
  

  

Abstract— Frequency response analysis is a well established 
system identification method. In this paper, a simple and 
efficient method based on the classical Transfer Function 
Analyzer (TFA) technique is implemented for system 
identification. The novel algorithm has been called Switch-
Mode-TFA. The originality of the proposed approach consists 
of: i) using a chirp TFA test input instead of a pure sine 
function, ii) using a variable sampling period instead of the 
traditional fixed sampling period and iii) a simplified 
implementation using switched electric circuits. The advantage 
of our approach is thus threefold: i) the frequency response of 
the system is obtained for the entire range of frequencies by 
means of only one identification test; ii) the number of samples 
per cycle remains constant, independent of the excited 
frequencies and iii) it can be easily implemented in hardware 
platforms. The results in both simulation and real-life examples 
indicate that the proposed Switch-Mode-TFA method can be 
reliably used for frequency response analysis in many other 
applications. 

I. INTRODUCTION 
REQUENCY domain identification techniques remain a 
subject which attracts a large number of researchers and 
engineers worldwide. The excitation of the process with 

periodic signals (e.g. sinusoids) is an efficient way of 
extracting accurate information upon the process dynamics 
from experiments. The analysis of frequency responses has 
gained an increasing interest in several application areas, e.g. 
the modeling of mechanical servo systems [1–3].  

Frequency response analysis remained popular over other 
techniques simply because it is easy to apply, flexible and 
robust. The formulation of an identification criterion in the 
frequency domain can be useful, especially in those 
situations where the application of the model dictates a 
performance evaluation in terms of frequency domain 
properties. Frequency-domain identification can also provide 
a first insight into the system to be (later) identified by 
parametric models.  

The common way of formulating an identification 
problem in the frequency domain is by assuming the 
availability of the exact frequency response of the 
(unknown) linear system, disturbed by some additive noise. 
For this situation a large number of identification methods 
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exist, mostly dealing with least squares criteria [4], [5], [6]. 
Also subspace algorithms have been analyzed for frequency 
domain identification [7], and an overview on the various 
techniques can be found in [2]. A related approach to the 
problem based on the discrete Fourier transforms of input 
and output data in [1] shows a close similitude of the 
obtained results with the standard time-domain approach. 

Apart from the theoretical advantage, frequency domain 
identification poses also a practical advantage; i.e. that of 
efficient hardware implementation. As such, the well-known 
transfer function analyzer (TFA) has been one of the first 
commercial devices for system identification purposes.  

In this paper, a frequency domain identification algorithm 
based on the classical transfer function analyzer technique is 
implemented. The contribution of this study is to use switch-
mode variable sampling period chirp signals instead of the 
traditional multipliers with fixed sampling period sinusoids. 
The advantage of this approach is that the same number of 
samples per cycle is ensured for any range of excited 
frequencies and that the approach can be easily implemented 
in hardware applications. Since the target is to obtain the 
frequency response of the system for the entire range of 
frequencies using one excitation signal, this approach is 
robust in terms of numerical complexity. The novel 
formulation is illustrated by means of simulated examples 
and real life tests on an electro-mechanical plant.  

II. TRANSFER FUNCTION ANALYZER 

A. The Classical Approach 
The sinusoidal output of a system in terms of its 

magnitude, phase and noise, can be written as: 
 

( ) sin( ) ( )y t b t n tω ϕ= + +                      (1) 
 
where n is the noise, t is the time, b is the amplitude, ω is the 
angular frequency and φ is the phase shift, related to the time 
shift by tϕ ω= ⋅∆  (Fig. 1). The signal n(t) is considered to 
be a correlated stochastic disturbance with zero average. 
Problems of non-linear distortion and noise corruption are 
overcome in the measurement scheme of Fig. 2, where the 
measured output ( )y t  is first multiplied by sine and cosine 
respectively, and then integrated over the measurement 
period mT : 
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Fig. 1.  Sinusoidal input u(t) and sinusoidal response y(t) 
 

 
Fig. 2.  Classical TFA implementation scheme 
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2
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have:  
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Analogously, from 

0 0
( ) sin( )cos( ) ( ) cos( )m mT T

c my T b t t dt n t t dtω ϕ ω ω= + +∫ ∫    (4) 

and using 1sin( ) cos( ) [sin( ) sin(2 )]
2

t t tω ϕ ω ϕ ω ϕ+ = + +  in 

the first integral term, one obtains: 
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As the averaging time increases, the contribution of the 
2nd and 3rd terms in (3) and (5) can be neglected compared to 
the 1st term, which is growing with Tm. If one integrates over 
a multiple of half the period for a certain frequency, one can 
observe that the second term in (3) and (5) will be zero. 
Also, if we consider the integration time to be long enough, 
the noise will be filtered out (i.e. zero average). Thus, we 
can write that: 
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from where it follows that  
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Plotting the b/a and ϕ  values for several frequency points 
provides the Bode diagram for the observed system. An 
example of a system with non-rational transfer function is 
available in [8], demonstrating the merits of this method 
implemented in Matlab®Simulink environment. 

B. TFA Concept using a Chirp Signal 

 A trivial solution to obtain the frequency response in a 
single experiment is to use a sequence of sine signals, 
sweeping from low to high frequencies. When a fixed 
sampling period is used, the drawback of this simple 
approach is that lower frequencies will be over-sampled, 
while higher frequencies will possibly be under-sampled. 
Ideally, the frequency of such a sinusoidal test signal should 
vary from a minimum frequency ( 1f ) until a maximum 
frequency ( 2f ) in a certain time (T), known as a chirp 
signal. In the newly proposed framework, the sampling 
period of the signal will not be fixed: it will vary, according 
to frequency, in order to maintain the same sampling 
resolution for all frequencies. Therefore, a fixed number of 
data points ( sN ) to sample one period will be used, based on 
prior developments presented in [9].  

The frequency sweeping can be done using either linearly-
spaced, either logarithmically-spaced frequency points. The 
linear sweep in the chirp signal will change the frequency 
according to the formula:  

݂ሺݐሻ ൌ ଵ݂ ൅ ௙మି௙భ
்

 (8)                                    ݐ
with T the measurement time. Similarly, the logarithmic 
sweep is based on the formula: 

log ݂ሺݐሻ ൌ log  ଵ݂ ൅ ୪୭୥ ௙మି୪୭୥  ௙భ
்

 (9)                 ݐ
with the frequency changing according to 
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The chirp signal is then given by  
 

ሻݐሺݑ ൌ sin ቀ2ߨ ׬ ݂ሺݔሻ݀ݔ௧
଴ ቁ ൌ sin൫߮ሺݐሻ൯      (11) 

 
Notice that if f(t) would be constant (=f*) then  
 

ሻݐሺݑ ൌ sin ቀ2ߨ ׬ ௧ݔ݀כ݂
଴ ቁ ൌ sinሺ2ݐכ݂ߨሻ            (12) 

 
In this formulation, the linear sweep from (8) can be written 
as: 
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and using the relation ׬ ܽ௫݀ݔ ൌ ௔ೣ

୪୬ ௔
௧

଴ , we obtain for the 
logarithmic sweep from (10) that: 
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III. CHIRP-TFA FOR SAMPLED DATA  
A variable sampling time Ts(t) is used. This approach has 

the advantages that i) it runs much faster and ii) every period 
has the same number of samples sN . An example of a chirp 
signal with fixed number of samples per period is given in 
Fig. 3.  

 
Fig. 3. Illustrative example of a chirp signal from 1 to 10 Hz in 5 
seconds, 20 samples per period, logarithmic sweep. 
 

The form of the chirp signal is given by 
sin(2 ) sin(2 ( ) ( ))sf t f t kT tπ π⋅ ⋅ = ⋅ ⋅ . Hence, at every time 
instant t, a variable sampling period ( )sT t  is calculated, 
such that one period contains exactly sN  samples, with k 
denoting the sample number 0,1,2,…. It is good practice to 
choose sN as a multiple of 4, such that the top, bottom and 
the 2 zero crossings of the squeezed sine correspond exactly 
with a sample.  

PROCEDURE: select ( )sT t  such that 1( ) ( )s
s

f t T t
N

⋅ = . 

The sN  samples are then given by 2sin( )
s

k
N
π , with k=0, 1…

sN -1. Finding ( )sT t  requires an iterative algorithm: 
i) put t=t_old (with t_old the time of the last 

calculated sample; initial value t_old=0) 
ii) calculate f(t) with either linear or logarithmic 

formulae [(8) resp. (10)] 

iii) calculate 1( )
( )s

s

T t
N f t

= ,  

iv) put t=t_old + ( )sT t  
v) REPEAT steps ii-iii-iv until t remains constant 

(in practice, it takes 2-3 iterations).  
 
The result is then a new sample k at time t corresponding to 

the frequency f and with value 2sin( )
s

k
N
π . Hence, each 

period will contain an exact number of sN  samples, which 
will result in a properly sampled chirp signal.  

IV. SWITCH-MODE TFA WITH CHIRP SIGNAL 
Instead of the traditional TFA algorithm of section IIA, a 

switch-mode approach is used. Fig. 4 illustrates the concept. 
It does not require multipliers as in Fig. 2. The signal n(t) is 
considered to be a correlated stochastic disturbance with 
zero average. 

 
 
Fig. 4. Schematic overview of the switch-mode chirp TFA.  
 

Every period k of the chirp signal is approximately 
considered to be a sine signal of the form: 
 

ሻݐሺݑ ൌ ܣ sinሺ߱௞ݐሻ                          (15) 
 
with the measured output given by  
 

 ( ) sin( ) ( )ky t B t n tω ϕ= + +                  (16) 
 
For each period, two values are calculated, as indicated in 
Fig. 4. The first one is given by the integral: 
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which is then 

ଵܫ ൌ ஻
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Similarly, the second value is given by the integral: 
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From these relations, we find the modulus and phase of 

the system:  
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which are evaluated for each period of the squeezed sine, 
using the averaged frequency (resp. averaged period)  within 
each sine. A good design of the parameters T (sweep 
duration) and sN  (number of samples per period) is crucial 
for obtaining the correct results. This is further illustrated by 
a simulation example and a real-life example.  

V. SIMULATED THEORETICAL STUDY 

A. Good Design Parameters – no noise 
Consider the transfer function: 

ܲሺݏሻ ൌ ଵ
ଵା௦

                               (21) 
 

For this system, using the design parameters 400sN = , 

1
0.1
2

f
π

= , 2
10
2

f
π

=  and T=1000, with a logarithmic chirp as 

an input, we obtain the results given by Fig. 5. As observed, 
the estimated modulus and phase are practically the same as 
the real values. Recall here that 400sN = is the number of 
samples per period (of each squeezed sine in the chirp 
signal) and T is the total measurement time. Since the lowest 
frequency is 0.0159 Hz, corresponding to a period of 62.8 
seconds, the measurement time of 1000 seconds is 
reasonable.  

 
Fig. 5. Perfect estimation of the frequency response of (21) in the absence 
of noise and optimal choice of the design parameters 

 
Fig. 6. Poorer result for frequency response estimation of (21) due to sub-
optimal design of the tuning parameters  

B. Effect of the Design Parameters – no noise 
The importance of the choice of the design parameters sN  

and T can be illustrated by means of a counter-example, 
namely a poor design. For the same system (21), we apply 

now a logarithmic chirp signal with 40sN = , 1
0.1
2

f
π

= , 

2
10
2

f
π

=  and T=100. The results are in Fig. 6. 

In this case, we have an overestimation in the modulus at 
low frequencies due to the fact that the measurement period 
T=100 is now rather short. This will then result in fast 
changes in frequency within each period of the squeezed 
sine, as illustrated in Fig. 7 below. The first periods in the 
chirp signal are thus far from being close to a pure sinusoid. 
This then results in the integrals I1 (18) and I2 (19) and the 
modulus M (20) being over-estimated. Notice that it would 
be possible to alleviate this error by integrating also over 
[Tk/2 Tk] for I1 and over [0 Tk/4 and 3Tk/4 Tk] for I2. 
This would then require more calculations, with the 
advantage of a shorter measurement time. 

 
Fig. 7. The output of the system as a result of short measurement time 

 
Fig. 8. Illustrative example of the artificial delay (phase lag) introduced by 
using a zero-order-hold in a sampled-data system. 
 

Also, a bias in the phase is clearly visible in Fig. 6. It is 
introduced by the fact that the number of samples in one 
period is too short: 40sN = . It is well-known that the zero-
order-hold principle results in an artificial time-delay, 
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corresponding to a supplementary phase lag. This is clearly 
visible in Fig. 8, where the continuous data and its zero-
order-hold equivalent (sampled data) are depicted. From this 
explanation of the source of the error, it is also obvious how 
the phase error can be reduced: use more samples per period. 

C. Effect of the noise 
Finally, the no-noise situation described above is of 

course ideal and it does not apply in practice, because 
stochastic disturbances usually corrupt the output 
measurements. To illustrate the efficiency of the method in 
the presence of significant disturbances with high-amplitude, 
we introduce a stochastic disturbance, superimposed on the 
output signal, as shown in detail in Fig. 9. The results of our 
method are illustrated in Fig. 10, using the design parameters 

400sN = , 1
0.1
2

f
π

= , 2
10
2

f
π

=  and T=1000, with a 

logarithmic chirp. 

 
Fig. 9. Illustrative example of an output signal with significant noise 
superimposed on the output of the system 

 
Fig. 10. The noisy estimation of the frequency response of system (21) 

 
In order to improve the noisy results from Fig. 10, a 

simple averaging over 9 successive frequency samples leads 
to the frequency response depicted in Fig. 11. It is obvious 
that acceptable results are being obtained in the pass-band of 
the system. By averaging over more samples, it would even 
be possible to obtain also better results  in the high 
frequency band (where indeed more samples are available, 

due to the logarithmic nature of the sweep). 

 
Fig. 11. An improved frequency response estimation for system (21) in the 
presence of considerable noise, by averaging over 9 samples.  

VI. REAL-LIFE TEST: A MASS-SPRING-DAMPER SYSTEM 
In this real-life example, the Chirp-Switch-Mode TFA 

identification method was applied to the electromechanical 
system illustrated in Figure 12.  

 

 
Fig. 12. A scheme of the 2 masses electro-mechanical pilot system and a 
photo of the generic setup (in our setup, the 3rd mass has been kept fixed 
and the damper has been connected to the 2nd mass) 
 

The input of the system is the voltage to the motor ( )u t  
and the outputs are the mass displacements 1 ( )y t and 2 ( )y t  
expressed in centimeters. Therefore a complete model of the 
electromechanical plant should describe the dynamics from 

( )u t  to 1 ( )y t  and from ( )u t  to 2 ( )y t . The (fast) dynamics 
of the electrical motor can be neglected; hence, the motor 
can be represented by a pure static gain ( ) ( )F t K u t= ⋅ , with 
F(t) the force on the 1st mass. The parameters of the set-up 
are: 1m =1.7 Kg, 2m =1.2 Kg, 1 2k k= =800 N/m, k3=450 
N/m, c1=9 N/(m/s). The two differential equations 
(Newton’s second law) describing the dynamics of the plant 
are: 
 

1 1 2 1 2 1 1( ) ( )F t m y k y y k y= + − +&&                (22) 

2 2 1 2 3 2 2 1 20 ( )m y c y k y k y y= + + − −&& &           (23) 
 
Laplace transformation of equations (22) and (23) allows us 
to derive the transfer function models for this plant: 
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2 31
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It is clear that Den represents a fourth order system; hence 

by taking into account the characteristic equation, we can 
calculate the resonant frequencies based on the mathematical 
model. The mathematical model (24) can be rewritten in the 
form: 

 
2 22 2

1 1 1 2 2 2

( )
( ) ( 2 )( 2 )

i i

n n n n

Y s NumK
U s s s s sξ ω ω ξ ω ω

=
+ + + +

 (25) 

with i=1,2 and the resonant frequencies calculated as:
21 2pi ni iω ω ξ= − , for 0.707iξ ≤ . Due to the very low 

damping of the system, we can approximate the resonant 
frequencies piω by the natural frequencies niω . Consequently, 
for the numerical parameter values which were given earlier, 
the two pairs of complex conjugated poles are

1.5829 19.75 j− ±  and 1.7504 37.203 j− ±  and the 
corresponding natural frequencies are: 1 19.813 rad/s,nω =  
and 2 37.244 rad/secnω = . The model of the second mass 
presents two peaks in the frequency response, located at 3.15 
Hz and 5.92 Hz. Hence, the frequency range for the chirp 
signal was chosen from 1.59 Hz to 15.9 Hz in T=20 seconds 
measurement time with 40sN =  samples in each period. 
The chirp signal test input and the corresponding system 
output are illustrated in Fig. 13. The frequency response 
estimated with our Chirp-Switch-Mode TFA method is 
shown in Fig. 14 (notice that even the phase-estimation at 
high frequency is allright taking into account that 0°=-360°). 

VII. CONCLUSIONS 
A novel frequency domain identification method based on 

the original Transfer Function Analysis (TFA) technique has 
been presented. It has been illustrated on a simulated system 
and tested on a real-life system. The new method has been 
called Chirp-Switch-Mode TFA. The novelty of the method 
is threefold: i) it uses a chirp test input instead of a pure sine 
function, ii) it uses a variable sampling period instead of the 
traditional fixed sampling period and iii) it offers a simple 
implementation using a switch (instead of the traditional 
multiplier). The switch implementation would allow for an 
easy hardware implementation (compared to multipliers).  

The use of a variable sampling period - such that a fixed 
number of samples is ensured in every period for the whole 
range of frequencies in the chirp signal - would lead to a 
minimum of computational effort in a software 
implementation. 

It has been shown that the Bode characteristics estimated 
with the novel Chirp-Switch-Mode TFA method are quite 
close to the real ones. 

 Fig. 13. Input chirp and output signal from the electromechanical system 

 
Fig. 14. Calculated and estimated Bode characteristic of the 
electromechanical system 
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