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Abstract—This paper deals with simple integrator consensus

problems. The objective is the design of an improved consensus

algorithm for continuous-time multi-agent systems using memory

effects. The novel algorithm proposes to sample, in an appropri-

ate manner, part of the multi-agent systems information such that

the algorithm converges, assuming that at each instant, agent’s

control laws will also consider the sampled past information of

its neighbors. Stability conditions expressed in terms of LMI’s

and based on algebraic communication matrix structure are

provided. The efficiency of the method is tested for different

network communication schemes.

I. INTRODUCTION

Networked control systems (NCS) are systems which are

spatially distributed with a communication network used be-

tween sensors and actuators. Their primary advantages include

their low cost, reduced weight and power requirements, sim-

ple installation and maintenance, and higher reliability. This

means NCS’s applications can be found in a large range of

areas such as mobile sensor networks ([1]), remote surgery,

haptic collaboration over Internet, multi-robot systems ([2]),

automated highway systems, averaging in communication

networks ([3]) and formation control ([4]). Several results

have appeared in recent literature that consider systems with

different motion models, symmetry of communication and

network interactions. A recent review of the vast literature

in the field can be found in [5], [6], [7] and [8].

A ”consensus” algorithm represents an interaction rule

that specifies the information exchange between an dynamic

system, or agent, and all of its neighbors over the network

in order to reach an agreement regarding a certain quantity

of interest that depends on the state of all agents. We should

also remark that using shared network introduces new chal-

lenges, such as delays over communications, packet losses or

even communication blackout, witch can dramatically affect

”consensus” convergence rate and cooperative control laws

efficiency, that have been extensively studied in literature,as

for example, in [9]. Here, we consider that agents are assumed

to obey a simple integrator model. Knowing that classical

consensus algorithms converge with a decay rate equal to

the second smallest eigenvalue of Laplacian L, we propose

to study improved behaviors for such algorithms. Acceler-

ating the convergence of synchronous distributes averaging

algorithms have been studied in literature based on two main
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approaches: optimizing the topology-respecting weight matrix

summarizing the updates at each node ([3]) or incorporating

memory into the distributed averaging algorithm. In this scope,

even if for most applications, delays lead to a reduction of

performances or can even lead to instability, there exists some

cases where the introduction of a delay in the control loop can

help to stabilize a system which would not be stable without

it. This have been studied in [10] and [11]. Also, local memory

effect’s on consensus algorithms performances have also been

studied in [12], considering naturally unstable systems and us-

ing the stabilizing delay concept (sampled approach) in order

to achieve consensus. Theoretical guarantees for a distributed

averaging algorithm with memory are also provided in [13]

and [14].

In this article, in order to present better behaviors, we

will provide an improved consensus algorithm with local

memory based on sampling approach. We will prove, in a

theoretical way, that the proposed algorithm always improves

standard performances, and a method to design the algorithm

parameters, including the appropriated sampling period T, on

an ”optimal” way is proposed based on a LMI’s formulation.

The communication graphs are supposed to be directed and

undirected. This paper is organized as follows: Section II

presents the problem treated in this article, as Section III will

be dedicated to the establishment of the appropriated model. In

Section IV we will motivate our work, and in Section V we

stability analysis of the algorithm will be provided. Section

VI includes illustrating simulation results and performance

analysis, and finally, Section VII will present our conclusions

and indicate possible future research efforts.

Throughout the paper, R
n denote the n-dimensional Eu-

clidean space, and R
n×m is the set of n × m real matrices.

The set Sn stands for the set of symmetric matrices of Rn×n.

The superscript ‘T ’ stands for matrix transposition. For any

matrix P in S
n, the notation P > 0 means that the matrix

P is positive definite. For any matrix A in R
n, the notation

2He{A} corresponds to the following sum A+AT . The matrix

I represents the identity matrix. Finally, for any matrix M , the

notation (M)i denotes the ith line of M and λk(M) represents

the kth eigenvalue of M . For the graph G with N vertices

and edge set given by E = {(i, j) : j ∈ Ni} the adjacency

matrix A = A(G) = (aij) is the N × N matrix given by

aij = 1, if (i, j) ∈ E and aij = 0, otherwise. The degree di of

vertex i is defined as the number of its neighboring vertices,

i.e. di = #j : (i, j) ∈ E. Let ∆ be the N × N diagonal

matrix of di’s. The Laplacian of G is the matrix L = ∆−A.

For an undirected graph the Laplacian matrix is symmetric

positive semidefinite. Zero is a simple eigenvalue of L (the

corresponding eigenvector is the vector of ones,
−→
1 ) if and
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only if the associated directed graph has a directed spanning

tree.

II. PROBLEM STATEMENT

A. Consensus Algorithm

In this paper the following problem is addressed. Consider

the classical simple integrator consensus algorithm

{

ẋi(t) = ui(t)

ui(t) =
∑

j∈Ni
aij(xj(t)− xi(t))

i ∈ {1, . . . , N},

(1)

where xi represents variables of agent i. Introducing the vector

x(t) = [x1(t), .., xN (t)]T containing the state of all agents, we

then derive:

ẋ(t) = −Lx(t) , (2)

where L is the Laplacian matrix.

This algorithm is distributed in the sense that each agent

has only access to information from its neighbors. Moreover,

consensus algorithms can be archived asymptotically if and

only if the graph associated to the Laplacian L has a directed

spanning tree (page 25 [8]).

In this paper, we will propose an improved algorithm for

simple integrator agents. The goal is a performance compara-

ison between the proposed and the classical algorithm, where

memory’s effects on system’s stability will be bring forward.

Assuming that there exists a constant and positive scalar µ

such that:
∑

j∈Ni

aij = µ, i ∈ {1, . . . , N}.

The previous algorithm is modified into a new algorithm

shown in Figure 1. To do so, we introduce a periodic sampling

denoted by the sequence of instants {tk}k≥0 and such that

t0 = 0 and T = tk+1− tk. The improved algorithm is defined

by

∀t ∈ [tk tk+1[, ẋ(t) = (−L− δA)x(t) + δAx(tk) (3)

where A is the adjacency matrix of the communication graph,

δ ∈ R and T = tk+1− tk > 0 are additional parameters of the

improved algorithm. From the point of view of agent i, the

state xi is available at every time t. However, both continuous

and sampled data from the neighbor agents of agent i are used.

−L 1

s

x(t)

−δA

+

−L
1

s

x(t)

tk-+

+

Fig. 1. Bloc diagrams of the classical and the improved algorithms.

Note that if δ and/or T are taken as zero, the classical

algorithm is retrieved. In this article, we consider a sampling

delay approach, using the time-varying delay defined by

τ(t) = t − tk, for all t ∈ [tk, tk+1] introduced in [15] and

used in the context of multi-agent consensus algorithm in [12].

From computational point of view, this choice is relevant. One

may have consider a constant delay τ instead of the sampling

delay. However all values of x in the interval [t− τ, t] should

be kept in memory whereas only one data is held when using

the sampling approach. An inherent assumption is that all

agents are synchronized and share the same clock to ensure

that the agents also share the same sampling. For the sake of

simplicity, we assumed that the sampling process is periodic.

This makes sense in the situation of multi-agents systems.

However the latter analysis could be extended to asynchronous

samplings.

B. Preliminary definition

In order to clarify the presentation, a definition of exponen-

tial stability will be stated here.

Definition 1: ([16]) Let α > 0 be some positive, constant,

real number. The system is said to be exponentially stable with

the decay rate α, or α-stable, if there exists a scalar β ≥ 1

such that the solution x(t; t0, φ) satisfies:

|x(t; t0, φ)| ≤ β|φ|τe
−α(t−t0). (4)

III. DEFINITION OF AN APPROPRIATE MODEL

This section focuses on the definition of a suitable modeling

of the consensus algorithm (3) to analyze its convergence.

Knowing that the vector
−→
1 is an eigenvector of the Laplacian

matrix associated to the eigenvalue 0, it is possible to find a

change of coordinates x = Wz such that:

U(−µI +A)W =

[

B ~0
~0T 0

]

, (5)

where U =

[

U1

U2

]

= W−1 and U2 = (U)N . For graphs

containing a directed spanning tree the Laplacian eigenvalues

are all positive and we denote them by 0 < λ2 ≤ . . . ≤ λN .

Let also B ∈ R
(N−1)×(N−1) be a diagonal matrix with −λi.

The following lemma, which is taken from [17], provides an

appropriate way to rewrite (3) based on the properties of the

matrix L.

Lemma 1: The system (3) can be rewritten in the following

way:

ż1(t) = (−B + δ(B + µI))z1(t)− δ(B + µI)z1(tk), (6a)

ż2(t) = −µz2(t) + µz2(tk), (6b)

where z1 ∈ RN−1, z2 ∈ R and the matrix B in given in (10).

Proof: By the Leibnitz formula, we have x(tk) = x(t)−
∫ t

tk
ẋ(s)ds, for all differentiable functions x. System (3) can

be rewritten as:

ẋ(t) = −Lx(t)− δA

∫ t

tk

ẋ(s)ds. (7)

This representation is a way to understand how memory

components affect the algorithm. We then rewrite (3) into two
983



equations defined by z1 = U1x ∈ R
(N−1) and z2 = U2x ∈

R
N representing, respectively, the N−1 first components and

the last component of z. Then (3) is rewritten as

[

ż1(t)

ż2(t)

]

= −

[

B ~0
~0T 0

] [

z1(t)

z2(t)

]

−

[

A′
1

A′
2

]
∫ t

t−τ

ż(s)ds,

where

[

A′
1

A′
2

]

= UAW and A′
2 = (UAW )N . From (5),

simple matrix calculations lead us to

[

A′
1

A′
2

]

= UAW = ULW + µI =

[

B + µI ~0
~0T µ

]

(8)

Using the Leibnitz formula, (3) can be rewritten as

ż1(t) = −Bz1(t) + δ(B + µI)
∫ t

tk
ż1(s)ds,

ż2(t) = −δµ
∫ t

tk
ż2(s)ds.

(9)

The consensus problem is now expressed into an appropriate

form to perform stability criteria. In the case of a symmetric

network, the matrix W is an orthogonal matrix which means

U = WT . Then if the last column of W is β
−→
1 , then U2 =

1/(βN)
−→
1 , which means that z2 corresponds to the average

of the position of all agents. This does not hold always for

asymmetric communication network.

In the sequel, a stability analysis of the algorithm is pro-

posed for any graph with a directed spanning tree, represented

by the Laplacian L. Requiring a directed spanning tree is less

stringent than requiring a strongly connected and balanced

graph ([8]). This analysis is composed by two parts, one deal-

ing with the stability of the algorithm and another concerning

the agreement of the agents. More particularly, we will propose

a method to choose appropriately the algorithm parameters δ

and T for a given L, considering a performance optimisation.

Next section will motivate this study.

IV. DOES THIS ALGORITHM ALWAYS IMPROVE STANDARD

PERFORMANCES?

Assume for the moment that the Laplacian matrix corre-

sponds to a symmetric graph. Let B be the diagonal matrix

of the Laplacian eigenvalues defined before. We know that

B =







−λ2 . . . 0
...

. . .
...

0 . . . −λN






. (10)

Thus, we establish for all i = 1, . . . , N − 1

ż1i(t) = (−λi+1 + b)z1i(t) − bz1i(tk). (11)

with b = δ(λi+1 + µ).

By integrating the previous equation, the following re-

currence equation represents the discrete dynamics of the

algorithm.

z1i(tk+1) = A(λi+1, δ, T )z1i(tk), (12)

with

A(λi+1, δ, T ) = exp(−λi+1+b)T −λi+1

−λi+1 + b
+

b

−λi+1 + b
.

Note that system’s (12) stability increases as A(λi+1, δ, T )

decreases. We will prove that by varying δ and T values close

to zero, we achieve a performance improvement for ∀λi+1, if

∂A(λi+1, δ, T )

∂T
≤ 0, for some δ values (13a)

∂A(λi+1, δ, T )

∂δ
≤ 0, for some T values (13b)

From (12), by derivation of A(λi+1, δ, T ), we have

∂A(λi+1, δ, T )

∂T
=− e

(−λi+1+b)T
λi+1

∂A(λi+1, δ, T )

∂δ
=
−λi+1e

(−λi+1+b)T

(−λi+1 + b)

[

T (λi+1 + µ)−
(λi+1 + µ)

−λi+1 + b

]

+
(λi+1 + µ)

(−λi+1 + b)2
(λi+1 + 2b)

When we evaluate the previous equation for T ≃ 0 and for

δ ≃ 0, respectively, we have

∂A(λi+1, δ, T )

∂T
=− λi+1 ≤ 0

∂A(λi+1, δ, T )

∂δ
=e−λi+1T (λi+1 + µ)

(

T +
1

λi+1

)

−

(

λi+1 + µ

λi+1

)

≤ 0

As
∂A(λi+1,δ,T )

∂T
= −λi+1 is negative for all value of δ,

and
∂A(λi+1,δ,T )

∂δ
is also negative for small values of T, we

can then conclude that for small values of δ and T system

(12) tends to converge more rapidly when compare with the

trivial algorithm. The pertinent problem of how to chose theses

parameters values has been rased here, and will be treated in

the next section.

V. STABILITY ANALYSIS

A. Preliminary stability analysis

This section deals with the stability analysis of (6b). The

following lemma holds.

Lemma 2: The system defined in (6b) is constant for any

sampling period T and any δ

∀t, z2(t) = z2(0) (16)

Proof: Consider k ≥ 0 and any t ∈ [tk tk+1[ and any

parameters T , δ. The previous ordinary differential equation

has known solutions of the form

z2(t) = e−δµ(t−tk)C0 − z2(tk) (17)

where C0 ∈ R represent the initial condition of the ordinary

differential equation. The initial condition is determined at

time t = tk. We then obtain C0 = 0 and thus

∀t ∈ [tk tk+1[, z2(t) = z2(tk) = z2(0) (18)

Then, we deduce that z2 is constant
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B. Stability analysis of the consensus algorithm

Consider the consensus algorithm (3) rewritten in the form

of (6). We can establish

ż1(t) = A(δ)z1(t) +Ad(δ)z1(tk), (19)

with A(δ) = (−B + δ(B + µI)) and Ad(δ) = −δ(B + µI).

The following theorem holds

Theorem 1: Consider the proposed consensus algorithm (3)

associated to a given Laplacian L representing a communica-

tion graph with a directed spanning tree, a given α > 0, δ > 0

and T > 0.

Assume that there exist P > 0, R > 0 and S1 and X ∈ S
n

and two matrices S2 ∈ R
n×n and N ∈ R

2n×n that satisfy

Π1 + fα(T, 0)Π2 + hα(T, 0)Π3 < 0, (20)
[

Π1 + hα(T, T )Π3 gα(T, T )N

∗ −gα(T, T )R

]

< 0, (21)

where

Π1 = 2He{MT
1 P (M0 + αM1)} −MT

3 S1M3

−2He{MT
3 S2M2)− 2He{NM3},

Π2 = MT
0 RM0 + 2He{MT

0 (S1M3 + S2M2)},
Π3 = MT

2 XM2,

and M0 =
[

A(δ) Ad(δ)
]

, M1 =
[

I 0
]

, M2 =
[

0 I
]

, M3 =
[

I −I
]

. The functions fα, gα and hα

for all scalars T and τ ∈ [0 T ] are given by

fα(T, τ) = (e2α(T−τ) − 1)/2α,

gα(T, τ) = e2αT (1− e−2ατ )/2α,

hα(T, τ) =
1
α

[

e2αT −1
2αT − e2ατ

]

.

(22)

Then, the consensus algorithm (3) with the parameter δ and the

sampling period T is thus α−stable. Moreover the consensus

equilibrium is given by

x(∞) = U2x(0). (23)

Proof: The proof in based on the Lyapunov Theorem for

discrete-time system using the continuous-time model of the

multi-agent systems. For simplicity the proof is omitted but is

presented in [18] and is similar to [12].

VI. EXAMPLES

1

2

3

4

5

6

Graph 0 Graph 1

1 2

34

Fig. 2. Corresponding graphs of the matrices L0 and L1.

Consider a set of six and four agents connected through,

respectively, the undirected and directed graphs shown in

Figure 2. To each graph is associated a Laplacian matrix given

by

L0 =









−1 0.5 0 0 0 0.5
0.5 −1 0.5 0 0 0
0 0.5 −1 0.5 0 0
0 0 0.5 −1 0.5 0
0 0 0 0.5 −1 0.5
0.5 0 0 0 0.5 −1









,

L1 =





−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1



 .

For simulations, we took as initial conditions xT
0 (0) =

[30 25 15 0 −10 −30] and xT
1 (0) = [30 25 15 0]. Those two

graphs are balanced, witch implies that consensus equilibrium

value will be defined as the average of initial conditions

presented just before.

The objective is to find the highest value for α (on the verti-

cal axis) that guarantees algorithm (3) convergence. Figure 3,

as a 3-D representation of α stability results, shows the maxi-

mum convergence rate satisfying Theorem 1 for several values

of δ and T , and for L0 and L1, with T ∈ [0, 1]s and δ ∈ [0, 2].

We can identified a crest for specific values of (δ, T ) meaning

an improved behavior, and the best positive value of α is

obtained when (δ, T ) = (2, 0.32) and (δ, T ) = (1.96, 0.09),

for graph G0 and graph G1 respectively.

The stability conditions proposed in this article are suffi-

cient but not necessary conditions. Best behavior/response is

obtained for a certain value of (δ, T ), and once it changes, this

leads to a reduction of performances, as it will be shown in

the following.

Figure 4 shows simulations from the classical algorithm

(2) as well as the algorithm (3) considering L0, L1, and for

several values of δ and T . The aim here is to compare systems

performances with two different approaches and justify the

interest of the proposed algorithm. Figure 4(a-b) show simula-

tion results of the classical consensus algorithm. Figure 4(c-d)

show simulation results using the optimal pair (δ, T ) according

to Theorem 1 and recovered on Figure 3.We can see that

they correspond to a faster algorithm when compared with the

trivial algorithm. In Figure 4(e-f), we kept the optimal value of

T and changed δ value. Finally, for Figure 4(g-h), we kept the

optimal value of δ and changed T value. In 4(c-d-e-f) we can

then see that convergence rate decreases when compared to the

others results. It’s also possible to observe that the agreement

value for the modified algorithm remains the average of the

initial conditions. Consider now ε = |x(t) − x∞|, as the

module of the error between agents states and the agreement

value x∞. Figure 5 shows the error ε evolution for graph G0

and G1. We consider the best values of (δ, T ) retrieved before

in Figure 3. Classical algorithm’s performances correspond to

the continuous line as the dotted line shows the behavior of

the improved algorithm. We can than clearly observe that the

algorithm proposed in this article converge more rapidly than

the trivial simple integrator consensus. Analysis of Figure 4-5

strengthen the efficiency of the proposed approach.
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Fig. 3. Convergence rate of the consensus algorithm for several values of (δ, T ) and for the communication graphs G0 and G1.
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Fig. 4. System’s behavior for different settings

VII. CONCLUSION

The influence of local memory in consensus algorithms for

simple integrator agents have been studied. An optimization of

controller parameters is proposed so that exponential stability

of the solutions is achieved based on discrete-time Lyaponov

Theorem and expressed in terms of LMI. Also, conditions for

improved performances based on Laplacian’s eigenvalues are

provided here. Simulation results show the efficiency of the

proposed algorithm, as well as the conservation of averaging

properties. Further work might include robustness with respect

to errors in the synchronisation clocks.
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