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Abstract— Before switching to a new controller it is crucial
to assure that the new closed loop will be stable. In this paper
it is demonstrated how stability can be checked with limited
measurement data available from the current closed loop.

The paper extends an existing method to linear parameter
varying plants and controllers. Rather than relying on fre-
quency domain methods as done in the LTI case, it is shown
how to use standard LPV system identification methods.

It is furthermore shown how to include model uncertainty
to robustify the results. By appropriate filtering, it is only
necessary to evaluate the worst case gain of the additive
uncertainty, making the analysis relatively simple.

I. INTRODUCTION

Changes to plant behaviour due to reconfiguration or

gradual wear may lead to a desire to reconfigure the control

system. In many cases it is not desirable to remove the

current controller in order to obtain the data needed for

identifying a new plant model. Thus we are faced with

deciding on a new control strategy based on only closed

loop data.

There exist iterative methods for improving controller per-

formance using closed loop data, see e.g. [1] and references,

but in order to assure stability of the new closed loop, it is

necessary to obtain a full model of either the current closed

loop or of the plant, and the requirements on the data can

therefore be greater than what was required for the controller

design.

In [2], [3], a method is devised for analysing the stability

of the new closed loop by looking at the inverse transfer

function from an excitation signal to a filtered output. Due

to the particular choice of filters, it is possible to analyse

stability looking only at a limited frequency range, thereby

making the identification problem more tractable. In [4] the

method was extended to assess performance also.

Since the above papers use frequency domain methods

it cannot be directly translated to time varying systems.

In [5], extensions are made to handle nonlinearities by

conditions on the maximum gain of these, but for linear time-

varying systems that would be an unnecessarily conservative

approach.

In this paper we show how the same basic scheme can be

applied to linear time varying systems, in particular linear

parameter varying (LPV) systems. It is demonstrated that by

focusing on the same closed loop operator as in [2], a more

reliable stability assessment is achieved compared to using

a model of the plant.
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Furthermore, in contrast to the above papers, the applica-

tion of standard system identification methods is treated in

some detail.

After reviewing some basic notions on LPV systems in

Section II, the concept of safe switching is discussed in

more detail in Section III. In order to get robust results from

the analysis, it is necessary to take the uncertainty of the

identified models into account. Data driven generation of

uncertainty models is still an undeveloped subject for LPV

systems. In Section IV it is shown how a simple filtering

scheme can reduce the problem to estimating the worst

case gain of an additive uncertainty. Finally, in Section V,

the presented method is demonstrated through a simulation

example.

II. LPV SYSTEMS

This section provides background knowledge on LPV

systems. We consider discrete-time linear parameter-varying

(LPV) systems Gθ with a minimal state space realisation

given by matrix functions Aθ ∈R
n×n,Bθ ∈R

n×m,Cθ ∈R
p×n

and Dθ ∈ R
p×m, mapping an input signal vector u ∈ R

m to

an output measurement signal y ∈ R
p. Specifically, we deal

with systems of the form

Gθ : xk+1 = Aθ(k)xk +Bθ(k)uk (1)

yk = Cθ(k)xk +Dθ(k)uk (2)

where θ(k)∈R
q is a scheduling parameter, which is allowed

to vary as a function of time but not as a function of the

system states x. Since we only allow θ to depend on k, we

will simply write θ rather than θ(k) in the following. As is

common in LPV control, we assume that θ is not known

a priori, but that it is available online and can be used for

controller scheduling.

For notational convenience, we will use the shorthand

Gθ =

[

Aθ Bθ

Cθ Dθ

]

for the LPV system (1)–(2).1

If DT,θ is nonsingular, i.e., D−1
T,θ exists, for all θ , the LPV

operator Tθ =

[

AT,θ BT,θ

CT,θ DT,θ

]

has an inverse operator

T−1
θ =

[

AT,θ −BT,θ D−1
T,θCT,θ BT,θ D−1

T,θ

D−1
T,θCT,θ D−1

T,θ

]

1Please note that this notation should not be confused with ”transfer
functions”; we strictly consider operators defined in state space, as given
by (1)–(2), with x0 = 0 unless otherwise noted.
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in the sense that Tθ T−1
θ = T−1

θ Tθ = I for any trajectory of θ .

In the following, this inversion will only need to be applied

to operators that are invertible by construction.

A. Stability

Stability analysis of an LPV system is slightly more

complicated than for LTI systems since not only the range

of θ but also known limitations on its trajectories, e.g. rate

limits, can be exploited to assure stability. In this paper we

will assume that no such restrictions are known.

Stability is usually checked by means of Lyapunov candi-

date functions. Another complication stems from having to

check these for all possible values of θ which leads to an

infinite number of inequalities. If the test is formulated as

LMIs and the system is polytopic, i.e. Θ is a polytope and the

system matrices depend affinely on θ , then only the vertices

need checking, leading to a finite number of equations.

A discrete time LPV system xk+1 =Aθ ,kxk is quadratically

stable (QS) iff there exist a matrix PQ > 0 such that

AT
θ PQAθ < PQ, ∀θ ∈ Θ. (3)

Then VQ(x) = xT PQx is a Lyapunov function.

In discrete time, the boundedness of θ results in an

implicit rate limit, which can be exploited to give a less

conservative stability assessment:

Lemma 1: Let an LPV system be described by xk+1 =

∑i ξi,kAixk, ∑i ξi = 1, ξi ≥ 0. If there exist Gi and symmetric

Pi such that
[

GT
i +Gi −Pj GiAi

AT
i GT

i Pi

]

> 0 (4)

for all i, j, then we will say that the system is param-

eter dependent Lyapunov stable (PDLS) and VPDLS(xk) =
xT

k ∑i ξi,kPixk is a Lyapunov function.

Proof: The lemma is a specialisation of the observer design

in [6].

It is possible to obtain even less conservatism by using

polyhedral Lyapunov functions [7], [8], but the analysis is

computationally heavy and non-convex.

B. Factorisation

Here we will provide en explicit doubly coprime factori-

sation, assuming that the plant Gθ is strictly proper, i.e.

Gθ =

[

Aθ Bθ

Cθ 0

]

(5)

and that it can be stabilised by an observer-based LPV

controller of the form

Ki,θ =

[

Aθ +Bθ Fi,θ +LθCθ −Li,θ

Fi,θ 0

]

(6)

for all θ ∈ Θ, where Fi,θ and Li,θ are such that x̄k+1 = (Aθ +
Bθ Fi,θ )x̄k and x̂k+1 = (Aθ +Li,θCθ )x̂k are stable.

Any Gθ that satisfies the above assumption for any tra-

jectory of θ ∈ Θ, can be written as a right, respectively left,

coprime factorisation of the form: [9], [10], [11]

Gθ = Nθ M−1
θ = M̃−1

θ Ñθ (7)

where Nθ ,Mθ ,M̃θ and Ñθ are LPV stable operators of a

specific form given below. Correspondingly, Ki,θ can be

factorised as

Ki,θ =Ui,θV−1
i,θ = Ṽ−1

i,θ Ũi,θ (8)

with LPV stable Ui,θ ,Vi,θ ,Ũi,θ ,Ṽi,θ . The factors are given as

[

Mi,θ Ui,θ
Ni,θ Vi,θ

]

=





Aθ +Bθ Fi,θ Bθ −Li,θ
Fi,θ I 0
Cθ 0 I



 (9)

[

Ṽi,θ −Ũi,θ

−Ñi,θ M̃i,θ

]

=





Aθ +Li,θCθ −Bθ Li,θ
Fi,θ I 0
Cθ 0 I



 (10)

Then, it is possible to check that

[

I 0

0 I

]

=

[

Ṽi,θ −Ũi,θ

−Ñi,θ M̃i,θ

][

Mi,θ Ui,θ

Ni,θ Vi,θ

]

=

[

Mi,θ Ui,θ

Ni,θ Vi,θ

][

Ṽi,θ −Ũi,θ

−Ñi,θ M̃i,θ

]

(11)

holds; this equation is referred to as the double Bezout

identity.

C. Identification

System identification of LPV systems is in general more

complicated than for LTI systems. Not only must there be

sufficient excitation at the input, but it is also necessary to

obtain data with the time varying parameter covering the

whole range. One of the simplest methods is the LPV ARX

method found in e.g. [12] and [13]. Here, the state vector

simply consists of delayed outputs and inputs.

PBSIDopt, suitable for both open and closed loop iden-

tification, which is presented in an LPV version in [14]

uses a subspace method to construct the state estimates, and

consequently requires a lot of computational power.

There is a range of other methods available [15], [16],

[17], [18], [19], but some research into the most appropriate

choice for safe switching still remains.

Most importantly, the scheme presented below can be

used with any standard identification method for open loop

problems.

III. SAFE SWITCHING

The following situation is considered: given a control

system with an LPV plant P and a stabilising LPV controller

K0, we would like to switch to new controller K1, which we

expect to give better performance. However, the design of

K1 is based on an uncertain plant model, so the question is,

will switching to the new controller K1 still provide a stable

closed loop CL(P,K1)?
(Note that this is fundamentally different from what is

called safe switching in e.g. [20], where the aim is to design

a new controller ensuring stability.)

Facing this problem, it is desirable to devise an analysis

method that

• does not require a plant model,

• requires only closed-loop data

• with only a small amount of external excitation,
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• uses standard identification methods,

• and gives as few incorrect analysis results as possible.

Note that incorrect results can come both in the form of false

negatives, i.e. rejecting a controller that is actually stabilising,

and false positives, i.e. indicating stability for a controller

that is not actually stabilising.

In [2], the experiment setup in Figure 1 is presented

for LTI systems. (Ũ0, Ṽ0) is a coprime factorisation of the

current controller K0. (Ũ1, Ṽ1) is a coprime factorisation of

the new controller K1. Note that the current closed loop is

left intact, except for an excitation signal r being added

in K0. The output z is obtained simply by filtering closed

loop measurements of plant input u and output y. With the

closed loop CL(P,K0) being stable, it is shown that stability

of CL(P,K1) is equivalent to the stability of T−1
zr , the inverse

of the transfer function from r to z.

V
0

−1~

U
~

1

V
~

1

z

−

PU
0

~

r

yu

Fig. 1. Experiment setup.

Of course, this transfer function is also uncertain, since it

depends on P, but it is shown that it is only necessary to

identify the phase up to a certain frequency. This makes the

identification problem easier, although the practicality is a

bit unclear.

A. Procedure for time varying systems

The necessary part of the proof in [2] does not rely on

time-invariance, but for completeness, we will sketch a time-

varying version here using a Youla-parametrisation approach,

that may be useful for later developments.

Theorem 1: Let CL(Pθ ,K0,θ ) be stable and P̂θ be a nom-

inal model stabilised by both K0,θ and K1,θ . Factorise

P̂θ = Nθ M−1
θ = M̃−1

θ Ñθ , Ki,θ =Ui,θV−1
i,θ = Ṽ−1

i,θ Ũi,θ , i = 0,1,

such that (11) holds for i = 0,1.

Then stability of CL(P,K1,θ ) is equivalent to the inverse

stability of Tzr, the operator from r to z in Figure 1.

Proof: Consider the setup in Figure 2, which is the same

as in Figure 1 with an additional path to generate h = Qθ w,

where Qθ = Ṽ0,θU1,θ −Ũ0,θV1,θ .

From the stability of CL(Pθ ,K0,θ ), we know that there exist

a stable Sθ such that the top dashed box is exactly Pθ [10],

[11]. The fact that the signals into and out of Sθ are equal

to r and w follows by repeated use of the Bezout identities

[21].

First observe that

Qθ w = (Ṽ0,θU1,θ −Ũ0,θV1,θ )(M̃θ y− Ñθ u) =

(U1,θ −Ũ0,θ )y+(V0,θ −Ṽ1,θ )u = r− z,

i.e. Qθ = Trw −Tzw.

Closing the loop by setting r = h, we would have

(Ṽ0,θ +Qθ Ñθ )u = (Ũ0,θ +Qθ M̃θ )y ⇔

(Ṽ0,θ +Ṽ0,θU1,θ Ñθ −Ũ0,θV1,θ Ñθ )u =

(Ũ0,θ −Ũ0,θV1,θ M̃θ +Ṽ0,θU1,θ M̃θ )y ⇔

(Ṽ0,θ MθṼ1,θ −Ũ0,θ NθṼ1,θ )u =

(−Ũ0,θ NθŨ1,θ +Ṽ0,θ MθU1,θ )y ⇔

Ṽ1,θ u = Ũ1,θ y ⇔ u = K1,θ y

i.e. the stability of CL(Pθ ,K1,θ ) is in fact equivalent to the

stability of CL(Sθ ,Qθ ). Due to the stability of Sθ and Qθ

this is again equivalent to the inverse stability of I−Sθ Qθ =
I − (Trw −Tzw)Twr = Tzr.

Ṽ0,θ Ũ0,θ
r

Sθ

w
Ñθ M̃−1

θ

-

-

u

?

�

- d -?

- d�

?

Pθ

Ṽ−1
0,θ Ũ0,θ

r

Qθ

w

h

Ñθ M̃θ

6

�

�

y

- d�6

� d�
6

6

−

−

Ṽ1,θ Ũ1,θ
- d�

?
−
z

�

- Sθ

�Qθ

6

wr

h

Fig. 2. Left: Plant-controller interconnection represented by dual Youla
and Youla parametrisations. Right: Corresponding internal loop.

The procedure for stability testing in [2] relies on fre-

quency domain properties and can therefore not be directly

translated to LPV systems. We can however still gain some-

thing from checking the stability of the operator T−1
zr , as will

be demonstrated in Section V. The point is that looking at

Tzr focuses the identification problem on parameters that are

essential to establishing stability.

Remark 1 The proof reveals the close connection to the

Hansen Scheme of identifying the dual Youla parameter Sθ

in closed loop [22], [23], which is known to have good

properties when identifying in closed loop. In particular,

if a decent nominal model is used in the factorisation,

then the knowledge built into that model will improve the

identification [10], [11], e.g. if the model used for control

design is used, then the safe switching identification will be

able to focus on the modelling errors. ⊳
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Remark 2 Nothing in the above requires the controller to

be on observer-based form (6). As long as coprime factors

can be established, the method can be used for general LPV

controllers, such as in [24]. However, the construction of

such factors is still an object of research, see e.g. [25]. ⊳

In order to evaluate the novel procedure, we compare it

with the straight-forward method

DI: (direct identification)

1) Apply excitation through r.

2) Identify a model P̂ directly from u to y.

3) Test stability of CL(P̂,K1).

Inspired by the scheme from [2], the following procedure

is suggested:

FI: (forward identification)

1) Apply excitation through r.

2) Compute z by filtering u and y.

3) Identify a model T̂zr from r to z.

4) Test stability of T̂−1
zr .

For exact model structures, persistent excitation and no

noise, all these methods would give the same (correct)

answer, but in more realistic settings the result may differ

significantly. Tzr is in theory a more complex (higher order)

operator than P, but by identifying a closed loop operator

that is so closely related to the stability of the object we are

interested in we can expect to get more accurate results in

spite of the increased complexity. It should also be noted that

the identifications in FI is open loop problems, whereas DI

has a more difficult closed loop character.

Some care must be taken in the choice of LPV model

structures in the respective identifications. For DI, the struc-

ture of P̂ must be such that the resulting structure of

CL(P̂,K1) can be checked for stability.

When identifying T̂zr it is essential to note that the coprime

factors can always be chosen so that its D-matrix is identity.

This means that rather than identifying a full model, we

can identify the operator from r to z̃ = z− r with D = 0.

It also means that it is relatively simple to choose the model

structure in a way that results in affine parameter dependence

in T̂−1
zr , leading to a simple stability analysis.

IV. ROBUSTNESS

In order to make the results robust, we need to obtain an

estimate of the model uncertainty. Luckily, the structure of

the setup lets us do this in a simple way.

Lemma 2: Let T = T̂ +∆ be stable and assume that T and

T̂ are invertible and that T̂−1 is stable. Then

||T̂−1∆||i2 < 1 ⇒ T−1 is stable.

Proof: Stability of T−1 = (T̂ +∆)−1 = (I + T̂−1∆)−1T̂−1

follows from the small gain theorem.

The lemma can be interpreted as the interconnections in

Figure 3. Thus, if we can obtain an estimate T̂zr of Tzr along

with an additive uncertainty model, then inverse stability can

be assured by checking that the induced 2-norm ||T̂−1
zr ∆||i2 <

1 for all trajectories of θ .

This leads to the following procedure:

RFI: (robust forward identification)

−

∆ ∆

T̂
−1

T̂
r rz z

⇔

Fig. 3. Inversion of T as a feedback loop.

1) Obtain a model T̂zr as in FI.

2) If T̂zr is not inversely stable, then reject the controller.

3) Else, compute an additive uncertainty model and check

||T̂−1∆||i2 < 1.

How to obtain such an uncertainty model from data is still

an open problem, in particular since we can expect it to be

parameter-dependent. This means that by using frequency-

domain (or similar LTI) methods on the whole data set,

we risk averaging the uncertainty over the whole parameter

range, when what we are really looking for is the worst case

gain.

Remark 3 Note that the robustness here deals with

modelling errors in the identification of the operator T̂zr.

Errors in the model used for control design of K1,θ are

only relevant through the effect they may have on the

identification procedure. ⊳

A. Filtering

Identifying uncertainty models for LPV systems is still an

open research problem, but by using the following filtering

procedure, the safe switching identification can be reduced

to a relatively simple problem.

Since the main objective is to assess inverse stability

rather than to obtain a model, we are free to filter z or r

through a stable and inversely stable filter before doing the

identification.

One possible approach is to iteratively filter with the

obtained model:

FRFI: (filtered robust forward identification)

1) Obtain a model T̂zr as in FI.

2) If T̂zr is not inversely stable, then reject the controller.

3) Define z0 = z, T̂0 = T̂zr,

4) and initialise the counter k := 1.

5) LOOP: Perform the filtering zk = T̂k−1zk−1.

6) Identify a model from r to zk: zk ≈ T̂kr.

7) If T̂k is not inversely stable, then reject the controller.

8) Else, if k < kmax, set k := k+1 and go to LOOP

9) Evaluate inverse stability of T̂k by the RFI method.

In most cases, as k increases, T̂k will approach identity.

We are then left with checking if ||∆||< 1 for all trajectories

of θ , which should be a relatively simple task compared

to analysing the interconnection of two parameter-dependent

operators.
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V. SIMULATION EXAMPLE

We consider the unstable system P:

xk+1 = Aθ xk +Buk +Keek,

yk =
[

0 0 1
]

xk + ek

with

Aθ =





1 −0.5+0.1θ 0.4−0.3θ
0.5−0.3θ 0.7 0

0 0.3 1



 , (12)

B =





1

0

0



 , Ke =





−0.1

−0.1

0.1



 , (13)

where θ ∈ [0;1] and e is white Gaussian noise with standard

deviation 0.2. The parameter follows a transformed Brownian

motion θk = 0.5+0.5sinwk, where wk+1 = wk +vk, where v

is white Gaussian noise with standard deviation 0.4.

A first principles model

P0 =

[

Âθ B̂

Ĉ 0

]

(14)

has been obtained with B̂ = B and Ĉ = C, but due to some

unmodelled phenomenon, we have

Âθ =





1 −0.7+0.2θ 0.4−0.3θ
0.4−0.3θ 0.7 0

0 0.3 1



 .(15)

Based on P0 and the design method in [6], a range of

observer-based controllers

Ki,θ =

[

Âθ + B̂Fi,θ +LθĈ −Lθ

Fi,θ 0

]

(16)

have been designed, with

LT
θ = −

[

0.48+0.14θ 1.42+−0.94θ 0.99
]

F0,θ = −
[

1.5−0.5θ 0.5+0.3θ 1+0.2θ
]

F1,θ = −
[

1.275−0.425θ 0.425+0.255θ 0.85+0.17θ
]

F2,θ = −
[

1.05−0.35θ 0.35+0.21θ 0.7+0.14θ
]

F3,θ = −
[

0.825−0.275θ 0.275+0.165θ 0.55+0.11θ
]

F4,θ = −
[

0.6−0.2θ 0.2+0.12θ 0.4+0.08θ
]

K3 and K4 do not stabilise the real plant, whereas all the

others do (both PDLS and QS).

50 experiments are performed with simulations of 800

samples with K0 stabilising P. In each of the 50 experiments,

different sequences of e, v and r are used. We would now

like to establish whether K1-K4 also stabilise the plant.

The excitation r is chosen as white Gaussian noise with

deviation 1.

For each data set, the three tests DI, FI and FRFI

described in Section III-A are performed. All identifications

are performed with an ARX model structure with 5 delayed

inputs and outputs. PDLS is used as the stability criterion

(by testing feasibility of (4)).

K DI FI FRFI

1 50 50 50

2 45 50 49

3 35 50 10

4 28 50 0

TABLE I

RESULTS OF STABILITY ANALYSIS USING ARX IDENTIFICATION.

K DI FI FRFI

1 46 50 50

2 45 50 49

3 40 50 4

4 34 50 0

TABLE II

RESULTS OF STABILITY ANALYSIS USING PBSIDOPT.

To estimate the gain of the uncertainty model in FRFI,

we follow the following procedure. Since T̂k converges to

identity, zk − r becomes a simulation error, and we need to

establish whether the worst case gain from r to zk−r is larger

than 1. Since r is white noise noise of variance 1, for an LTI

system, we would merely have to check if the amplitude

of zk − r at any frequency, for instance by doing a discrete

Fourier transform (DFT). Here, we will use this approach

for the LPV system also, even though this is obviously not

a completely valid approach.

Table I shows how many times the respective methods

predicted stability for the new controller. We would of course

prefer the numbers to be 0 for K3 and K4 and 50 for K1 and

K2.

The forward identification produces inversely stable mod-

els in all the experiments, so obviously here the model

uncertainty must be taken into account. When doing so,

the filtered robust method produces results that are clearly

superior to the direct method. It is expected that a more

appropriate uncertainty modelling will produce even more

reliable results.

The performance of the direct identification method is

quite bad, which is expected, since the ARX method is not

really suitable for closed loop identification. It should also

be noted that in order for the ARX model set to correspond

to the state space model set, it is necessary for the parameter

to have dynamical dependence, which is not included in the

above experiment. However, the proposed scheme results in

open loop identification problems, and the FRFI handles the

mismatching model sets through robustness.

We perform the same experiment again, but this time using

PBSIDopt with model order 3 and window length 5 (see

[14] for details) in all identifications. Also, the number of

samples in each experiment is increased to 2000. The results

are shown in Table II.

In fact, the direct method did not improve significantly,

whereas the FRFI gives very good results. In this experi-

ment, the system behaviour is included in the DI model set,

so the only source for bias is the finite window length. The
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FI does not have the full model order needed to represent the

closed loop system, but the robustness of the FRFI handles

the bias as an uncertainty.

VI. CONCLUSIONS

This paper presents a method for assessing stability of a

new LPV closed loop, given relatively few data compared to

what would be needed for establishing a full model of the

plant.

In addition to extending an existing LTI method to LPV

systems, the connection to standard identification methods is

treated in more detail.

What is presented here is only a first step on the way,

as LPV uncertainty modelling needs further development.

The iterative filtering method presented here is such that we

only need to establish the worst case gain of an additive

uncertainty, which should be a tractable problem.
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