 

and ρ  is the (rx1) residual vector. We have ennr *= , 

where en  is the number of collected samples. 

The unicity of the OLS solution is ensured if W  is a full 

rank matrix i.e. if rank(W ) b= . To avoid rank deficiency, 

only the b base parameters must be considered  [14] [15] and 
trajectories must be exciting enough  [16] [17]. 

The detailed calculation of the standard deviation 
jχ̂σ and 

the relative standard derivation 
j

ˆ j
ˆ100* χχσ  for 

jχ̂ 0≠ can be found in  [3]. 

Calculating the OLS solution of (14) from noisy discrete 
measurements or estimations of derivatives may lead to bias 
because W  may be correlated to ρ . However, it has been 

shown that the OLS estimation is as consistent as 
sophisticated methods such as instrumental variable method 
provided that a well tuned bandpass filtering is performed 

 [18]. Then, it is essential to filter data in Y  and W  before 
computing the OLS solution. 

B. Data filtering 

Velocities and accelerations are estimated by means of a 
band pass filtering of the positions. This band pass filtering 
is obtained with the product of a low pass filter in both 
forward and reverse direction (Butterworth) and from a 
derivative filter obtained by central difference algorithm, 
without phase shift. The magnitude of the frequency 
response is given by: 

( ) ( )( )2
1 1 / buttern

butterH j jω ω ω= +  (15) 

Where buttern  is the filter order and butterω  is the cut-off 

frequency. buttern  is fixed according to the maximum 

derivatives order, mdon ,  in the minimal identification model. 

The cut-off frequency butterω  of the low pass filter must be 

chosen to avoid any magnitude distortion on the filtered 

signals in the range 0 dynω   defined by the dynamics to be 

identified. Details about the choice of butterω  and buttern  can 

be found in  [12] [13]. 
To eliminate high frequency noises and torque ripples, a 

parallel decimation is performed on Y  and the columns of 
W . This low pass decimate filter resamples each signal at a 

lower rate. It keeps one sample over dn  because no 

information is contained in the range / 2dyn sω ω   , where 

sω  is sampling frequency. Details about data decimation can 

be found in  [3]. 

V. EXPERIMENTAL VALIDATION 

A. Data acquisition and "rigid" nominal values 

Motor and load positions are measured by means of high 
precision encoders working in quadrature count mode and 
with an accuracy of 100000 counts per revolution. The 
sample acquisition frequency for joint position and current 
reference (drive force) is 1 KHz. 

We calculate the motor torque using the relation: 

1 G vτ ττ =  (16) 

where vτ  is the current reference of the amplifier current 

loop, and Gτ  is the gain of the joint drive chain, which is 

taken as a constant in the frequency range of the robot 
because of the large bandwidth (700 Hz) of the current loop. 

The first natural frequency, nω , is of 30Hz. This was 

verified with appropriate mechanical experiments such as 
blocked output test (see  [4]). The cut-off frequency of the 

Butterworth filter is fixed at srad /60**2 π  and the cut-
off frequency of the decimate filter is fixed at 60Hz. We 
keep one sample over 12. 
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The system is position controlled with a PD controller, the 
bandwidth of the closed loop is tuned at 30Hz to identify the 
dynamic parameters. 

Exciting trajectories consist of trapezoidal velocity with 
pulses: trapezoidal velocity excites very well inertia and 
friction parameters while pulses excite flexibility. We have 

( ) 30=Wcond  implying that the dynamic parameters are 

well excited and can be identified  [16] [17] with a good 
accuracy. 

The “rigid” identified values are summed up in Table 1. 
 

TABLE 1. DIDIM IDENTIFIES VALUES WITH THE RIGID MODEL 

Parameter 
jχ̂  

j
ˆ2* χσ  

j
ˆ j

ˆ100* χχσ  

ZZ1R 106 0.44 0.21 
Fv1R 208 3.5 0.84 
Fc1R 20.0 0.35 0.88 

 

B. Experimental identification results with no additional 

mass on the load 

With the first minimal identification model described by 
(6), the maximum derivatives order ( mdon ) is 2. According 

to  [12], 4=buttern . With the second and third identification 

models described by (7) and (13), 4=mdon . Hence, 

6=buttern . The results are summed up in Table 2, Table 3, 

Table 4 and Table 5. In addition, the estimated natural 

frequency and ( )ˆY Wχ Y− , the relative norm of the 

residue, are given. 
Cross tests validations have been performed. They consist 

in simulating the EMPS with the identified values and in 
integrating the DDM (5). In any case, the estimated torque 
follows closely the measured one (see Fig. 4, Fig. 5 and Fig. 
6). Furthermore, the relative norm of the error between the 

measured torque and the simulated one, ( )S
ˆY Y Y− , is 

computed and summed up in Table 2, Table 3 and Table 4. 
 

TABLE 2: OLS IDENTIFIED VALUES WITH THE FIRST MINIMAL 

IDENTIFICATION MODEL 

Parameter 
jχ̂  

j
ˆ2* χσ  

j
ˆ j

ˆ100* χχσ  

ZZ1 72.3 0.35 0.24 
Fv1 92.0 3.37 1.83 
Fc1 10.0 0.30 1.50 
K12 8.0 105 6.4 103 0.41 
Fv12 126.0 34.90 13.84 
ZZ2 34.8 0.36 0.52 
Fv2 110.0 3.35 1.52 
Fc2 10.4 0.30 1.45 

Estimated natural frequency: 29.0Hz 

( )ˆY Wχ Y 7%− = , ( )S
ˆY Y Y 7%− =  

1 2ZZ ZZ 107Kg+ = , 
v1 v2F F 202Ns / m+ = , 

c1 c2F F 20.4N+ =  

 
 
 

TABLE 3: OLS IDENTIFIED VALUES WITH THE SECOND MINIMAL 

IDENTIFICATION MODEL 

Parameter 
jχ̂  

j
ˆ2* χσ  

j
ˆ j

ˆ100* χχσ  

ZZ1 69.6 0.33 0.24 
Fv1 170.0 5.03 3.00 
Fc1R 22.8 0.45 1.95 
K12 8.3 105 3.0 103 0.18 
Fv12 430.0 19.10 2.21 
ZZ2 35.5 0.19 0.25 
Fv2 -29.8 20.75 34.90 

Estimated natural frequency: 29.0Hz 

( )ˆY Wχ Y 11%− = , ( )S
ˆY Y Y 11%− =  

1 2ZZ ZZ 105.1Kg+ = , 
v1F 170Ns / m= , 

c1F 22.8N=  

 
TABLE 4: OLS IDENTIFIED VALUES WITH THE THIRD MINIMAL 

IDENTIFICATION MODEL 

Parameter 
jχ̂  

j
ˆ2* χσ  

j
ˆ j

ˆ100* χχσ  

b2 3.81 10-5 6.00 10-7 0.78 
b1 -3.42 10-5 8.42 10-5 123.0 
a4 0.0028 3.25 10-5 0.59 
a3 -0.059 0.006 5.12 
a2 107.0 0.42 0.20 
a1 210.0 4.05 1.08 

Fc1R 20.0 0.40 1.02 
Estimated natural frequency: 29.0Hz 

( )ˆY Wχ Y 11%− = , ( )S
ˆY Y Y 11%− =  

1 2ZZ ZZ 106 Kg+ = , 
v1F 210Ns / m= , 

c1F 20N=  

 
TABLE 5: PHYSICAL PARAMETERS WITH OLS IDENTIFIED VALUES 

Parameter 
jχ̂  

ZZ1 71.0 
Fv1R 210.0 
Fc1R 20.0 
K12 8.5 105 
Fv12 -30.0 
ZZ2 35.0 
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Fig. 4. Cross test validation with the first minimal identification model. 

Blue: measurement, Red: simulated torque, Black: error. 
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Fig. 5. Cross test validation with the second minimal identification model. 

Blue: measurement, Red: simulated torque, Black: error. 
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Fig. 6. Cross test validation with the third minimal identification model. 

Blue: measurement, Red: simulated torque, Black: error. 

 
The most accurate identification results are obtained with 

the first model thanks to motor and load positions 
measurements. The relative norm of the residue like the 
relative norm of the error between the measured torque and 
the simulated one is small (less than 10%). Unlike chirp 
signals ( [9] [12] [13]), the applied exciting trajectories enable 
us to identify friction repartition. Furthermore, by adding 
inertia, viscous and Coulomb friction parameters, we retrieve 
the "rigid" values. Finally, we get an accurate flexible 
dynamic model and the values identified with the first model 
are our references. 

The second minimal model provides good results though 
we have regrouped the parameter 2cF  with 1cF . The 

estimation of 1vF  is close to RvF 1 . This is due to the fact that 

2vF  is not well identified because it has large relative 

deviation and when removed from the model, the other 
values and the residue norm do not vary significantly (less 
than 1%). Its contribution to dynamics is negligible. The 
identified values of 1ZZ , 2ZZ  and 12K  are very close to 

those summed up in Table 2. We can accurately identify the 
first natural frequency with this model, but we can not 
identify the frictions repartition. 

Good results are obtained with the third model though 2vF  

and 2cF  can not be identified. The identified values of 1ZZ , 

2ZZ  and 12K  are very close to those summed up in Table 2 

and Table 3. As stated for the second model, the first natural 
frequency can be accurately identified unlike the friction 
repartition. 

C. Experimental results with an additional mass of 10Kg 

on the load 

As a final test, the experimental identification is 
performed while an extra mass of 10Kg is added on the load. 
If the identification process is well designed, then the 
variation observed on 2ZZ  must be close to 10Kg and the 

variations observed on the other parameters must be 
insignificant. 

The identified values, the estimated natural frequency, the 
relative norm of the residue and the relative norm of the error 
between the measured torque and the simulated one are 
summed up Table 6. Since standard deviations and relative 
standard derivations are very close to those exposed in Table 
2, Table 3 and Table 4, they are missing. The variations of 
the estimations are given in Table 7. 

 
TABLE 6: IDENTIFIED VALUES WITH AN EXTRA MASS OF 10KG 

Parameter 
jχ̂ : 1st 

model 
jχ̂ : 2nd 

model 
jχ̂ : 3rd 

model 
ZZ1 73.1 69.0 70.0 
Fv1 92.9 165.0 220.0 
Fc1 10.2 23.0 21.0 
K12 8.2 105 8.2 105 8.4 105 
Fv12 116.0 440.0 -65.1 
ZZ2 44.3 44.5 45.5 
Fv2 115.0 -12.3 X 
Fc2 11.0 X X 
ωn 27 Hz 27 Hz 27 Hz 

( )ˆY Wχ Y−  7% 11% 11% 

( )S
ˆY Y Y−  7% 11% 11% 

 
TABLE 7: VARIATIONS OF ESTIMATIONS 

Parameter 
jχ̂ : 1st 

model 

jχ̂ : 2nd 

model 

jχ̂ : 3rd 

model 
∆ZZ1 0.8 -0.6 -1.0 

∆Fv1 0.9 -5.0 10.0 
∆Fc1 0.2 0.2 1.0 
∆K12 0.2 105 -0.1 105 -0.1 105 

∆Fv12 -10.0 10.0 -35.1 
∆ZZ2 9.5 9.0 10.5 

∆Fv2 5.0 -17.5 X 
∆Fc2 0.6 X X 

 
For each minimal identification model, variations 

observed on 2ZZ  are close to 10Kg whereas variations 

observed on the other parameters are practically 
insignificant. Of course, these variations can not be perfectly 
null because of noises and experiment conditions.  
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Direct and cross test validations have been performed. As 
done for the previous experiments, cross test validations 
consist in simulating the EMPS. The results are very close to 
those illustrated Fig. 4, Fig. 5 and Fig. 6. 

All these experimental results mean that the identification 
is of good quality and the identification process described 
along this paper is suitable to joint stiffness identification. 

VI. CONCLUSION 

Experimental joint stiffness identification has been 
performed with three minimal identification models 
depending on the measurement availability: 
- Motor and load positions, 
- Motor position and load acceleration, 
- Motor position only. 

As expected, the most accurate identification results are 
obtained when both motor and load positions are measured. 

The two other minimal identification models give good 
results though the parameters 2vF  and 2cF  have been 

regrouped with 1vF  and 1cF  respectively. Indeed, the 

identified values of inertia and stiffness parameters are very 
close to those identified with the first model. Finally, these 
methods can be used as an alternative to the first one to 
identify the first natural frequency. But, they can not 
distinguish motor frictions from load frictions. 

The main weakness of models described by (7) and (13) is 
the presence of derivatives orders greater than two. Motor 
position must be accurate enough and bandpass filtering 
must be well tuned. Difficulties arise for low encoder 
resolutions, typically less than 1000 counts per revolution. In 
most of cases, remember that the sampling rate of the 
controller is fixed by the manufacturer, the choice being very 
limited. Hence, the method to calculate the optimal sampling 
rate presented in  [12] cannot be easily applied. 

Future works concern the use of the instrumental variable 
method (IV) to identify parameters with only motor position 
or with poor encoder resolutions. As shown in  [18], the IV 
method has been recently extended to identify rigid robots 
and it acts as a natural adaptive filter. This could be helpful 
in experimental joint stiffness identification, especially with 
poor encoder resolutions. 

They concern also the extension of the Direct and Inverse 
Dynamic Identification Models technique (DIDIM, see  [19]) 
to joint stiffness identification. This method, needing only 
torque/force data, has been validated on a 6 DOF rigid robot. 
It would be interesting to extend it in order to identify joint 
stiffness with only one measurement. 
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