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Abstract— We propose a novel receding horizon strategy for
Networked Control Systems described by uncertain polytopic
linear plants subject to time-varying delays and data-losses. We
make use of sequences of pre-computed inner approximations
of the one-step ahead state prediction sets on-line exploited as
target sets for state predictions. The present approach is capable
to deal with data-loss events of arbitrarily length without
compromising closed-loop stability and constraints fulfilment.

I. INTRODUCTION

Technological advances are delivering devices endowed

with sensing and communication capabilities which can be

ubiquitously embedded in the physical world. A networked

control system (NCS) consists of numerous physical and

computing elements called agents, which have interactions

and dependencies, supported by overlapping network re-

sources. Due to these features the study of stability anal-

ysis and control design of NCSs is attracting considerable

attention in literature, see in [7], [13] and references therein.

Time-delay systems [12] are one of the starting points

for analyzing the delay effect in the NCS framework.

However a NCS is different from a traditional time-delay

system where the delay is simply assumed to be constant

or bounded. A network-induced latency is instead variable

or even unbounded making the analysis and control design

more challenging tasks. Recent contributions on the linear

time-invariant case can be found in [13].

Noticeable contributions on feedback control strategies for

NCS exploit several approaches, see e.g.[2], [14], [9], [10].

Of interest here is a contribution on a constrained control

methodology which is based on a receding horizon strategy

for nonlinear networked systems [5]. The motivation for

considering this problem is provided by control under wire-

less and asynchronous measurement sampling. In order to

regulate the state of the system towards an equilibrium point

while minimizing a given performance index, a Lyapunov-

based model predictive controller is designed by explicitly

taking into account data losses, both in the optimization

problem formulation and in the controller implementation.

The proposed scheme allows an explicit characterization of

the stability region and guarantees that such a set is invariant

for the closed-loop system under data-losses if the maximum

time, in which the loop is open, is shorter than a given

constant that depends on the parameters of the system and

on the Lyapunov-based controller.

Moving from these considerations we will focus here on

a novel discrete time receding horizon strategy for NCSs

which are described by means of uncertain polytopic linear

plants subject to time-varying delays and data-losses. The

main motivation behind this approach relies on the fact that

the measurement and control commands need to be sent over

communications links which bring to varying transmission

delays and packet dropouts between plant-controller and

vice-versa. The proposed strategy is obtained by interlac-

ing two “ingredients”. First, the use of sequences of pre-

computed inner approximations of the one-step ahead state

prediction sets are on-line exploited as target sets for the

actual state prediction vector to compute the commands to

be applied to the plant in a receding horizon philosophy.

Then, the time-varying delays and data-losses occurrences

are taken into account by resorting to both Independent-of-

Delay (IOD) and Delay Dependent (DD) stability concepts

that are used to initialize the one-step controllable sequences.

The theoretical results are proved through a final example.
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Fig. 1. Networked control system

II. PROBLEM FORMULATION

In what follows we will refer to the networked scheme

depicted in Fig. 1 where delay effects are taken into consid-

eration from the sensor and the actuator sides. The process

is described by a multi-model discrete-time linear system

xp(t +1) = Φ(α(t))xp(t)+G(α(t))u(t) (1)

where t ∈ ZZ+ := {0,1, ...}, xp(t)∈ IRn denotes the state plant

and u(t) ∈ IRm the control input. The possibly time-varying
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vector α(t) ∈ IRl is assumed to belong to the unit simplex

P l :=

{

α ∈ IRl :
l

∑
i=1

αi = 1, αi ≥ 0

}

(2)

and the system matrices Φ(α) and G(α) belongs to

Σ(P l) :=

{

(Φ(α),G(α))=
l

∑
i=1

αi(Φi,Gi), α ∈ P l

}

(3)

where the pairs (Φi,Gi) denote the vertices of the polytope

Σ(P l). Moreover, the control input is subject to

u(t) ∈ U , ∀t ≥ 0, U := {u ∈ IRm |uT u ≤ ū}, (4)

with ū > 0 and U a compact subset of IRm containing the

origin as an interior point.

The network latency is modelled as a time-varying delay

τ(t), where data can be lost at the plant-controller and

controller-plant links. Due to the presence of a double

latency an unavoidable time misalignment exists between the

measured plant state which is sent to the controller and the

model state which is exploited by the regulation algorithm to

compute the input (see Fig. 1). To this end we will represent

the model by means of the following time updating law

x(t +1) = Φ(α(t))x(t)+G(α(t))u(t) (5)

Then, on the basis of the a-priori information available on

the communication channel two situations could arise:

• each time-delay occurrence is bounded, τ(t)≤ τ̄ and no

data-loss events occur. The upper bound τ̄ represents the

maximum allowable transmission interval (MATI) [14];

• there exists a time instant t̄ such that τ(t̄)> τ̄ : the state

measurement will be no longer available for feedback.

Therefore, the problem we want to solve can be stated as:

Network Constrained Stabilization (NCS) problem -

Given the networked system in Fig. 1 with the plant de-

scribed by (1)-(3), determine a state-feedback strategy

u(t) = g(xp(t − τ(t))), u(t) ∈ U (6)

which asymptotically stabilizes the closed-loop system re-

gardless of any time-delay occurrence τ(t). �

In the sequel, the problem will be addressed by adopting a

dual-mode model-based control approach. First, a stabilizing

state-feedback control law (6) for (1)-(3) is off-line computed

by resorting to DD and IOD stability concepts. Then, the

working region of the algorithm is off-line enlarged by

deriving sets of states that can be steered into the target set

in a finite number of steps. On-line, at each time t and given

the delayed state obtained by (1), a receding horizon control

strategy is obtained by checking the “smallest” ellipsoidal

set (DD or IOD region) which includes the delayed state.

III. OFF-LINE PHASE

In this section, the key aspects to develop the control

strategy in a networked context are outlined and discussed.

A. Constrained DD and IOD stabilization problems

We are here interested in determining the conditions under

which a constant state-feedback control law of the form

u(t) = KDD xp(t − τ(t)) (7)

satisfies the prescriptions of the NCS problem for the

regulated plant

xp(t +1) = Φ(α(t))xp(t)+G(α(t))KDD xp(t − τ(t)) (8)

To this end we will consider an auxiliary state which is

capable to trace all the delayed state informations y(t) =
xp(t+1)−xp(t) and a descriptor form of (1) can be obtained







xp(t +1) = y(t)+ xp(t)
0 = −y(t)+Φ(α(t))xp(t)− xp(t)

−G(α(t))KDD xp(t − τ(t))
(9)

By the augmented state x̄(t)=
[

xT
p (t)yT (t)

]T
, we have

E x̄(t +1) = ADD x̄(t)+BDD

t−1

∑
j=t−τ(t)

y( j) (10)

with E = diag{I,0},

ADD=

[

I I

Φ(α)−I−G(α)KDD −I

]

, BDD=

[

0

G(α)KDD

]

and by resorting to the DD Lyapunov-Krasovskii functional

V (t)= x̄T (t)EPDDEx̄(t)+
−1

∑
m=−τ̄

t−1

∑
j=t+m

yT ( j) [R+Q]y( j)

PDD = PT
DD ≥ 0, R = RT ≥ 0, Q = QT ≥ 0

(11)

it can be proved, by means of standard technicalities (see

[6] for details), that the constrained DD feedback control

law (7) asymptotically stabilizes the plant if the following

matrix inequalities, evaluated over the polytope vertices (3),

in the unknowns KDD, PDD, Q and R are satisfied




ET PDD E − SDD 0 A
T
DD PDD

0 τmax(R+Q) B T
DD PDD

PDDADD PDDBDD PDD



≥ 0 (12)





ū2 ET PE

[

KT
DD

0

]

[

KDD 0
]

I



≥ 0 (13)

where SDD , diag{0,τmax (R+Q)}. Moreover, by using the

following IOD Lyapunov-Krasovskii functional

V (t) = x̄(t)E PIOD E x̄(t)+
t−1

∑
j=t−τ̄

xT ( j)Sx( j), (14)

with S = ST ≥ 0, the constrained IOD feedback control law

u(t) = KIOD xp(t − τ(t)) (15)

stabilizes the plant

xp(t +1) = Φ(α(t))xp(t)+G(α(t))KIOD xp(t − τ(t)) (16)

if
[

ET PIOD E − S IOD A
T
IOD PIOD

PIODA IOD PIOD

]

≥ 0 (17)
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



ū2 ET PIOD E

[

KT
IOD

0

]

[

KIOD 0
]

I



≥ 0 (18)

where S IOD , diag{S,0} , ADD =
[

I I

(Φ(α(t))− I+G(α(t))KIOD) −I

]

. Hence, the

ellipsoidal sets EDD := Projx{x̄ ∈ IR2n | x̄T ET PDDET x̄ ≤
1} = {x ∈ IRn |xT QDDx ≤ 1} ⊂ IRn, E IOD := Projx{x̄ ∈
IR2n | x̄T ET PIODET x̄ ≤ 1} = {x ∈ IRn |xT QIODx ≤ 1} ⊂ IRn

arising from the inequalities (12), (13) and (17), (18) are

robust positively invariant regions for the state evolutions of

the closed-loop systems (8), (16) and the input constraints

(4) are satisfied, viz. KDDEDD ⊂ U , KIODE IOD ⊂ U .
From now on we will assume that there exists a DD pair

(KDD, EDD) , with EDD 6= /0, and an IOD pair (KIOD, E IOD) ,
with E IOD 6= /0, such that the closed-loop system

xp(t+1)=

{

Φ(α(t))xp(t)+G(α(t))KDDxp(t − τ(t)),τ(t)≤ τmax;
Φ(α(t))xp(t)+G(α(t))KIODxp(t − τ(t)),τ(t)≤ τ̄,

(19)

complies with the prescriptions of the NCS problem.

B. One-step ahead Ellipsoidal controllable sets

Given the plant (1) and assuming a time-delay free sce-

nario it is possible to compute the sets of states i-step

controllable to a given target set T as follows:

T0 := T
T i := {xp :∃u∈U : ∀α ∈P l ,Φ(α)xp+G(α)u ∈T i−1}

(20)

where T i is the set of states that can be steered into T i−1

using a single move with a causal control [3].

To generalize such a concept to the proposed framework, it

is important to notice that the one-step state predictions need

to be evaluated on the basis of the model (5). Therefore,

when on-line exploited, the predictions could be different

from those generated by using the process description (1) due

to the presence of time-delay occurrences, see Fig. 2. There,

Process
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x (t-τ(t))

x(t+1)

x (t)
p

x (t+1-τ(t+1))

x (t+1)
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.  .  . 

.  .  . 

Fig. 2. Process/model discrepancy

at the generic time instant t, the model (5) uses as current

state the measurement generated τ(t) instants before, i.e.

x(t) = xp(t − τ(t)), while the process state is xp(t). Since in

general x(t) 6= xp(t), there exists a unavoidable discrepancy

between the process (1) and the model (5) that, if not

properly treated, can lead to erroneous input computations.

There is in fact no guarantee that if x(t) ∈ T i the same

holds true for xp(t). A possible way to comply with the

above reasoning is to determine the sequence of sets T i by

resorting to the following one-step transition map, valid for

0 ≤ τ(t)≤ τup, where τup could be either τmax or τ̄,

x(t +1) = Φ(α(t))x(t − τ(t))+G(α(t))u(t) (21)

where the delayed state x(t − τ(t)) is instrumental to take

care at each instant t the difference between the state

measurement x(t) and the real plant state xp(t).
Therefore, the sequence of controllable sets should be de-
rived by explicitly considering time-delay occurrences, i.e.

T i := {x : ∃u ∈ U : ∀α ∈ P l ,

Φ(α)x(t−τ(t))+G(α)u ∈ T i−1, ∀τ(t) ∈ [0, τup]}
(22)

The latter means that if x(t) ∈ T i with x(t) 6= xp(t), the same

holds for xp(t), and there exists a command u(t) that drives

x(t+1) into T i−1 for all τ(t)∈ [0, τup]. To recast such an idea

into a computable scheme, explicit time-delay dependencies

in the auxiliary model (21) need to be derived.
This can be done as follows: by re-writing w.l.o.g. (21) as

x(t +1) =Φ(α(t))x(t)+Φ(α(t))x(t−τ(t))+G(α(t))u(t) (23)

and by considering the auxiliary state y(t), the following
descriptor form results

[

x(t +1)
0

]

=





y(t)+ x(t)
−y(t)+Φ(α(t))x(t)
+Φ(α(t))x(t − τ(t))+G(α(t))u(t)− x(t)





(24)

By noticing that x(t−τ(t)) = x(t)−
t−1

∑
j=t−τ(t)

y( j), by imposing

y(t − 1) = y(t − 2) = · · · = y(t − τup) (worst-case scenario)
and by defining the augmented state xaug(t) =
[

xT (t) yT (t) x(t − τup)
T (t) y(t − τup)

T (t)
]T

, we have

Ēaug x̄aug(t +1) = Φ̄(α(t))aug x̄aug(t)+ Ḡ(α(t))augu(t) (25)

with Ēaug = diag{I,0,τup I,0}, Φ̄(α(t)) =
[

I I

2Φ(α(t))− I −I

]

and

Φ̄(α(t))aug=









I I 0 0

2Φ(α(t))− I −I 0 0

0 0 I I

0 0 Φ(α(t))− τup I −I









Ḡ(α(t))aug =
[

0 G(α(t)) 0 0
]T

Therefore, the following recursions hold true

T i := Projx{x̄aug ∈ IR4n : ∃u ∈ U : ∀α ∈ P l ,

Projx{Φ̄(α)augx̄aug + Ḡ(α)augu} ∈ T i−1}
(26)

C. Off-line time-delays and data-losses management

Let us start by considering time-delay occurrences within

[0, τ̄]. By resorting to the ideas developed in Section III,

the time-delay can be managed by computing two one-

step sequences of controllable ellipsoidal regions with N+1

elements (N > 0) {T DD
i }N

i=0 and {T IOD
i }N

i=0, such that

T
DD

0 ⊆
N⋃

i=0

T
IOD

i (27)

The key idea can be stated as follows: the above two

sequences are achieved on the hypothesis that the time-

delay occurrence is τ(t) ≤ τmax and τmax < τ(t) ≤ τ̄max for

{T DD
i }N

i=0 and for {T DD
i }N

i=0, respectively. Now, at each time

instant and on the basis of the information τ(t), if the current

measurement xp(t − τ(t)) belongs to T IOD
i

(

resp. T IOD
i

)

,
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there exists a command ui, compatible with (4), capable to

drive the state to T DD
i−1

(

resp. T IOD
i−1

)

. Therefore, there exists

an admissible control strategy which steers in a finite number

of steps any initial state x(0)∈
N⋃

i=0

T
DD

i

(

resp.

N⋃

i=0

T
IOD

i

)

to

the terminal (target) set T DD
0

(

resp. T IOD
0

)

.

Let us now consider a data-loss event occurrence:

Definition 1: There exists an arbitrarily large time period

∆t := [t̄on, t̄ f in] such that τ(t)> τ̄, ∀ t ∈ ∆t .

Under data-losses, the combined use of the sequences

{T DD
i }N

i=0 and {T IOD
i }N

i=0 is not able to deal with all the

time-varying delay occurrences. In fact, due to its unpre-

dictable nature, it may happen that when the current state

x(t) lies in any set of the ellipsoids sequences {T DD
i }N

i=0

and {T IOD
i }N

i=0, then there is no guarantee on the size of

∆t . In fact let us assume that at the generic time instant t

x(t) ∈ T DD
i , i < N, then the maximum size of ∆t is equal

to i, i.e. only i-time steps without state measurements are

allowable. There always exists an input virtual sequence,

namely {ui, ui−1, . . . ,u1}, such that the state trajectory is

driven to T DD
0 at the (i + 1)− th time step, where the

control action is generated by KDD which requires a state

measurement. The same reasoning applies for the sequence

{T IOD
i }N

i=0. Such a drawback is here overcome by computing

the DD and IOD sequences under the following condition:

Statement 1: Let x+ := Φ(α)x, ∀α ∈ P , ∀x ∈
T

DD
0 and ∀x ∈ T IOD

0 be the one-step state evolution

under zero-input u ≡ 0m, then

x+ ⊆

(

N⋃

i=0

T
DD

i

)

⋃
(

N⋃

i=0

T
IOD

i

)

(28)

If (28) holds, one has that at the (i+ 1)− th time step the

zero input u ≡ 0m can be applied in place of the feedback

gain KDD when no state measurements are available.

IV. ON-LINE PHASE

The on-line phase is devoted to consider time-delay oc-

currences by taking advantage of the MPC philosophy.

At each instant t the algorithm derives first the set containing

xp(t − τ(t)) and three scenarios could arise:

a) If τ(t) ≤ τmax : the smallest index i such that xp(t −
τ(t)) ∈ T DD

i is selected;

b) If τmax < τ(t) ≤ τ̄ : if xp(t − τ(t)) ∈ T IOD
i then the set

T
IOD

i is selected, otherwise determine the smallest index

i such that xp(t − τ(t)) ∈ T DD
i ;

c) If τ(t) > τ̄ : the state xp(t − τ(t)) is not available for

checking its membership to IOD or to DD sets.

Let x(t) = xp(t − τ(t)) be the delayed state and x−1(t) the

state measurement stored at the previous time instant t −1.

Then, an admissible input u(t) is computed by minimizing

a given performance index Ji(t)(x(t),u) (see Appendix):

• If a) holds true then

u(t) = argminJi(t)(x(t),u) s.t. (29)

Φ jx(t)+G ju ∈ T DD
i(t)−1, u ∈ U , j = 1, . . . , l (30)

• The case b) gives rise to the following situations:

– x(t) ∈ T IOD
i :

u(t) = argminJi(t)(x(t),u) s.t. (31)

Φ jx(t)+G ju ∈ T IOD
i(t)−1, u ∈ U , j = 1, . . . , l (32)

– x(t) ∈ T DD
i :

u(t) = argminJi(t)(x(t),u), s.t. (33)

Φ jx(t)+G ju∈T
DD

i(t)−1,u∈U , j=1, . . . , l, (34)

Φ jx+G ju∈T
DD

i(t)−1,u∈U , j=1, . . . , l,∀x∈T DD
i(t) (35)

• The case c) envisages the following events:

1) if x−1(t) ∈ T
DD

i+1 :

[x̂(t), u(t)] = argminJi(t)(x̂,u) s.t. (36)

Φ j x̂+G ju∈T
DD

i(t)−1, x̂∈T
DD

i(t) ,u∈U , j = 1, . . . , l, (37)

Φ jx+G ju∈T
DD

i(t)−1,u∈U , j = 1, . . . , l,∀x∈T DD
i(t) (38)

2) if x−1(t) ∈ T
IOD

i+1 , then solve (36)-(38) with T IOD
i ;

3) if x−1(t) ∈ T
DD

0 or x−1(t) ∈ T
IOD

0 , then use the

couple (x̂(t) = x−1(t), u ≡ 0m).

Remark 1- The scenario a) is addressed by following the

delay-free MPC scheme in [1] because the bank of precom-

puted ellipsoids {T DD
i }N

i=0, based on the pair (KDD, EDD),
can be on-line exploited for the one-step state predictions

regardless of any time-delay occurrence. The situation be-

comes more cumbersome when the case b) is taken into

consideration. If the delayed state measurement belongs

to some T DD
i , the free-delay scheme cannot be directly

applied: in fact if the scheme exploited for a) would be

applied, after N steps the state will belong to T DD
0 where we

should have to consider the law u(·) = KDD x(·) that is not

designed for managing time-delays greater than τmax. Then

the above situation can be considered as a data-loss event

and u(t) computed by imposing that Φ jx(t)+G ju belongs to

T
DD

i−1 , ∀x∈ T DD
i i.e. solve the optimization (33)-(35). Finally,

when the new state measurement belongs to some T IOD
i

or τ(t)≤ τmax, the optimizations (29)-(30) or (31)-(32) are

respectively solved (see details in Appendix). �

Remark 2- Let us consider the data-loss scenario c). By

noticing that the state at the actual time instant t has been

generated starting from the measurement x−1(t) at t − 1 by

applying an admissible input u(t−1). Then, if x−1(t)∈ T
DD

i+1

this implies that x(t) ∈ T DD
i , i > 0. Now the real value of

x(t) is unknown but a worst-case approach can be used to

determine a virtual state x̂(t) ∈ T DD
i such that the computed

one-step state evolution x(t + 1) is the worst under the

minimization of the cost Ji(t)(x̂,u). The latter translates into

the solution of the optimization (36)-(38). A slight difference

arises when x−1(t) ∈ T
DD

0 or x−1(t) ∈ T
IOD

0 , because T DD
0

and T IOD
0 are robust positively invariant sets and therefore

x−1(t) directly represents the worst case for the one-step state

ahead prediction. Specifically, when the measurement x−1(t)
belongs to T DD

0 or T IOD
0 , in virtue of (28), the zero-input

u(t) ≡ 0m is used such that Φ(α)x−1(t) belongs to some

T
DD

i or T IOD
i . In principle the use of u(t)≡ 0m cannot take
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place sequentially in time, but if x+ ⊆ T DD
0 (resp. T IOD

0 ) an

iterative application is admissible until x+ escapes from the

terminal ellipsoid or a time-delay latency τ(t)≤ τ̄ occurs. �

V. RHC ALGORITHM

The above developments allow to synthesize the following

Receding-Horizon control strategy.

Assumption - At the initial time instant t = 0, the process

(1) and the model (5) are synchronized. �

NCS-MPC-Algorithm -

Off-line -

0.1 Given the scalars τmax and τ̄, compute the nonempty

robust invariant ellipsoidal regions T DD
0 ⊂ IRn

, T IOD
0 ⊂

IRn and the stabilizing state feedback gains KDD, KIOD;

0.2 Generate the sequences of N one-step controllable sets

T
DD

i and T IOD
i complying with (27) and (28);

0.3 Store the ellipsoids {T DD
i }N

i=0 and {T IOD
i }N

i=0.

On-line -

1.1 Let x(t) = xp(t − τ(t)) be the most recent available state

measurement. Check x(t) :

1.2.1 if x(t) ∈ T DD
i (resp. T IOD

i ) with T DD
i the set im-

posed at t − 1 by the input u(t − 1), then x(t) is an

admissible measurement;

1.2.2 else discard x(t). If a new measure is available goto

Step 1.2.1, otherwise consider a data-loss event.

1.3 a- If τ(t)≤ τmax find i(t) := min{i : x(t) ∈ T DD
i }

1) If i(t) = 0 then u(t) = KDDx(t)
2) else solve (29)-(30);

b- If τmax < τ(t)≤ τ̄ then

1) If there exists i(t) := min{i : x(t)∈T IOD
i } then

∗ If i(t) = 0 then u(t) = KIODx(t)
∗ else solve (31)-(32);

2) else find i(t) := min{i : x(t) ∈ T DD
i } and solve

(33)-(35);

c- If τ(t)> τ̄

1) If i(t) := min{i : x−1(t) ∈ T
DD

i } then

∗ If i(t) = 0 then x̂(t) = x−1(t), u(t) = 0m

∗ else solve (36)-(38);

2) else if i(t) := min{i : x−1(t) ∈ T
IOD

i } then

∗ If i(t) = 0 then x̂(t) = x−1(t), u(t) = 0m

∗ else solve (36)-(38) with T IOD
i ;

1.4 – If 0 ≤ τ(t)≤ τ̄ then apply u(t) from step a- or b-;

– else apply (x̂(t), u(t)) from step c- and update

x−1(t +1) = Φ(α(t)) x̂(t).
1.5 t := t +1; goto 1.1.

The next proposition proves feasibility retention and

closed-loop stability of the proposed MPC-NCS-Algorithm.

Proposition 1: Let the sequences of sets T DD
i and T IOD

i

be non-empty and x(0) ∈

(

⋃

i

T
DD

i

)

∪

(

⋃

i

T
IOD

i

)

. Then,

the MPC-NCS-Algorithm always satisfies the constraints

and ensures robust stability.

Moreover if the sequence of data-losses is finite, there

exists a finite time t̄ such that x(t) ∈ T DD
0 ∪T IOD

0 , ∀t ≥ t̄.

Proof - The proof follows by using similar arguments of [1]

and by collecting the discussions in Remarks 1 - 2. �

VI. ILLUSTRATIVE EXAMPLE

The aim of this section is to test the effectiveness of

the proposed MPC strategy to deal with time-varying and

data-loss scenarios. We consider the uncertain multi-model

process described by the following matrices:

Φ(α) =

[

1 0

0 1.01+α

]

, G(α) =

[

−0.02

−0.01+α

]

,

with |α| ≤ 0.08. The objective is to regulate the state

trajectory to the origin in the presence of the following input

saturation constraint u2(t) ≤ 10, ∀t. For this simulation the

time-delay occurrences are depicted in Fig. 3 with τmax = 15

and τ̄ = 25. These numerical values have been approximated

by feasibility checks on the DD conditions (12)-(13) and

IOD conditions (17)-(18). Moreover, it has been supposed

that data-loss events occur within ∆t = [370, 630].
First, the DD and IOD terminal pairs are here reported:

KDD=[−0.6837 20.5616], QDD =

[

7.7159 0.4011
0.4011 0.0329

]

KIOD=[−0.3489 15.5650], QIOD =

[

7.3568 0.3086
0.3086 0.0225

]

Then two ellipsoidal families {T DD
i }N

i=0 and {T IOD
i }N

i=0, N =
70, have been computed under the requirements (27)-(28)

and the initial state has been set to x(0) = [7.987, 0.3]T . The

state trajectory (continuous line) is depicted in Fig. 4 along

with the pre-computed regions. Figs. 4-6 show the capability

of the scheme to manage data-loss occurrences (grey-zone in

Fig. 3). Notice that the no data-loss phases, although subject

to large time-varying delays, give rise to normal behaviours

as enlighten by considering the performance results (Fig. 5).

On the other hand, the data-loss phase shows the specific

merits of the proposed algorithm. At the time step 370,

the actual state lies in T IOD
0 (Fig. 6) and by virtue of the

constraint (28) the zero-input is applied. From now on an

iterative use of u = 0 is admissible because the virtual state

remains inside T IOD
0 . At t = 428 the state evolution x+ lies

in T IOD
2 , (see Fig. 6) and a new command input needs to be

computed as it results in Fig. 5.
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Fig. 3. Network latency

VII. CONCLUSIONS

In this paper, a novel discrete time receding horizon

strategy for uncertain networked systems subject to input sat-

urations and data-losses has been proposed. The key idea was

to develop a control strategy based on set-invariance concepts
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and ellipsoidal calculus to properly manage the absence on

state measurements due to large network delays. First, the

off-line phase has been built up in order to avoid any critical

situation by imposing constraints on the construction of the

one-step controllable sets. Then, the on-line optimization

problems have been defined by accounting for both different

time-delay occurrences and data-loss scenarios.
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APPENDIX - LMIs FOR (33)-(35) and (36)-(38)

First, let us consider the following running cost

Ji(t)(x(t),u) = max
j

‖Φ jx(t)+G ju‖
2
PDD

i(t)−1

(39)

with PDD
i(t)−1

> 0 the shaping matrix of T DD
i(t)−1

.

Theorem 1: The optimization problem (33)-(35) can be

solved by the following semi-definite programming problem:

min
u

γi
x s.t. (40)

[

γi
x (Φ j x(t)+G j u)T

(

PDD
i−1

)−1
(t)

]

≥ 0, j = 1, . . . , l (41)

[

ū uT

I

]

≥ 0 (42)

[

γi
x −λ j −uT LT

j

I

]

≥ 0, j = 1, . . . , l (43)

where L j is the Cholesky factor of LT
j L j = GT

j PDD
i−1(t)G j +

GT
j PDD

i−1(t)
(

−ΦT
j PDD

i−1(t)Φ j +λ j PDD
i (t)

)−1

PDD
i−1(t)G j and

the multipliers λ j are computed mutatis mutandis as in [4].

Then, the following index is used

Ji(t)(x̂,u) = max
{

x̂ ∈ T DD
i (t),

j = 1, . . . , l

‖Φ j x̂+G ju‖
2
PDD

i(t)−1

(44)

Theorem 2: The optimization problem (36)-(38) can be

solved by the following semi-definite programming problem:

min
x̂,u

γi
x (45)

s.t.

[

γi
x (Φ j x̂+G j u)T

(

PDD
i−1

)−1
(t)

]

≥ 0, j = 1, . . . , l (46)

[

1̄ x̂T

(

PDD
i

)−1
(t)

]

≥ 0 (47)

(42)-(43)

Proofs of Theorems 1-2 follow similar arguments as in [4]

and here omitted for the sake of space.
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