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Abstract— In this paper, a data-driven technique is proposed
to deal with multivariable fixed-order controller design. The
method is based on the Virtual Reference Feedback Tuning
(VRFT) philosophy and thus does not require any model of
the plant. As far as the authors are aware, this is the first
noniterative method that allows one to tune either tracking
and decoupling terms of a MIMO controller. Unlike standard
VRFT for SISO systems, extended instrumental variables and
variance weighting are used to counteract the effect of noise
and achieve consistent controller estimate with a single set of
input-output data. The proposed strategy is validated on three
banchmark examples.

I. INTRODUCTION

Many engineering systems are equipped with several

actuators that affect their static and dynamic behavior. In

order to achieve a given desired operation, closed-loop

control is generally employed and a suitable controller

is designed based on a mathematical description of the

system. The aim of closed-loop controllers for multivariable

plants is typically either to track some reference signals

and to eliminate any interaction between the outputs of the

closed-loop system (see [16]).

Concerning multi-input/multi-output (MIMO) linear time-

invariant (LTI) systems, one of the main drawbacks

in controller tuning is that an assessment of structural

properties of transfer matrices is required. This is sometimes

difficult to obtain when plants are too complex and/or

modeling cost is too high. Moreover, if the structure of the

MIMO controller is fixed (e.g. PIDs), model reduction is

required and several problems arise, see [2].

The modeling work can be skipped, by tuning the controller

parameters with data collections. The first attempts to

perform data-to-controller design date back to first papers

on self-tuning regulation (STR) and model-reference

adaptive control (MRAC) (see [1] for a complete overview).

More recently, two iterative methods have been proposed to

design reliable controllers off-line with a small number of

closed-loop experiments on the plant.

The first method is the Iterative Feedback Tuning (IFT)

approach (see [9]), where an unbiased estimate of the

gradient is provided entirely from input/output (I/O) data

collected on the actual closed-loop system. The main

drawback of this method for MIMO plants (see [7]) is that

the number of experiments needed to estimate the gradient
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increases with the number of plant inputs nu and outputs

ny , specifically nynu + 1 experiments are required.

The second technique is known as iterative Correlation-

based Tuning (CbT) and has been introduced in [12]

for single-input/single-output (SISO) plants. A MIMO

extension is discussed in [13], where it has been shown

that the correlation-based controller tuning provides better

tracking performance in fewer experiments than IFT.

However, one experiment for each iteration is still needed.

The aim of this work is to provide a noniterative method

that allow to directly tune a multivariable controller by

using a single set of open-loop I/O data collected on a

stable MIMO LTI plant. Unlike the SISO case, for which

many different design methods are available in the scientific

literature (see e.g. [3] and [11]), a noniterative technique for

MIMO controller tuning has not been studied yet.

It should be mentioned that in 2002, a MIMO version of

Virtual Reference Feedback Tuning (VRFT) method has

been proposed to cope with this problem (see [14]). The

method presented therein is though only a straightforward

extension of the existing SISO algorithm, whereas important

issues as undermodeling and treatement of noise are not

discussed. In this work, a VRFT-based solution for MIMO

systems is provided in which the above-mentioned problems

are taken into account. In detail, the case of controller

underparameterization is analyzed in-depth and the extended

instrumental-variable solution presented in [18] is employed

to cope with the noise that necessarily corrupts the output

measurements.

The remainder of the paper is organized as follows.

Section II provides some notations and the basic definitions.

The idea behind noniterative MIMO data-driven tuning is

presented in Section III in a noiseless setting, while Section

IV deals with the case of noisy data. Simulation results are

given in Section V for three benchmark examples. Some

concluding remarks end the paper.

II. PRELIMINARIES AND NOTATION

Consider the unknown LTI multivariable plant G(q−1),
where q−1 denotes the backward shift operator, with nu

inputs and ny outputs. The objective of the model-reference

control problem is to design a linear, fixed-order controller

K(q−1, ρ), parameterized through ρ, for which the output

complementary sensitivity function matches the user-defined

stable strictly proper reference model M(q−1) (see Figure 1).

More formally, the aim is to find the vector of parameters

that minimizes the two-norm of the difference between the
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Fig. 1. Model reference control problem.

reference model and the achieved closed-loop system:

JMR(ρ) =
∥

∥

∥
M − (I + GK(ρ))

−1
GK(ρ)

∥

∥

∥

2

2

, (1)

where I is the (ny × ny) identity matrix. Notice that (1) is

non-convex with respect to the controller parameters ρ. A

convex approximation of (1) can be found by means of two

additional assumptions, i.e.:

Assumption 1: the desired sensitivity function I − M is

close to the actual one (I + GK(ρ̂))−1 in the minimum ρ̂.

Assumption 2: the controller is linearly parameterized and

a fixed known denominator is common to all transfer func-

tions.

Without loss of generality, a MIMO FIR structure with

integral action will be used in the rest of the paper. The

n-th order control law is then defined as

u(t) = u(t − 1) +

n
∑

k=0

Bke(t − k), (2)

where Bk ∈ R
nu×ny are matrices containing the unknown

parameters such that ρ is defined as

ρ = [vecT (B0) . . . vecT (Bn)]T . (3)

Notice that this parameterization includes all P-PI-PID-like

controller structures.

The above assumptions lead to the following approxima-

tion of the model reference criterion:

J(ρ) = ‖M − (I − M) GK(ρ)‖
2

2
(4)

and to the subsequent definition of “optimal controller’:

Definition 1: The parameters ρo of the n-th order optimal

controller K(ρo) in the given class (2) are defined as the

optimum of the convex optimization problem

ρo = arg min
ρ

J(ρ).

Some remarks are due:

• K(ρo) generally does not correspond to the controller

that makes J(ρ) = 0. The latter might be of very high

order since it depends on the unknown and possibly

high-order plant G(q−1) and it might also be non-

causal.

• The criterion J(ρ) is a good approximation of Jmr(ρ)
only if the difference between K(ρ) and the ideal

controller that makes J(ρ) = 0 can be made small.

However, it should be mentioned that Assumption

1 is widely used in identification for control, data-

driven tuning and H2 model-reduction (see [8] for an

overview).

Consider now that an open-loop collection of I/O data

{u(t), y(t)}t=1,...,N is available. In standard “indirect” data-

driven approaches, minimization of (4) can be achieved by

identifying from data a model Ĝ of the plant and solving

Problem 1 for J(ρ) evaluated in Ĝ. Unfortunately, this

approach is very sensitive to modeling errors and the closed-

loop performance is subsequently limited by the quality of

the model.

In the rest of the paper, a novel approach for direct identi-

fication of controller parameters from data is proposed. The

method is based on the Virtual Reference philosophy first

proposed in [6] and [15] with the name of Virtual Reference

Direct Design (V RD2) and fixed and extended in [3], [5] and

[4], respectively for LTI, LPV and nonlinear SISO systems.

However, the idea presented herein is not only an extension

of an existing method but also proposes different solution for

noise rejection and an ad-hoc discussion on optimal filtering

for dealing with undermodeling.

III. NONITERATIVE DATA-DRIVEN MULTIVARIABLE

CONTROLLER TUNING

The main idea to solve (4) without identifying G(q−1) is

to build a “virtual” closed-loop system, where the input and

output signals are equal to u(t) and y(t) and the closed-loop

transfer function is assumed to correspond to M(q−1). From

the above loop, the so-called “virtual reference” rV (t) and

“virtual error” eV (t) signals can be computed as

rV (t) = M−1(q−1)y(t) , eV (t) = rV (t) − y(t).

The control design issue in Definition 1 is then reduced to

an identification problem and the optimization procedure is

still convex if the controller is chosen as in (2). The cost

index to be carried out is then, in the noiseless case,

JN
V R(ρ) =

1

N

N
∑

t=1

‖uLu
(t) − K(ρ)eLe

(t)‖
2

2
, (5)

where uLu
(t) = Lu(q−1)u(t), eLe

(t) = Le(q
−1)e(t) =

Le(q
−1)(M−1 − I)GLyu, and Lu, Le, Ly are suitable data

prefilters. Such filters are required in case the controller

that leads the cost function to zero is not in the controller

set (see [3]), as minimizers of (5) and (4) could not

coincide. Optimal filter selection is defined by the following

Proposition.

Proposition 1: If data prefilters in (5) are selected as

Lu = MΦ−1/2
uu , Le = K−1(ρ)M, Ly = K(ρ)Φ−1/2

uu , (6)

where Φuu is the power spectral density of u and Φ
1/2
uu

denotes a spectral factor of Φuu, then the minimizers of (5)

and (4) aymptotically coincide.

Proof: Write the frequency-wise counterpart of J(ρ)
by means of Parseval’s theorem as

J(ρ) =
1

2π

∫ π

−π

tr [M − (I − M) GK(ρ)]× (7)
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× [M − (I − M) GK(ρ)]
H

dω

(the superscript H indicates the hermitian conjugate of a

complex expression). The asymptotic value of JN
V R(ρ) (i.e.

as N goes to infinity) is instead

JV R(ρ) =
1

2π

∫ π

−π

tr [Lu − K(ρ)Le (I − M)GLy]× (8)

×Φuu [Lu − K(ρ)Le (I − M)GLy]
H

dω.

Expression (7) is obtained by simply substituting filters (6)

in (8).

Since (6) are ρ-dependant, a suboptimal but feasible solu-

tion will be implemented next.

Choose the filters above as Lu = Le = L = M and Ly = I .

This choice is still optimal in case K(ρ), M and G can

commute (e.g. for SISO systems), but it can always be given

a systemic interpretation. Actually, the above filter selection

makes the asymptotic frequency-wise expression of JN
V R(ρ)

equal to a new cost function J̃V R(ρ)

J̃V R(ρ) =
1

2π

∫ π

−π

tr [M − K(ρ)G (I − M)]× (9)

×Φuu [M − K(ρ)G (I − M)]
H

dω,

Notice that (9) is also the frequency-wise convex approxi-

mation of the model-reference cost

J̃MR(ρ) =
∥

∥

∥

(

M − (I + K(ρ)G)
−1

K(ρ)G
)

Φ1/2
uu

∥

∥

∥

2

2

.

(10)

Some concluding reasoning can be made:

• the main difference between the suboptimal filter selec-

tion and the optimal one is that in (10), K(ρ) is chosen

such to make the input complementary sensitivity func-

tion as close as possible to M ;

• in the suboptimal solution, Φ
1/2
uu can be used as a

frequency-weighting function;

• the optimal filter and the one employed in [3] are

different if the proposed method is applied on SISO

systems. This fact is actually not contradictory, as is

due to filter derivation procedure. In [3], Assumption 1

is used only after having computed the optimal filter,

whereas herein the same Assumption is used to refer to

a convex approximation of (1) at the beginning of the

discussion.

In Section V, simulations will show that this setting

guarantees good matching results even if the desired

behavior is formulated via output complementary sensitivity

function and the filter is derived via slightly different

mathematical steps.

IV. THE NOISY CASE

Suppose that there exist a LTI stable transfer matrix

H(q−1) and a white noise w(t) with unitary variance

such that the output of the system G can be written

as y(t) = Gu(t) + Hw(t). When y(t) is noisy,

eL(t) = (I − M)Gu + (I − M)Hw(t) and therefore

also the input signal in controller identification is affected

by noise. Clearly, in these case, simple minimization of (5)

would yield biased results (see [17]). In this Section, the

instrumental variable technique proposed in [18] will be

employed to make the minima of noisy and noiseless cost

criteria be coincident.

Rewrite the controller (2) in a linear regression form as

follows:

u(t) = u(t − 1) + B0eV (t) + . . . + BneV (t − n) =

= u(t−1)+[eT
V (t)⊗I . . . eT

V (t−n)⊗I]ρ = u(t−1)+ϕT
V (t)ρ,

where the last equality defines ϕV (t) and ⊗ denotes the

Kronecker matrix product.

Introduce now the extended instrumental variable ζ(t) (see

[18]) as

ζ(t) =







u(t + l)
...

u(t − l)






,

where l is a sufficiently large integer, and define the decor-

relation cost function as

JN
d (ρ) = (r − Rρ)

T
Ŵ−1 (r − Rρ) , (11)

where

R =
1

N

N
∑

t=1

ζL(t) ⊗ ϕL(t), (12)

r =
1

N

N
∑

t=1

ζL(t) ⊗ uL(t), (13)

ϕL(t) = [eT
L(t) ⊗ I . . . eT

L(t − n) ⊗ I]T ,

ζL(t) = Lζ(t), uL = Lu(t) and Ŵ is a consistent estimate

of the residual covariance matrix

W = E

[

(r − Rρ) (r − Rρ)
T
]

.

In a noiseless setting, if l is large (at limit when it tends

to infinity), ρ = ρo is guaranteed to asymptotically imply

Rρ − r = 0. It follows that the minima of (11) and (5)

coincide and are given by

ρ̂ =
(

RT W−1R
)−1 (

RT W−1r
)

. (14)

At the same time, when data are collected in open-loop

operation, input and noise signals are uncorrelated and

the effect of noise becomes negligible as N → ∞ (see

[18] for further details). Moreover, use of Ŵ allows one

to weight the variance of the parameter estimate and thus

increase the statistical efficiency of the method. This is

not possible, e.g., with “repeated experiment” procedures

like the one used in SISO VRFT, see Example 3 in Section V.

Concerning the design of the identification experiment, it

should be recalled that for eliminating the influence of an

input on a particular output, the experiment has usually to
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be designed such the other outputs are constant while that

input is excited (see discussion in [13]). Intuitively, other

input signals act as additional disturbances for the tuning

of each decoupling term. That is, the addition of other

references deteriorates the signal-to-noise ratio and increases

the variances of the other elements of the controller transfer

function. Nevertheless, separate excitation is not in principle

mandatory for MIMO VRFT.

Notice also that unlike SISO VRFT, in the above

approach only one experiment is needed to make the

estimate insensitive to the effect of noise. Moreover, by

using the estimate of the residual covariance matrix W , the

overall statistical efficiency can be easily improved (ongoing

work is being dedicated to iterative estimation of W and ρ).

The only drawback is that an additional tuning knob l has

to be tuned. Nevertheless, the choice of l is not too critical

and for the estimate to be good it is sufficient that l is large

enough to make R an accurate sample-based estimate of the

correlation matrix of ζL(t) and ϕL(t).
The final MIMO VRFT algorithm can then be summarized

as follows.

Noniterative MIMO data-driven controller tuning

1) collect a set of I/O data from an open-loop exper-

iment on the multivariable plant;

2) set the data prefilter L = M and compute uL(t) =
Lu(t) and eL(t) = LeV (t) = L(M−1 − I)y(t);

3) compute R and r as indicated in (12) and (13);

4) set W = I;

5) compute ρ̂ as in (14);

6) (optional) compute a sample-based estimate of W

and go to point 5.

V. NUMERICAL EXAMPLES

In this Section, three different benchmark control problem

will be addressed to show the effectiveness of the proposed

methodology. Specifically:

• Example 1 investigates the behavior of MIMO VRFT

in case of full and reduced parameterization, when data

are affected by additive noise; a comparison with SISO

VRFT and model-based design is also provided;

• Example 2 compares the proposed method with the

other main direct data-driven techniques, i.e. CbT and

IFT. The same example has been used to present mul-

tivariable CbT and IFT in [13] and [7], respectively;

• Example 3 shows how the technique behaves when

used for SISO systems; as the proposed flexible

transmission system is the same used in [3], the

comparison with SISO VRFT is straightforward and

therefore a fair evaluation of different filtering and

statistical efficiency can be made.

Example 1.

Consider the discrete-time multivariable LTI system intro-

duced in [10]

G(q−1) =

[

0.09516q−1

1−0.9048q−1

0.03807q−1

1−0.9048q−1

−0.02974q−1

1−0.9048q−1

0.04758q−1

1−0.9048q−1

]

(15)

and the reference model

M(q−1) =

[

0.1148q−1
−0.0942q−2

1−1.79q−1+0.8106q−2 0

0 0.1148q−1
−0.0942q−2

1−1.79q−1+0.8106q−2

]

.

A perfect model-following can be achieved by using 4 PI,

2 for reference tracking (main diagonal of the controller

matrix) and 2 for decoupling the different outputs (anti-

diagonal terms). Figure 2 shows that this is actually achieved

by the MIMO VRFT controller, even if the parameters

are estimated using noisy data and Signal-to-Noise Ratio

SNR = 10. In the example, the tuning knob l is found

by trial-and-errors and the final value is 15. In the same

figure, the behavior of 2 SISO PI tuned via standard VRFT

is shown. As obvious, additional decoupling terms increase

the value of the controller in terms of simultaneous reference

following.

Figure 3 shows an analogous comparison on the same system

for the case where only integral controllers are available,

and thus underparameterization occurs. Also in this case,

SNR = 10 and l = 15 and advantages of using MIMO

structure is evident.

Recall also that in both full and underparameterization cases,

2 experiments are required to achieve unbiased parameters

estimate for SISO VRFT, whereas a single experiment is

needed by MIMO VRFT.

0 10 20 30 40
−0.5

0

0.5

1

1.5

0 10 20 30 40
−0.5

0

0.5

1

1.5

Time [s]

Fig. 2. Closed-loop responses to step reference excitation (dotted): M

(dashed), closed-loop with VRFT SISO controller (dash-dot) and closed-
loop with VRFT MIMO controller (solid). Notice that dashed and solid line
are almost overlapped.

The effectiveness of instrumental variable techniques and

data prefilter can be further appreciated in the underparam-

eterization case (integral controller) by looking at Table I,

where (1) is evaluated using the same set of I/O noisy data

for different design solutions, i.e.
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Fig. 3. Closed-loop responses to step reference excitation (dotted): M

(dashed), closed-loop with VRFT SISO controller (dash-dot) and closed-
loop with VRFT MIMO controller (solid).

TABLE I

ACHIEVED PERFORMANCE (1) FOR DIFFERENT VRFT METHODS AND

COMPARISON WITH IDEAL MODEL-BASED DESIGN (Ĝ = G).

Model-based SISO MIMO (no L no IV)

0.816·10−9 0.2472 0.3523

MIMO (no IV) MIMO (no L) MIMO

0.3832 0.0519 0.0214

• ideal model-based controller, that is the controller in-

troduced in Definition 1 when additionally the available

model of the plant Ĝ = G: this case is not realistic in a

data-driven setting but it is useful herein as it represents

the ideal lower bound of any data-driven methodology;

• SISO VRFT tuning of two decoupled integral con-

trollers;

• direct minimization of (5) from noisy data without

filtering and with no instrumental variable;

• direct minimization of (5) from noisy data with L-

prefiltering but without instrumental variable;

• MIMO VRFT tuning of integral controllers from unfil-

tered data;

• complete MIMO VRFT tuning of integral controllers.

From Table I, it is clear that in this example, the rejection

of the noise effect is the key issue. Nonetheless, a better

approximation of (4) via data-prefiltering further increases

the closed-loop performance.

Example 2.

In this example, a comparison between existing direct data-

driven procedures for MIMO controller tuning, i.e. IFT and

CbT, is presented. The simulation study considers the tuning

of a multivariable PI controller for a LV100 gas turbine

engine (see [19]). The same example has been already

employed in [13] for providing a comparison between CbT

and IFT with simulation conditions given in [7]. The plant

is described in continuous time and has 5 states: gas gen-

erator spool speed, the power output, temperature, fuel flow

actuator level and variable area turbine nozzle actuator level.

The input signals are the fuel flow and variable area turbine

nozzle and the output signals are gas generator spool speed

and temperature. The measurement noise is zero mean white

noise with variance 0.0025I and the reference model reads

M(q−1) =

[

0.4q−1

1−0.6q−1 0

0 0.4q−1

1−0.6q−1

]

.

For this problem, [7] provides, after 6 iterations and 30

experiments, the IFT controller

KIFT (q−1) =

[

0.248−0.03q−1

1−q−1

0.38−0.199q−1

1−q−1

16.47−15.91q−1

1−q−1

0.063−0.054q−1

1−q−1

]

whereas [13] gives, after 8 iterations and 8 experiments, the

CbT controller

KCbT (q−1) =

[

0.3636−0.09866q−1

1−q−1

0.3653−0.2691q−1

1−q−1

18.69−18.16q−1

1−q−1

−3.453+2.652q−1

1−q−1

]

.

If a single set of 5000 data-points with the same SNR as

above is available, the MIMO VRFT method yields the

following controller:

KV RFT (q−1) =

[

0.3309−0.04894q−1

1−q−1

0.4288−0.3368q−1

1−q−1

19−18.44q−1

1−q−1

−3.143+2.241q−1

1−q−1

]

.

A closed-loop experiment without noise is performed and

illustrated in Figure 4 to highlight the main differences

among the three controllers. As already noticed in [13], the

IFT controller does not succeed in completely decoupling

the closed-loop system and satisfying the model-following

specification for the temperature loop. On the contrary,

CbT guarantees an almost perfect matching of the required

reference model. Concerning MIMO VRFT, the behavior is

very similar to CbT, except for the decoupling effect of the

second loop, that is worse for the proposed method. However,

the result of this example is very satisfactory, as MIMO

VRFT yields good performance with a single-set of I/O

data collected in open-loop operation. Moreover, differences

between the ideal and the actual tracking behavior are so

small that, even in case they cannot be accepted for closed-

loop operation, the VRFT controller could still constitute a

useful tool to initialize the iterative CbT procedure.

Example 3.

In the last example, the MIMO VRFT is employed to

tune a SISO controller to be compared with the standard

VRFT algorithm introduced in [3]. Specifically, the flexible

transmission system used to present the VRFT method in

[3] is considered.

The main differences between the methods are the data

prefilter and the instrumental variable employed to counteract

the effect of noise. To compare the two methods, 100 Monte-

Carlo simulation runs are performed (variance of closed-loop
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Fig. 4. Comparison between existing iterative methods and VRFT for
LV100 control design in a noise-free context. Reference signals (dotted) and
achieved responses: with IFT controller (light dashed), with CbT controller
(dash-dot) and with MIMO VRFT controller (solid). The desired response
is also shown (dark dashed) but it is almost completely overlapped with
CbT.

TABLE II

ACHIEVED EXPECTED VALUE OF JMR FOR 90/100 STABILIZING SISO

VRFT CONTROLLERS AND FOR 100/100 STABILIZING MIMO VRFT

CONTROLLERS.

SISO MIMO

E[JMR] 0.2200 0.0840

systems become visible) and the expected value of the final

objective JMR is computed. For MIMO VRFT, the output of

the plant is perturbed in each run by a different realization of

the white Gaussian sequence, whereas the input signal is for

all runs the same white noise sequence of length 1000. For

SISO VRFT, the same experimental conditions hold, except

for the fact that the input sequence has length 500, since two

sets of I/O data are required to use “repeated experiments”

instrumental-variable technique (the total amount of data is

therefore the same for both the cases, see [3]).

In Table II, it is evident how extended instrumental

variables increase the statistical efficiency of the controller

estimate. Moreover, in 10 of 100 runs of SISO VRFT, the

controllers unstabilize the system, while all 100 controllers

given by MIMO VRFT are stabilizing.

VI. CONCLUSIONS

In this paper, a direct method to design multivariable

controllers from data without identifying a model of the plant

is proposed and analyzed. Unlike other existing methods, the

proposed technique is noniterative and requires a single set of

I/O open-loop collected data. The algorithm is based on the

Virtual Reference Feedback Tuning philosophy but employs

an extended instrumental variable technique to counteract

noise and a different prefilter is derived. The MIMO nonitera-

tive technique has been tested on three benchmark examples,

already used to test and validate other data-driven method-

ologies. The examples have shown a very good behavior

of the proposed technique even in noisy environment and

with underparameterized controller structures. Moreover, the

method shows higher statistical efficiency than standard

VRFT if applied on a SISO system. The only drawback

is that an additional tuning knob, i.e. the length of the

instrumental variable vector, has to be chosen.

Future work will focus on variance analysis and optimal

input design for MIMO VRFT. Moreover, use of iterative

computation of variance weighting W and controller param-

eters ρ will be investigated to improve the quality of the

closed-loop matching.
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