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Abstract— Recent results on counterclockwise input-output
dynamics and negative-imaginary transfer matrices are inter-
preted from a geometric Hamiltonian systems point of view,
providing additional insights and results.

I. INTRODUCTION

This paper aims at further developing recent work on
systems with ’counterclockwise input-output dynamics’ [2],
[3], [4], or having ’negative imaginary transfer matrices’
[8], [10], motivated respectively by (multi-)stability consid-
erations in biological systems or vibration control1. In this
closely related work it was proved that the positive feedback
interconnection of two such systems is stable provided a
coupling condition on the dc-gains of the two systems
holds. Furthermore, the tight connection with passivity of the
system with time-differentiated output was emphasized. The
current paper interprets these results from a Hamiltonian state
space perspective2, thereby providing additional insights and
results, and allowing for further nonlinear generalizations.

In Section 2 we will start off with the Hamiltonian state
space formulation of the results on linear systems obtained
in [3], [8], [10], [19]. Indeed, we will show how the class of
linear systems having ’negative imaginary transfer matrices’
is a direct extension of the class of linear Hamiltonian input-
output systems introduced and studied in e.g. [5], [12],
[13], [14], and can be properly called linear ’input-output
Hamiltonian systems with dissipation’ (linear IOHD sys-
tems). Furthermore, we will show how the dc-gain coupling
condition derived in [3], [8] has an immediate interpretation
in terms of the Hamiltonian of the interconnected system, and
in fact is equivalent to the condition that this Hamiltonian
has a minimum at the origin, thus serving as a Lyapunov
function (see also [3], Theorem 6).

In Section 3 we define nonlinear input-output Hamiltonian
systems with dissipation, and derive similar results regard-
ing stability of positive feedback interconnections of such
systems, extending previous results in [3]. Furthermore, we
interpret and further develop some of the results obtained in
[4] on multi-stability to this setting.

In Section 4 we deal with a different facet of IOHD sys-
tems by showing how in the case that the Poisson structure
corresponds to a symplectic structure Liouville’s theorem of
classical mechanics extends to IOHD systems. In particular
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1See also [9] for application of the notion of counterclockwise input-
output dynamics to hysteretic models.

2See already [3] for showing that classical Hamiltonian systems with force
inputs and position outputs have counterclockwise input-output dynamics.

we show how the volume form on the phase space of the
system is connected to the volume form on the space of
outputs and inputs; thus further explaining the terminology
’counterclockwise input-output dynamics’ of [2], [3].

II. THE LINEAR CASE

Consider a linear system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

y = Cx+Du, y ∈ Rm
(1)

with transfer matrix G(s) = C(Is − A)−1B + D. In [8],
[10] G(s) is called negative imaginary3 if D = DT and the
transfer matrix H(s) := s(G(s)−D) is positive real. In [3]
the same notion (mostly for the case D = 0) was coined as
counterclockwise input-output dynamics.

From a state space point of view this means the following.
A state space representation of H(s) = s(G(s)−D) is given
by

ẋ = Ax+Bu

z = CAx+ CBu
(2)

with output4 z ∈ Rm. Throughout this section we make for
convenience the following

Assumption 2.1: The linear system (1) is minimal (con-
trollable and observable). Furthermore, the matrix A is
invertible.
Under this assumption it is immediate that the state space
system (2) is also minimal. Hence application of the Kalman-
Yakubovich-Popov lemma to (2) yields

Proposition 2.2: The system (1) has negative imaginary
transfer matrix if and only if D = DT and there exists an
n× n symmetric matrix Q > 0 such that[

ATQ+QA QB − (CA)T

BTQ− CA −CB − (CB)T

]
≤ 0 (3)

In [8], [19] it is shown that the above characterization is
equivalent to the following simplified statement:

Proposition 2.3: System (1) has negative imaginary trans-
fer matrix if and only if D = DT and there exists an n× n
symmetric matrix Q > 0 such that

ATQ+QA ≤ 0, B = −AQ−1CT (4)
The aim of this section is to interpret Propositions 2.2 and
2.3 from a Hamiltonian point of view; providing insightful
interpretations and paving the way to nonlinear generaliza-
tions in the subsequent sections.

3The terminology ’negative imaginary’, stems, similarly to ’positive real’,
from the Nyquist plot interpretation for single-input single-output systems.
For the precise definition in the frequency domain we refer to [8], [3].

4Note that z = ẏ −Du̇, and in particular z = ẏ for D = 0.
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Proposition 2.4: The system (1) has negative imaginary
transfer matrix if and only if it can be written as

ẋ = (J −R)(Qx− CTu)

y = Cx+Du, D = DT
(5)

for some matrices Q, J,R of appropriate dimensions satis-
fying

Q = QT , J = −JT , R = RT ≥ 0 (6)

with Q > 0.
Proof. Start from Proposition 2.2 and decompose the matrix[

A B
−CA −CB

] [
Q−1 0

0 I

]
into its skew-symmetric and symmetric part, i.e.,[

A B
−CA −CB

] [
Q−1 0

0 I

]
=

[
J G
−GT M

]
−
[
R P
PT S

]
(7)

for some skew-symmetric matrices J,M , symmetric matrices
R,S, and appropriately dimensioned matrices G,P . Writing
out (7) yields

A = (J−R)Q, B = G−P, CA = (G+P )TQ, CB = S−M
(8)

Combination of the first and the third equality yields

C(J −R) = (G+ P )T (9)

From Proposition 2.3 we know that

B = −AQ−1CT = −(J −R)QQ−1CT = −(J −R)CT

(10)
Combining this with the second equality in (8), together with
(10), yields

P = −RCT (11)

Furthermore, the fourth equality in (8) yields

2S = CB + (CB)T =
−C(J −R)CT − (C(J −R)CT )T = 2CRCT

(12)

Using P = −RCT and S = CRCT , the inequality (3) thus
reduces to[
R P
PT S

]
=

[
R −RCT
−CR CRCT

]
=

[
I
−C

]
R
[
I −CT

]
≥ 0,

(13)
which is equivalent to R ≥ 0.

Motivated by the previous proposition we give the follow-
ing definition.

Definition 2.5: A system (5) satisfying (6) is called an
input-output Hamiltonian system with dissipation (IOHD).
The storage function 1

2x
TQx is called its Hamiltonian func-

tion. The matrix J defines a Poisson structure matrix, and
R is called the dissipation matrix; see [16], [15], [11].
Hence the transfer matrix of an IOHD system with Q > 0
is negative imaginary.

A special case of Proposition 2.4 is the following

Corollary 2.6: A system (1) with CB skew-symmetric
has negative imaginary transfer matrix if and only if it can
be written as

ẋ = (J −R)Qx− JCTu

y = Cx+Du, D = DT
(14)

with

Q = QT > 0, J = −JT , R = RT ≥ 0, CR = 0 (15)
Proof. Skew-symmetry of CB is the same as S = CRCT =
0, which is by R = RT equivalent to CR = 0.

The subclass of IOHD systems with CB skew-symmetric
given by (14) will be denoted as IOHDss systems. Many
systems with negative imaginary transfer matrices, such as
mechanical systems with co-located position sensors and
force actuators fall within this class.

Example 2.7: Linear mechanical systems with co-located
position sensors and force actuators are represented in Hamil-
tonian state space form (with q denoting the position vector
and p the momentum vector) as[

q̇
ṗ

]
=

[
0n In
−In 0n

] [
K N
NT M−1

] [
q
p

]
+

[
0
LT

]
u

y = Lq
(16)

where usually N = 0 (no ’gyroscopic forces’). In this case
the total energy is given as

H(q, p) =
1

2
qTKq +

1

2
pTM−1p, (17)

where the first term is the total potential energy (with K
the compliance matrix), and the second term is the kinetic
energy (with M the mass matrix). Clearly (16) is an IOHDss
system with CB = 0 and D = 0.

A. Positive feedback interconnection of input-output Hamil-
tonian systems with dissipation

Consider two input-output Hamiltonian systems with dis-
sipation

ẋi = (Ji −Ri)(Qixi − CTi ui)

yi = Cixi +Diui, i = 1, 2
(18)

with equal number of inputs and outputs. Their positive
feedback interconnection is defined as

u1 = y2 + e1, u2 = y1 + e2 (19)

with e1, e2 two external inputs. This leads to[
I −D2

−D1 I

] [
u1
u2

]
=

[
C2x2
C1x1

]
+

[
e2
e1

]
(20)

In the rest of this section we make, following [8], the
simplifying assumption

D1D2 = 0 (21)

In this case [
I −D2

−D1 I

]−1

=

[
I D2

D1 I

]
,
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and after some matrix computations it follows that the
positive feedback interconnection of two IOHD systems (18)
is given by[

ẋ1
ẋ2

]
=

([
J1 0
0 J2

]
−
[
R1 0
0 R2

])
([
Q1 − CT1 D2C1 −CT1 C2

−CT2 C1 Q2 − CT2 D1C2

] [
x1
x2

]
−

−
[
CT1 CT1 D2

CT2 D1 CT2

] [
e1
e2

])
[
y1
y2

]
=

[
C1 D1C2

D2C1 C2

] [
x1
x2

]
+

[
D1 0
0 D2

] [
e1
e2

]
,

(22)
which is again an IOHD system, with interconnected Hamil-
tonian given as

Hint(x1, x2) := 1
2x

T
1 (Q1 − CT1 D2C1)x1+

+ 1
2x

T
2 (Q2 − CT2 D1C2)x2 − xT1 CT1 C2x2

(23)

Furthermore, it is easily seen that the positive feedback
interconnection of two IOHDss is again an IOHDss.

Remark 2.8: Thus the positive feedback interconnection
of two IOHD systems is again an IOHD system, similarly
to the fact that the negative feedback interconnection of
two port-Hamiltonian systems is again a port-Hamiltonian
system [16], [15], [11]. Note that the Poisson structure
matrix of the interconnected IOHD system (22) is the direct
sum of the Poisson structure matrices of the two compo-
nent IOHD systems. On the other hand, the interconnected
Hamiltonian (23) is more than the sum of the component
Hamiltonians and involves the output mappings as well. This
is precisely opposite to the case of an interconnected port-
Hamiltonian system, where the resulting Hamiltonian is the
sum of the component Hamiltonians, while on the other hand
the resulting Poisson structure is based on the component
Poisson structure matrices together with the input- and output
matrices [15].
Hence the stability of the interconnected system can be
characterized in terms of the interconnected Hamiltonian
(23):

Proposition 2.9: Consider two IOHD systems. The in-
terconnected IOHD (22) is stable having no eigenvalue at
zero if the interconnected Hamiltonian (23) has a strict
minimum at the origin (x1, x2) = (0, 0). Conversely, if (22)
is asymptotically stable, then the interconnected Hamiltonian
(23) has a strict minimum at the origin (x1, x2) = (0, 0).
Proof. Define

Q :=

[
Q1 − CT1 D2C1 −CT1 C2

−CT2 C1 Q2 − CT2 D1C2

]
J :=

[
J1 0
0 J2

]
, R :=

[
R1 0
0 R2

] (24)

Note that J −R is invertible. Then ẋ = Ax := (J −R)Qx
is stable without eigenvalue at zero if Q > 0. Conversely,
ATQ+QA ≤ 0, implying by asymptotic stability of A that
Q ≥ 0 and by invertibility of A that Q > 0.

Remark 2.10: Of course, if (QRQ, (J − R)Q) is de-
tectable then Q > 0 implies asymptotic stability of ẋ =
(J −R)Qx.

In ([8], Theorem 5) it has been shown that a matrix of
the form Q, with Q1 > 0, Q2 > 0 and D1, D2 such that
D1D2 = 0 and at least one of them positive semi-definite,
is positive definite if and only

λmax

(
[−C1A

−1
1 B1 +D1] · [−C2A

−1
2 B2 +D2]

)
< 1 (25)

where λmax(K) denotes the maximal eigenvalue of a sym-
metric matrix K. This allows for the following interpretation.
The dc-gain of an IOHD system (5) is given by the expres-
sion

−CA−1B +D = CQ−1CT +D, (26)

Hence the interconnected IOHD (22) is stable having no
eigenvalue at zero if and only if the dc loop gain is less than
unity. This can be regarded as a rephrasing of a fundamental
result concerning the stability of the positive feedback inter-
connection of two systems with negative imaginary transfer
matrices, as obtained in [3] for the SISO case with D = 0
and in [8] for the general MIMO case.

Example 2.11 (Example 2.7 continued): The dc-gain of
the IOHDss system (16) is given as LK−1LT , and thus only
depends on the compliance matrix K (e.g., the spring con-
stants) and the colocated sensor/actuator locations. Note that
in this case positive feedback amounts to positive position
feedback, while negative feedback of z = ẏ = LM−1p = Lq̇
corresponds to negative velocity feedback; see also [10].

III. NONLINEAR INPUT-OUTPUT HAMILTONIAN SYSTEMS
WITH DISSIPATION

A. The affine nonlinear case

The definition of a linear IOHD system (5) is readily
extended to the nonlinear case. We first consider the case
without feedthrough terms and with affine dependence on u.

Definition 3.1: A system described in local coordinates
x = (x1, · · · , xn) for some n-dimensional state space
manifold X as5

ẋ = (J(x)−R(x))[∂H∂x (x)− ∂CT

∂x (x)u], u ∈ Rm

y = C(x), y ∈ Rm
(27)

where the n×n matrices J(x), R(x) depend smoothly on x
and satisfy

J(x) = −JT (x), R(x) = RT (x) ≥ 0, (28)

is called an affine nonlinear IOHD system, with Hamiltonian
H : X → R and output mapping C : X → Rm. If
additionally (

∂CT

∂x
(x)

)
R(x) = 0 (29)

then the system is called an affine nonlinear IOHDss.

5For a function H : Rn → R we denote by ∂H
∂x

(x) the n-dimensional
column vector of partial derivatives of H . For a mapping C : Rn → Rm

we denote by ∂CT

∂x
(x) the n ×m matrix whose j-th column consists of

the partial derivatives of the j-th component function Cj .
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Remark 3.2: The definition given above is a generaliza-
tion of the definition of an affine input-output Hamiltonian
system as originally proposed in [5] and studied in e.g. [12],
[13], [14]. In fact, it reduces to this definition in case R = 0
and J defines a symplectic form (in particular, has full rank).
The time-evolution of the Hamiltonian of an affine nonlinear
IOHD system satisfies

d
dtH =

(
∂H
∂x (x)

)T
(J(x)−R(x))[∂H∂x (x)− ∂CT

∂x (x)u] =

−(∂H∂x (x))TR(x)(∂H∂x (x)− ∂H
∂x (x)(J(x)−R(x))∂C

T

∂x (x)u

Furthermore, the time-differentiated output of an affine non-
linear IOHD system is given as

z := ẏ = (
∂CT

∂x
(x))T (J(x)−R(x))[

∂H

∂x
(x)−(

∂CT

∂x
(x))u],

(30)
which reduces for an IOHDss system to

z = (
∂CT

∂x
(x))TJ(x)[

∂H

∂x
(x)− ∂CT

∂x
(x)u]

Using uT (∂C
T

∂x (x))TJ(x)∂C
T

∂x (x)u = 0 by skew-symmetry
of J(x), it follows that (leaving out arguments x)
d
dtH = uT z−

[
(∂H∂x )T uT

] [ R −R∂CT

∂x

−(∂C
T

∂x )TR (∂C
T

∂x )TR∂CT

∂x

] [
∂H
∂x
u

]
≤ uT z

(31)
thus proving

Proposition 3.3: The affine nonlinear IOHD system (27)
with differentiated output z = ẏ is passive with storage
function H , and defines a port-Hamiltonian system [16],
[15].
Similar to the linear case it is seen that the positive feed-
back interconnection of two affine nonlinear IOHD systems
indexed by i = 1, 2, is the affine nonlinear IOHD system[

ẋ1
ẋ2

]
=

([
J1(x1) 0

0 J2(x2)

]
−
[
R1(x1) 0

0 R2(x2)

])
([

∂Hint

∂x1
(x1, x2)

∂Hint

∂x2
(x1, x2)

]
−

[
∂CT

1

∂x1
(x1) 0

0
∂CT

2

∂x2
(x2)

] [
e1
e2

])
[
y1
y2

]
=

[
C1(x1)
C2(x2)

]
,

(32)
with interconnected Hamiltonian Hint given by

Hint(x1, x2) := H1(x1) +H2(x2)− CT1 (x1)C2(x2) (33)

(compare with [3], Theorem 6)). Furthermore, the positive
feedback interconnection of two affine nonlinear IOHDss
systems is an affine nonlinear IOHDss system. Like in the
linear case, the stability properties of the interconnected
system are determined by Hint.

Remark 3.4: As in ([3], Theorem 6) the interconnected
Hamiltonian Hint(x1, x2) can be also used for showing
boundedness of solutions of the interconnected system; this
is e.g. guaranteed if Hint(x1, x2) is radially unbounded.

B. General nonlinear IOHD systems

The preceding definitions of linear and affine nonlinear
IOHD systems suggest the following generalization.

Definition 3.5: A general nonlinear IOHD system is de-
fined as a system of the form

ẋ = (J(x)−R(x))∂H∂x (x, u), u ∈ Rm

y = −∂H∂u (x, u), y ∈ Rm
(34)

for some function H(x, u), with R(x), J(x) satisfying (28).
(This definition reduces to Definition 3.1 by taking
H(x, u) = H(x) − uTC(x).) For R = 0 and J defining
a symplectic form the definition of a general IOHD system
amounts to the definition of an input-output Hamiltonian
system given in [5] and explored in e.g. [12].

Remark 3.6: The notion of ’internally stored energy’, as
well as of passivity with respect to the input u and differenti-
ated output ẏ, is problematic for a general function H(x, u);
see e.g. [12] for further discussion.

Remark 3.7: In [2] it has been shown that any static
nonlinearity of the form y = −∂H∂u (u) has counterclockwise
input-output dynamics. The definition of general nonlinear
IOHD systems (34) can be regarded to be a dynamic exten-
sion of this property.
The positive feedback interconnection of two general non-
linear IOHD systems with Hamiltonians Hi(xi, ui) is (under
regularity assumptions) again a nonlinear IOHD system,
where the interconnected Hamiltonian Hint(x1, x2) is con-
structed as follows. The functions Hi(xi, ui) are generating
functions for two Lagrangian submanifolds [1], [18], [12]
defined as

zi =
∂Hi

∂xi
(xi, ui), yi = −∂Hi

∂ui
(xi, ui), i = 1, 2

The composition of these two Lagrangian submanifolds
through the positive feedback interconnection u1 = y2, u2 =
y1 defines a subset in the x1, x2, z1, z2 variables, which is
under a transversality condition [6] again a submanifold. Fur-
thermore, it follows [7], [6] that it is again a Lagrangian sub-
manifold. Assuming additionally that it can be parametrized
by the x1, x2 variables (this corresponds to well-posedness
of the interconnection), it thus possesses (at least locally)
a generating function Hint(x1, x2). Like in the linear case,
this interconnected Hamiltonian Hint(x1, x2) determines the
stability properties of the interconnected system.

The notion of dc-gain of a linear IOHD system generalizes
to a general nonlinear IOHD system as follows; specializing
the approach of [4] to the Hamiltonian case. Consider
a general nonlinear IOHD system (34) with Hamiltonian
H(x, u). Assume that for any constant input ū there exists
a unique x̄ such that

∂H

∂x
(x̄, ū) = 0 (35)

It follows that x̄ is an equilibrium of the system for u = ū.
Define

ȳ =
∂H

∂u
(x̄, ū) (36)
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Then, see e.g. [18], (35,36) define a Lagrangian submani-
fold in the space of outputs and inputs (ȳ, ū) ∈ Y × U .
Assuming additionally that this Lagrangian submanifold can
be parametrized by the ū variables, then there exists (locally)
a generating function K such that the relation between ū and
ȳ is described as

ȳ =
∂K

∂ū
(ū) (37)

We call this relation the static input-output response of the
IOHD system.

Remark 3.8: Note that for a linear IOHD system (37)
reduces to the symmetric linear map ȳ =

(
CQ−1CT +D

)
ū,

i.e., to the linear dc-gain (26).

C. A bifurcation perspective and multi-stability

Consider two nonlinear IOHD systems with equilibria
x∗1, x

∗
2 corresponding to strict global minima of H1(x1), re-

spectively H2(x2). Then the parametrized positive feedback

u1 = ky2
u2 = ky1

(38)

for k ≥ 0 results in an interconnected Hamiltonian
Hk

int(x1, x2), which for k small will have (by continuity)
a strict minimum at (x∗1, x

∗
2), corresponding to a stable

equilibrium. By increasing k the shape of Hk
int(x1, x2) is

generally going to change, possibly resulting in multiple
local minima, and thus multiple stable equilibria. In a
general, non-Hamiltonian, setting this has been studied in
[4], where conditions were derived for multi-stability of the
resulting interconnected system, meaning that for generic
initial conditions the system trajectories will always converge
to one of those stable equilibria. A main ingredient in these
conditions are the static input-output responses as identified
before; see [4] for various interesting results.

IV. DIVERGENCE OF IOHD SYSTEMS

In this section we will study a particular (but commonly
appearing) type of nonlinear IOHD systems where the
Poisson structure matrix J(x) corresponds to a symplectic
form6 ω. Furthermore, we will first make the additional
assumption that R(x) = 0; that is, we will study input-output
Hamiltonian systems in the sense of [5], [12]. In coordinate-
free notation such systems are described as follows.

Let X denote the state space (necessarily even-
dimensional) endowed with a symplectic form ω, that is,
a non-degenerate 2-form, satisfying dω = 0. The total
prolongation of ω to the tangent bundle TX defines a
symplectic form on TX , denoted as ω̇, see e.g. [12]. By
Darboux’s theorem [1] there exist local canonical coordi-
nates (q, p) = (q1, · · · , qn, p1. · · · , pn) for X such that ω =∑n
i=1 dp

i ∧ dqi. With (q, p, q̇, ṗ) denoting the corresponding
natural coordinates for TX it follows that

ω̇ =

n∑
i=1

dṗi ∧ dqi + dpi ∧ dq̇i

6This is equivalent to requiring that J(x) has full rank everywhere, and
moreover is satisfying the Jacobi-identity.

Finally, define the symplectic form ωe :=
∑m
j=1 du

j ∧ dyj
on the product Y × U = Rm × Rm of the output and the
input spaces7. Then [12] a general input-output Hamiltonian
system (34) with J the Poisson structure matrix correspond-
ing to the symplectic form ω and R = 0 is defined as a
Lagrangian submanifold of the symplectic space TX×Y×U
with the symplectic form ω̇ − ωe, while the generating
function of this Lagrangian submanifold is the Hamiltonian
H(x, u).

Considering now two general input-output Hamiltonian
systems indexed by i = 1, 2, it is immediate why the positive
feedback interconnection u1 = y2, u2 = y1 will result in a
Hamiltonian system. Indeed, the sum of the two external
symplectic forms

m∑
j=1

duj1 ∧ dy
j
1 +

m∑
j=1

duj2 ∧ dy
j
2 (39)

will be zero restricted to the subspace of Y1×U1×Y2×U2
defined by the interconnection constraints u1 = y2, u2 = y1.
Hence the interconnected system will define a Lagrangian
submanifold of the product tangent bundle TX1×TX2 with
symplectic form ω̇1+ω̇2, and thus a Hamiltonian vector field.

A. Liouville’s theorem

Let us concentrate on affine input-output Hamiltonian
systems corresponding to a symplectic form ω and R = 0. In
this case the Hamiltonian H(x, u) is of the form H(x, u) =
H(x) −

∑m
j=1 u

jCj(x), and the system is represented in
coordinate-free notation as

ẋ = XH(x)−
∑m
i=1 u

jXCj (x)

yj = Cj(x), j = 1, · · · ,m
(40)

where XH is the Hamiltonian vector field defined by
the symplectic form ω and the Hamiltonian H; that is
ω(XH , ·) = −dH , and similarly for XCj . In canonical coor-
dinates the Hamiltonian vector field XH takes the classical
form

q̇i = ∂H
∂pi (q, p)

ṗi = −∂H∂qi (q, p)
, i = 1, · · ·n (41)

and similarly for XCj .
Hamiltonian vector fields have the property that they are

volume-preserving with respect to the volume form deter-
mined by the symplectic form. Define on the 2n-dimensional
phase space X with symplectic form ω the 2n-form [1]

Ω :=
(−1)[n/2]

n
ωn (42)

where [n/2] is the largest integer ≤ n
2 . Since ω as a

symplectic form is non-degenerate it follows that Ω is non-
degenerate, and thus defines a volume-form. In canonical
coordinates, that is ω =

∑n
i=1 dp

i ∧ dqi, Ω equals the
standard volume form on the phase space

Ω = dp1 ∧ dp2 ∧ · · · ∧ dpn ∧ dq1 ∧ dq2 ∧ · · · ∧ dqn

7Coordinate-free, and for Y being a manifold, this can be replaced by
the co-tangent bundle T ∗Y .
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Any Hamiltonian vector field XH has the property that the
Lie-derivative of ω along XH is zero, since by Cartan’s
formula

LXH
ω = diXH

ω + iXH
dω = −d(dH) = 0 , (43)

because dω = 0. From here it follows that

LXH
Ω = 0, (44)

that is, the divergence of XH with respect to the volume
form Ω is zero (commonly known as Liouville’s theorem).
Since the same holds for the divergence of the Hamiltonian
input vector fields XCj with respect to Ω it follows that
for any constant input function u : R → Rm the system
ẋ = XH(x) −

∑m
i=1 u

jXCj (x) leaves the volume-form Ω
invariant; that is, is divergence-free. The same holds for any
fixed time-function u : R→ Rm.

Remark 4.1: In the presence of a dissipation term the
volume form Ω is not preserved anymore. For example, the
divergence of the vector field

q̇i = ∂H
∂pi (q, p)

ṗi = −∂H∂qi (q, p)− ∂D
∂vi (∂H∂p (q, p))

, i = 1, · · ·n,

(45)
for some Rayleigh function D(v1, · · · , vn) modeling dissi-
pation, is computed as

− trace (
∂2D

∂v2
· ∂

2H

∂p2
) ≤ 0 (46)

B. An identity for closed-loop systems

Let us now consider the case of any arbitrary (differen-
tiable) feedback u = α(x). Then the closed-loop system
ẋ = Xcl(x) := XH(x)−

∑m
j=1 α

j(x)XCj (x) satisfies

LXcl
ω = LXH−

∑m
j=1 α

jXCj
ω =

=
∑m
j=1 d(αjdCj) =

∑m
j=1 dα

j ∧ dCj

This is summarized in the following
Proposition 4.2: For any differentiable feedback u =

α(x) the closed-loop system ẋ = Xcl(x) satisfies

LXcl
ω = (C,α)∗ωe (47)

where (C,α) : X → Y × U .
This formula suggests a further connection between the

volume in the space Y × U of outputs and inputs and
the (change of) volume in the state space. It follows that
Xcl leaves the symplectic form ω invariant if and only if
(C,α)∗ωe = 0, or equivalently, if the symplectic form ωe
on the space of outputs and inputs is zero restricted to the
image of the map (C,α) : X → Y × U . In particular, if we
assume that the rank of the mapping C : X → Y is equal
to m, this is the case if and only if the image of (C,α)
is a Lagrangian submanifold, or equivalently, if there exists
(locally) a function P : Y → R such that

α(x) =
∂P

∂y
(C(x)), (48)

which corresponds to the addition of an extra energy function
P (C(x)) to the Hamiltonian H(x).

V. CONCLUSIONS

In this paper we have interpreted and extended various
results in [2], [3], [4], [8], [10] from a Hamiltonian systems
point of view, thereby making a direct relation to the geo-
metrically defined class of systems already introduced and
studied in [5], [12], [13], [14].

Current investigations are concerned with the further de-
velopment of the preliminary results sketched in Section IV,
as well as with applications of this theory to nonlinear vibra-
tion control (see e.g. [10] for linear vibration control) and
metabolic reaction networks (using their port-Hamiltonian
formulation as presented in [17]).
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