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Abstract—Problems related to the identifiability of 

Networked Control Systems (NCSs) are studied in this paper. 

The informative enough property is a necessary condition to 

ensure a system’s identifiability. In this paper, it is proved that 

the data set which is not informative enough with respect to some 

model sets in a conventional closed-loop system will become 

informative enough with respect to these model sets in an NCS, 

due to the random delay and packet dropout introduced by 

network transmission. The result shows that the random 

network influence of NCSs which is usually treated as being 

harmful can bring benefit to the identifiability of closed-loop 

system identification. 

I. INTRODUCTION 

ETWORKED Control Systems (NCSs) are kind of 

closed-loop control systems, where transmission 

between sensor and controller, and transmission between 

controller and actuator are through shared digital 

communication network [1]–[4]. In spite of many advantages 

introduced by the network [5]–[8], the band-limited network 

paths are often unreliable due to the network-induced delay 

and packet dropout occurring in both the sensor-to-controller 

path (S-C path) and the controller-to-actuator path (C-A path) 

[2]–[4], [6].  

It is known that for a linear controlled system within a 

conventional closed-loop, the condition that the data set is 

informative enough with respect to some model sets [9], [10] 

is a necessary condition to ensure the system’s identifiability, 

but cannot be satisfied unless the reference input is persistent 

exciting [9], [10], or some additional constraint conditions are 

added [11]–[15].  

The purpose of this paper is to prove that the closed-loop 

data set of an NCS becomes informative enough with respect 

to these model sets due to the introduction of random 

network-induced delay and packet dropout even when those 

constraint conditions mentioned above are not satisfied. The 

result shows that although the random network influence of 

an NCS is usually treated as being harmful, it can bring 

benefit to the identifiability of closed-loop system 

identification. 

Our idea is motivated by the results in [11] and [13], which 
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shows that the informative enough property of a closed-loop 

data set can be guaranteed as long as there are switches 

between different feedback laws, but the switches must be 

very seldom and each feedback law is occupied with a 

nonzero proportion of the total time. In an NCS, the feedback 

controller together with the S-C path and C-A path can be 

viewed equivalently as a time-varying controller, so it is 

intuitively to speculate that the random network-induced 

delay and packet dropout of an NCS may bring benefit to the 

closed-loop data set from the viewpoint of informative 

enough. However, the frequency-domain analysis in [11] and 

[13] cannot be applied to NCS as the equivalent time-varying 

feedback law caused by the delay and dropout are random and 

vary very fast, which violates the precondition in [11] and [13] 

that the switches between different feedback laws must be 

very seldom, and prevents the power spectrum analysis in [9] 

from being used. Therefore, in this paper, we prove that the 

data set of an NCS is informative enough with respect to some 

model sets through analysis directly in time-domain. 

Although the identification of a system operating in 

networked environment has been reported by [16]–[21], they 

all make the assumption that the system is identifiable as a 

precondition, and focus on how to overcome the problem of 

incomplete data set caused by delay and dropout, without 

directly analyzing the influence on the information content in 

closed-loop data set brought by the random network 

transmission. 

There are also some results related to the topic of this paper 

for closed-loop systems other than NCSs. Reference [22] 

inserts an adaptive quantizer into the feedback path, and uses 

the quantization error as exciting signal to offer identifiability. 

However, it analyzes the persistency and statistical property 

of the quantization error only through simulation and physical 

experiment. Reference [23] proves that the estimation of 

least-squares method is consistent if the output data of the 

closed-loop system is over-sampled. Reference [24] further 

proves the identifiability of that problem in frequency domain 

by using the lifting technique, and the concepts of 

bifrequency map and bispectrum.  

II. PROBLEM FORMULATION AND PRELIMINARIES 

A. Preliminaries 

In this section, some preliminary concepts which are given 

by [9] and necessary to our analysis will be briefly introduced, 

including Definition 2.1, Definition 4.1, and Definition 8.1 in 

[9].  

Definition 1 [9]: A signal  ( )x k  is quasi-stationary if it 
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satisfies:  

(i) E ( )x k  is bounded, k ; 

(ii) 
1 2E ( ) ( )x k x k

 

is bounded, 
1 2,k k ; 

(iii) 
1

1
lim E ( ) ( ) 

L

L
k

x k x k
L






 exists, and only depends on  , 

 . 

The symbol   and E in (i), (ii), and (iii) represent the 

“absolute value” and the “mathematical expectation” 

respectively.  

Definition 2 [9]：For a signal  ( )x k , E ( )x k  is defined as 

1

1
E ( ) lim E ( ).

L

L
k

x k x k
L



            (1) 

Definition 3: According to (4.118) and Definition 4.1 of [9], 

a candidate model set can be defined as 

 * 1 1

, ,( ), ( )y i u i MM W z W z i D    

where all the models in *M  are linear, stable, and in the 

predictor form. 
MD  is defined as an index set.  

It is worth noting that, according to (4.115) of [9], there is a 

one-to-one relationship between a system model and its 

predictor form.  

Definition 4 [9]: A quasi-stationary data set 

 ( ), ( ) 1Z y i u i i    is informative enough with respect to 

*M  which is defined in Definition 3 if, for any two models 

 1 1

,1 ,1( ), ( )y uW z W z 

 
and

 
 1 1

,2 ,2( ), ( )y uW z W z 

 
in *M , 

2
1 1E ( ) ( ) ( ) ( ) 0y uW z y k W z u k          (2) 

implies ( ) 0j

yW e    and ( ) 0j

uW e    for almost all  , 

where 

1 1 1

,1 ,2

1

1 1 1

,1 ,2

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

i

y y y y

i

i

u u u u

i

W z W z W z r i z

W z W z W z r i z


   




   



    

    





   (3) 

Remark 1: According to Definition 3, the models in both

 1 1

,1 ,1( ), ( )y uW z W z   and  1 1

,2 ,2( ), ( )y uW z W z   are stable, 

which implies that 
1( )yW z  and 1( )uW z  are stable, 

therefore, according to Chap. 15.3.2 in [25], we know that  

0

0

lim ( ) 0

lim ( ) 0.

y
i

u
j

r i

r j








 

B. NCS model 

An NCS shown in Fig.1 is considered in this paper, where 

the actuator and the sensor are clock-driven with a fixed 

sampling interval.  

1) Process and controller 

Since the actuator and the sensor are assumed to be 

clock-driven, the discrete process from ( )u k  to ( )y k  can be 

described as 
1 1

0 0 0( ) ( ) ( ) ( ) ( )y k G z u k H z e k  
                

(4) 

with 

 
1 1

0 0

1 0

( ) , ( )i i

i i

i i

G z g z H z h z
 

   

 

              (5) 

where ( ) Ru k   and ( ) Ry k   are the input of the actuator 

and the output of the sensor at time instant k respectively,

c ( ) Ry k   and 
c ( ) Ru k   are the input and output of the 

controller at time instant k  respectively, 1

0 0( ) ( )H z e k  is 

random disturbance. 

Assumption 1: As in [9], suppose that  0 ( )e k  is a sequence 

of independent identically distributed (i.i.d.) random 

variables with zero mean value and variance 
2 , and 

1

0 ( )H z  is an inversely stable, monic filter with 
0 1h  . 

Suppose that the controller is given by 
1

c c( ) ( ) ( )yu k F z y k
                         

(6) 

where 

1

0

( ) i

y i

i

F z f z


 



 
                          

(7) 

and 
0 0f  . 

2) Network transmission 

Suppose at each time instant k , the network-induced delay 

and packet dropout happen randomly in both the S-C path and 

the C-A path, then there could be either no input or multiple 

inputs to both the controller and the actuator during  , 1k k  . 

There are different ways to handle that problem [3], [6], e.g., 

the controller and actuator could always use the latest data in 

their buffers. In this paper, we do not make any assumption on 

the mechanisms adopted by the controller and the actuator, 

i.e., any mechanism can be selected, such as those mentioned 

in [3] and [6]. 

Let ( )S k  denote the joint transmission state of S-C path 

and C-A path at time instant k , i.e. 

c

c

( ) 0,   if both ( ) and ( ) are delivered normally

( ) 1,   otherwise (i.e., if at least one of ( ) and ( ) is 

                not delivered normally due to delay or dropout).

S k y k u k

S k y k u k








 

Then we make the following assumptions on the network 

transmission:

 
Assumption 2:  
(i) Suppose that the network-induced delay and packet 

dropout happen independently with the i.i.d. random 

Plant

Process
SensorActuator

Controller

Disturbance 

Process

( )y k( )u k

c ( )u k c ( )y k

0 ( )e k

NetworkNetwork

Fig. 1.  Networked Control System 
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sequence  0 ( )e k . 

(ii)  
1

1
lim Prob ( ) 0 1

L

d
L

k

S k p
L



 
   

 


 
and 

 
1

1
lim Prob ( ) 1

L

d
L

k

S k p
L



 
  

 
  with 0 1dp  , 

where  Prob ( ) 0S k   and  Prob ( ) 1S k   denote the 

probabilities of " ( ) 0"S k   and " ( ) 1"S k   

respectively. 

Remark 2: The reason why we only use one statistical 

parameter 
dp  to describe the behaviors of delay and packet 

dropout of the network and do not make discrimination 

between them is that 
dp  is useful and sufficient to the proof 

of Theorem 1 in Sec. III. 

Assumption 3: The NCS composed of (4), (6), and network 

transmission satisfying Assumption 2 is stable. 

3) The available closed-loop data 

Since this paper focuses on how the random delay and 

dropout of network influence the information content in 

closed-loop data set from the viewpoint of informative 

enough, we use the closed-loop data set at the plant side, i.e. 

 ( ), ( ) 1LZ y i u i i L   , for off-line identification. LZ  is 

not available at the controller side but can be obtained off-line 

by reading the storages which are added at both the sensor and 

the actuator. It is worth noticing that if network-induced delay 

or packet dropout happens in the C-A path at time instant k , 

( )u k  could be “0” or the “latest data in the buffer” depending 

on the different mechanism of actuator. Further, we make the 

following assumption on the data set: 

Assumption 4: Suppose that both  ( )y k  and  ( )u k  are 

quasi-stationary. 

Remark 3: The quasi-stationary properties of  ( )y k  and 

 ( )u k  depend on the statistical properties of both  0 ( )e k  

and network transmission in a complicated way, therefore, 

Assumption 4 need to be further analyzed and justified in the 

future. 

C. Problem formulation 

When the network transmission is reliable, i.e.

( ) 0,S k k  , the NCS in Fig.1 will become a conventional 

closed-loop system. It is well known that the data set Z  is 

not informative enough with respect to *M  in this case unless 

additional constraint conditions of the feedback controller 

[11]–[15] are added, e.g., there are switches between different 

feedback laws, but the switches must be very seldom and each 

feedback law is occupied with a nonzero proportion of the 

total time [11], [13], or the orders of the controller must be 

greater than the orders of the process model when the process 

can be discretized as ARX or ARMAX [12], [14], etc.. 

 Therefore, we make the following assumption: 

Assumption 5: The data set Z  is not informative enough 

with respect to *M  when ( ) 0,S k k  . 

In this paper, we will prove that the data set which is not 

informative enough with respect to *M  in a conventional 

closed-loop system becomes informative enough with respect 

to *M  in an NCS defined in Sec. II.B with Assumptions 1–5, 

due to the random delay and dropout introduced by the 

network transmission. 

III. INFORMATION CONTENT IN THE CLOSED-LOOP DATA SET 

OF AN NCS 

In this section, according to Definition 4, we will prove that 

the data set which is not informative enough with respect to 
*M  in conventional closed-loop system will become 

informative enough with respect to *M  due to the 

introduction of the random delay and dropout defined in Sec. 

II.B. Before the proof, two lemmas are first given for the sake 

of convenience. 

Considering that the network-induced delay and packet 

dropout are random, the feedback controller together with the 

S-C path and the C-A path can be viewed equivalently as a 

time-varying controller, then ( )u k  and ( )y k  in Fig.1 can be 

written as the outputs of the following time-varying 

closed-loop systems excited by  0 ( )e k
 

, 0

0

( ) ( ) ( )y k

j

y k p j e k j




               (8) 

, 0

0

( ) ( ) ( )u k

j

u k p j e k j




               (9) 

where the time-varying coefficients
 
   , ,( ) , ( )y k u kp j p j  are 

determined by the process model (4), the controller model (6), 

and the network transmission conditions. Motivated by [11] 

and [13], the structure of time-varying controller may bring 

more constraint conditions about 
1( )yW z  and 1( )uW z . 

These conditions are found through the following lemma. 

Lemma 1: The coefficients
 
in the closed-loop models (8) and 

(9) satisfy 

, (0) 1,y kp k                  (10) 

0

,

, , if ( ) 0
(0) .

0, , if ( ) 1
u k

f k S k
p

k S k

 
 

 
       (11) 

Proof:  

The coefficients , (0)y kp  and , (0)u kp  represent the 

influences of  
0 ( )e k  on ( )y k  and ( )u k  respectively. Then, 

(10) and (11) are obtained through analyzing how 
0 ( )e k  

influences ( )y k  and ( )u k . 

According to (4), there is 
1 1

0 0 0 0( ) ( ) ( ) ( ) ( ) 1 ( ).y k e k G z u k H z e k         (12) 

Then according to (5) and (9), 
1

0 ( ) ( )G z u k
 is only influenced 

by 0 ( )e j  for j  up to 1k  . Similarly, according to (5) and 

since 
0 1h   according to Assumption 1,

 
1

0 0( ) 1 ( )H z e k    

is also only influenced by 
0 ( )e j  for j  up to 1k  . Then by 

comparing (12) with (8), it can be concluded that (10) holds. 
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According to (6) and (7), there is 
1

c 0 c 0 c( ) ( ) ( ) ( ).yu k f y k F z f y k          (13) 

If ( ) 0S k  , there are 
c ( ) ( )y k y k  and 

c( ) ( )u k u k , then 

by substituting (8)， (10) into (13), ( )u k  can be written as 

0 0 0 , 0

1

c

1

( ) ( ) ( ) ( )

( ).

y k

j

i

i

u k f e k f p j e k j

f y k i









       

  





   (14) 

Obviously, both the second and third terms of the right side of 

(14) are only influenced by 
0 ( )e j  for j  up to 1k  . Then by 

comparing (14) with (9), it can be concluded that 
, 0(0)u kp f , 

if ( ) 0S k   holds. On the other hand, if ( ) 1S k  , then no 

matter in which path the delay or dropout happens, ( )u k  at 

actuator cannot get the information about 
0 ( )e k  at time 

instant k  according to (4), (6) and Fig. 1, therefore ( )u k  can 

be viewed as linear combination of 
0 ( )e j  for j  up to 1k  . 

Then by comparing this conclusion with (9), we can conclude 

that , (0) 0u kp  , if ( ) 0S k   holds. The lemma is proved. □ 

Remark 4:  

(i) From Lemma 1, it can be seen that receiving a packet 

with a delay or not receiving the packet has the same 

influence on , (0)u kp . Because no matter the 

network-induced delay or the dropout happens in the 

S-C path or the C-A path at time instant k , i.e. ( ) 1S k  , 

there is always that ( )u k  cannot get the information of 

( )y k , which means that ( )u k  is not influenced by 

0 ( )e k , then , (0) 0u kp   according to (9). 

(ii) The reasons why we only analyze , ,(0), (0)y k u kp p  in 

Lemma 1 are:  they are useful and sufficient to the proof 

of the informative enough property which will be given 

in Theorem 1; the analysis of other coefficients in 

   , ,( ) , ( ) , 2y k u kp i k p i k i    is much more difficult 

due to the complicated network transmission. 

In order to utilize Lemma 1, (2) is rewritten into an 

equivalent form (i.e. (15)) by applying (3), (8), and (9). 

Lemma 2: Equation (2) is equivalent to 

 
2

1 1

1
lim E ( ) 0

L

k
L

m k

q m
L




 

  
  

  
           (15) 

where ( )kq m  is defined as 

, ,

1

( ) ( ) ( ) ( ) ( ) .
m

k y y k i u u k i

i

q m r i p m i r i p m i 



          (16) 

Proof: 

According to (3), (2) is equivalent to 
2

1 1

E ( ) ( ) ( ) ( ) 0y u

i i

r i y k i r i u k i
 

 

 
      

 
 

 
which is further equivalent to  

 




, ,

1 0

2

0

E ( ) ( ) ( ) ( )

( ) 0

y y k i u u k i

i j

r i p j r i p j

e k i j

 

 

 


     



   


    (17) 

by substituting the closed-loop models (8) and (9) into it. 

Define  

 , , 0

1 0

( )

( ) ( ) ( ) ( ) ( )y y k i u u k i

i j

w k

r i p j r i p j e k i j
 

 

 



       
 (18) 

and 1, 2, 3,m  , the coefficient of 
0 ( )e k m  in ( )w k  is 

, ,

1

( ) ( ) ( ) ( )
m

y y k i u u k i

i

r i p m i r i p m i 



        

then (18) is equivalent to 

, , 0

1 1

( )

( ) ( ) ( ) ( ) ( )
m

y y k i u u k i

m i

w k

r i p m i r i p m i e k m


 

 



 
         

 
 

 

therefore, (17) can be written as 



, ,

1 1

2

2

0 0

1

E ( ) ( ) ( ) ( )

( ) E ( ) ( ) 0

m

y y k i u u k i

m i

k

m

r i p m i r i p m i

e k m q m e k m



 

 





  
        

 

 
      

 

 


  

(19) 

where ( )kq m  is defined as 

, ,

1

( ) ( ) ( ) ( ) ( ) .
m

k y y k i u u k i

i

q m r i p m i r i p m i 



         

According to (1), (19) can be further written as 
2

0

1 1

1
lim E ( ) ( ) 0.

L

k
L

k m

q m e k m
L




 

   
    

   
     (20) 

Since    , ,( ) , ( )y k u kp j p j  are only dependent on random 

network transmission, and deterministic dynamics of the 

process (4) and the controller (6), Assumption 2.(i), i.e. the 

assumption that the network transmission is independent with 

 0 ( )e k
 
, means that  ( )kq m  is independent with  0 ( )e k . 

In addition,  0 ( )e k  is a sequence of i.i.d. random variables 

according to Assumption 1. Then we have 

 

   

 

2

0

1

0 0

1 1

0 0

1 1
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1

E ( ) ( )

E ( ) ( ) ( ) ( )

E ( ) ( ) E ( ) ( )

E ( ) .

k

m

k k

i j

k k

i j

k

m

q m e k m

q i q j e k i e k j

q i q j e k i e k j

q m





 

 

 

 





 
  

 

     

   

 









    (21) 

According to (21), (20) is equivalent to 

 
2

1 1

1
lim E ( ) 0.

L

k
L

m k

q m
L




 

  
  

  
   

The lemma has been proved.            □ 
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Theorem 1: For the NCS defined in Sec. II.B, with 

Assumptions 1–5,
 
the closed-loop data set Z  is informative 

enough with respect to *M . 

Proof: 

In this proof, (15) which is equivalent to (2) according to 

Lemma 2, will be proved to lead to ( ) ( ) 0y ur i r i  , i  , 

which is equivalent to 1( ) 0yW z   and 1( ) 0uW z   

according to (3) and Remark 1. Then according to Definition 

4, the theorem can be proved. 

Equation (15)  leads to 

 
2

1

1
lim E ( ) 0, .

L

k
L

k

q m m
L



 
    

 
     (22) 

In the following, we will prove ( ) ( ) 0,y ur i r i i     

from (22) by utilizing mathematical induction. 

Let 1m  . Equation (22) leads to 

 
2

1

1
lim E (1) 0.

L

k
L

k

q
L



 
 

 
                       (23) 

Equation (16) leads to 

, 1 , 1(1) (1) (0) (1) (0).k y y k u u kq r p r p         (24) 

Then by applying (10) and (11) of Lemma 1 to (24), there is 

0(1) (1) , , if ( 1) 0
(1)

(1), , if ( 1) 1.

y u

k

y

r r f k S k
q

r k S k

    
 

  

   (25) 

According to (25), we have: k  

   

 

22

0

2

E (1) (1) (1) Prob ( 1) 0

(1) Prob ( 1) 1 .

k y u

y

q r r f S k

r S k

       

     

    (26) 

Substituting (26) into (23), and according to Assumption 

2.(ii), we have 

 

  

  

 

2

1

2

0

1

2

1

2

0

1

2

1
lim E (1)

1
lim (1) (1) Prob ( 1) 0

1
lim (1) Prob ( 1) 1

1
(1) (1) lim Prob ( 1) 0

1
(1) lim Prob (

L

k
L

k

L

y u
L

k

L

y
L

k

L

y u
L

k

y
L

q
L

r r f S k
L

r S k
L

r r f S k
L

r S k
L















 
 
 

 
        

 

 
      

 

 
        

 

   









 

 

1

2 2

0

1) 1

(1) (1) 1 (1) 0.

L

k

y u d y dr r f p r p



 
  

 

             



(27) 

Considering that there is 0 1dp 
 
according to Assumption 

2.(ii), then (27) leads to 

0(1) (1) 0

(1) 0.

y u

y

r r f

r

  


                           (28) 

Since 0 0f  , (28) yields (1) (1) 0y ur r  . 

 For 2 m  , suppose that ( ) ( ) 0y ur i r i   holds for 

,1 1i i m    . Equation (22) leads to 

 
2

1

1
lim E ( ) 0.

L

k
L

k

q m
L



 
 

 
                       (29) 

According to (16), there is 

, ,( ) ( ) (0) ( ) (0).k y y k m u u k mq m r m p r m p       (30) 

Again, applying (10) and (11) of Lemma 1 to (30), there is 

0( ) ( ) , , if ( ) 0
( )

( ), , if ( ) 1.

y u

k

y

r m r m f k S k m
q m

r m k S k m

    
 

  

     (31) 

Similarly, according to (31), we have: k  

   

 

22

0

2

E ( ) ( ) ( ) Prob ( ) 0

( ) Prob ( ) 1 .

k y u

y

q m r m r m f S k m

r m S k m

       

       

(32) 

Substituting (32) into (29), and use a derivation similar to(27)

–(28), we can conclude that ( ) ( ) 0y ur m r m  .  

So far, it has been proved that (15) leads to 

( ) ( ) 0,y ur i r i i    . Therefore, we can say that (15), 

which has been proved to be equivalent to (2) in Lemma 2, 

implies ( ) 0j

yW e    and ( ) 0j

uW e    according to (3) 

and Remark 1. Then according to Definition 4, we can 

conclude that the closed-loop data set Z  of the NCS defined 

in Sec. II.B with Assumptions 1–5 is informative enough with 

respect to *M .                 □ 
Remark 5: From (25) and (28), it can be seen that their 

second equations play a key role in obtaining (1) (1) 0y ur r  . 

However,
 
if there is no abnormal network transmission (i.e., 

there is neither delay nor dropout in both paths), 
dp  defined 

in Assumption 2.(ii) will be zero, then both the second 

equation of  (25) and (28) will not exist.
 
Therefore, it is 

actually the random network transmission that makes the 

closed-loop data set become informative enough with respect 

to *M .  

IV. SIMULATION 

In this section, a simulation example is given to show the 

benefit to the information content in closed-loop data set 

brought by random network transmission with the assumption 

that process (4) is a Single-In-Single-Out (SISO) 

autoregressive model with external input (ARX), whose 

definition can be found in (4.33) of [9]. Since the ARX model 

structure is identifiable [9], the informative enough property 

of closed-loop data set is equivalent to the parameter 

identifiability of closed-loop system in this case. 

A. Closed-loop system model 

Suppose that the process (4) is given by  
4

1

06 6

1 1

1
( ) ( ) ( )

1 1

i

i

i

i i

i i

i i

b z

y k u k e k

a z a z





 

 



 

   



 
 

where  0 ( )e k  is a sequence of i.i.d. random variables with 

zero mean value and variance 0.01, and the parameters to be 

identified are specified as 
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 





T

0 1 2 3 4 5 6 1 2 3 4

T

, , , , , , , , ,

   0.202, 0.27, 0.54, 0.65, 0.06, 0.07,

0.02, 0.03, 0.05, 0.06 .

a a a a a a b b b b

  

θ

 

Suppose that the controller (6) is selected as 

1

1

10
( ) .

1 0.5
yF z

z







 

B.  Network transmission 

Suppose that the random delay is bounded by 3 sampling 

intervals, and a packet with delay longer than 3 sampling 

intervals will be dropped. Let  sc ( ) 1, 0,1, 2, 3t k     and 

 ca ( ) 1, 0,1, 2, 3t k    denote the states of network 

transmission in S-C path and C-A path at time instant k  

respectively, where “ 1 ”, “0”, “1”, “2”, and “3” represent 

the states of “dropout”, “successful delivery”, “1-step delay”, 

“2-step delay”, and “3-step delay” respectively.  

Let 
sc ( )kP  and 

ca ( )kP  denote the probability distributions 

of 
sc ( )t k  and 

ca ( )t k  at time instant k  respectively, i.e.   

   

     

   

     

sc sc sc

sc sc sc

ca ca ca

ca ca ca

( ) Prob ( ) 1 , Prob ( ) 0 ,

Prob ( ) 1 ,Prob ( ) 2 , Pr ( ) 3

( ) Prob ( ) 1 , Prob ( ) 0 ,

Prob ( ) 1 , Prob ( ) 2 , Prob ( ) 3 .

k t k t k

t k t k t k

k t k t k

t k t k t k

   

   

   

   

P

P

 
Since the network-induced delay or the packet dropout is 

often modeled as a Bernoulli process or a Markov chain [6]–

[8], we consider the following two cases of network 

transmission in simulation respectively. 

1) Bernoulli process 

 Suppose that  sc ( )t k
 
and  ca ( )t k  are both Bernoulli 

processes with the following probability distributions 

respectively 

 

 
sc

ca

( ) 0.02, 0.8, 0.08, 0.06, 0.04

( ) 0.01, 0.82, 0.09, 0.05, 0.03 .

k

k





P

P
 

2) Markov chain  

Suppose that  sc ( )t k  and  ca ( )t k  are both Markov 

chains with the following initial probability distributions and 

probability transfer matrices respectively 

 

 
sc

ca

(1) 0.02, 0.8, 0.08, 0.06, 0.04

(1) 0.01, 0.82, 0.09, 0.05, 0.03





P

P
 

sc

0.1 0.65 0.05 0.08 0.12

0.02 0.8 0.08 0.06 0.04

0.03 0.75 0.1 0.08 0.04

0.04 0.72 0.08 0.1 0.06

0.08 0.68 0.04 0.08 0.12

 
 
 
 
 
 
 
 

M  

 

ca

0.08 0.74 0.04 0.06 0.08

0.01 0.82 0.09 0.05 0.03

0.02 0.8 0.08 0.06 0.04 .

0.04 0.78 0.06 0.08 0.04

0.05 0.76 0.06 0.05 0.08

 
 
 
 
 
 
 
 

M

 
 The mechanisms of the controller and the actuator are both 

selected as: using the latest data in their buffers [3], [6]. 

C. Identification experiments and simulation results 

For comparison, three scenarios are considered in 

simulation, including (i) there is neither delay nor dropout in 

network transmission, i.e. the NCS in Fig.1 becomes a 

conventional closed-loop system; (ii) the network 

transmission follows the Bernoulli assumption in B.1); (iii) 

the network transmission follows the Markov assumption in 

B.2).  

In simulation, the data length is selected as 10000, and 

least-squares method is adopted for parameter identification. 

Let 10000 10H R  denote the data matrix in least-squares 

method (please refer to [26] for its definition). 

In simulation, it is very easy to verify that there is 

 Trank 7 10 H H
 
for Scenario 1 which shows that the 

solution of least-squares estimation is not unique [26]. 

However, there is  Trank 10H H
 
for both Scenario 2 and 3, 

which means that the random network transmission makes the 

solutions become unique. 

The estimation results for Scenarios 2 and 3 are further 

given in Table I, with “T”, “S2”, and “S3” denoting the true 

parameters and the estimated parameters in  Scenarios 2 and 3 

respectively. From Table I, it can be seen that the estimation 

results of Scenario 2 and 3 are satisfying and close to the true 

values. 

The simulation results illustrate that the data set which is 

not informative enough with respect to some model sets in a 

conventional closed-loop system will become informative 

enough with respect to these model sets in an NCS.  

V. CONCLUSION 

In this paper, it has been proved that the data set which is 

not informative enough with respect to some model sets in a 

conventional closed-loop system will become informative 

enough with respect to these model sets in an NCS, as a result 

of the random network-induced delay and packet dropout in 

data transmission. The result shows that the random network 

influence of NCSs which is usually treated as being harmful 

TABLE I 

SIMULATION RESULTS 

 a1 a2 a3 a4 a5 

T 0.202 0.27 0.54 0.65 -0.06 

S2 0.1970 0.2611 0.5287 0.6451 -0.0665 

S3 0.1960 0.2686 0.5445 0.6495 -0.059 

 a6 b1 b2 b3 b4 

T -0.07 0.02 0.03 0.05 0.06 

S2 -0.0638 0.0201 0.0299 0.0488 0.0579 

S3 -0.0662 0.0194 0.0310 0.0513 0.0594 

T represents the true parameters, S2 and S3 represent the estimated 

parameters in Scenario 2 and 3 respectively. 
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can bring benefit to the identifiability of closed-loop system 

identification. 

There still remain some interesting problems to be studied 

in the future, e.g., extending the result to the case that at least 

one of the sensor and actuator is event-driven, extending the 

result to the Multiple-In-Multiple-Out (MIMO) case, 

evaluating how the network-induced delay and packet 

dropout influence the convergence and consistency of a 

specific identification method, such as least-squares method, 

etc.. 
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