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Abstract— The paper formulates the concept of persistence of
excitation for discrete-time linear switched systems. In addition,
the paper provides sufficient conditions for an input signal to
be persistently exciting. Persistence of excitation is formulated
as a property of the input signal, and it is not tied to any
specific identification algorithm. The results of the paper rely
on realization theory and on the notion of Markov-parameters
for linear switched systems.

I. INTRODUCTION

The paper formulates the concept of persistence of excita-
tion for discrete-time linear switched systems (abbreviated by
DTLSSs). DTLSSs are one of the simplest and best studied
classes of hybrid systems, [22]. A DTLSS is a discrete-time
switched system, such that the continuous sub-systems are
linear. The switching signal is viewed as an external input,
and all linear systems live on the same input-output- and
state-space.

We define the notion of persistence of excitation for input
signals as follows. Fix an input-output map and an input
signal. We call the input signal persistently exciting for
this input-output map, if the response of this map to that
particular input determines the map uniquely. That is, the
response of the system to a persistently exciting input is
sufficient to predict the response of the system to any input.

Persistence of excitation is essential for system identifica-
tion and adaptive control. Normally, the system of interest is
tested only for one input sequence. In system identification
this is due to practical limitations, and in adaptive control
this is implied by the problem formulation. The objective is
to find a model of the system based on the response to the
chosen input signal. However, the knowledge of a model of
the system implies that the response to any input signal is
known. Hence, persistence of excitation of the input signal
is a prerequisite for finding such a model.

Persistence of excitation is a joint property of the input
and of the system. A particular input might be persistently
exciting for a particular system and it might fail to be
persistently exciting for another system. It is not even clear
if every system admits a persistently exciting input.

In the existing literature, persistence of excitation is often
defined as a specific property of the measurements which
is sufficient for the correctness of some identification al-
gorithm. In contrast, in this paper we propose a definition
of persistence of excitation which is necessary for the
correctness of any identification algorithm. Obviously, the
two approaches are complementary. In fact, we hope that the
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results of this paper can serve as a starting point to derive
persistence of excitation conditions for specific identification
algorithms.

Contribution of the paper We define persistence of exci-
tation for finite input sequences and persistence of excitation
for infinite input sequences.

We will show the following. Assume that f is an input-
output map which is realizable by a reversible’ DTLSS.
Then there exists a finite input sequence which is persistently
exciting for the input-output map f. Moreover, we present a
procedure for constructing such an input sequence.

Furthermore, we show that there exists a class of infi-
nite input sequences, such that the following holds. Each
sequence from this class is persistently exciting for all the
input-output maps which are realizable by a stable DTLSS.
The conditions which the input sequence must satisfy is
that (a) each finite sequence of discrete modes occurs there
infinitely often (i.e. the switching signal is rich enough) and
(b) that the continuous input is a colored noise. Hence, this
result is consistent with the classical result for linear systems.

It might be appealing to interpret the conditions above as
ones which ensure that

« one stays in every discrete mode long enough and,
o the continuous input is persistently exciting in the
classical sense.

One could then try to identify the linear subsystems sepa-
rately and merge the results. However, this approach is in
general incorrect. The reason for this is that there exists a
broad class of input-output maps which can be realized by a
linear switched system but not by a linear switched system,
linear subsystems of which are minimal, [19]. The above
scheme would not work for such systems. In fact, for such
systems one has to test the systems response not only for
each discrete mode, but for each combination of discrete
modes.

The main idea behind the definition of persistence of
excitation and the subsequent results is as follows. From
realization theory for DTLSSs [19] we know that the
knowledge of (finitely many) Markov-parameters is sufficient
for computing a DTLSS state-space representation of the
input-output map. Conversely, the Markov-parameters can
always be computed from the matrices of a DTLSS state-
space representation. We call an input sequence persistently
exciting, if the Markov-parameters of the input-output map

The formal definition of reversibility will be presented later
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can be computed from the response of the map to that
input. Combined with the previous remark, it means that
one can compute a DTLSS representation of the input-output
map from its response to a persistently exciting input. The
latter means that the response to a persistently exciting input
uniquely determines the input-output map.

Motivation of the system class The class of DTLSSs
is the simplest and perhaps the best studied class of hybrid
systems. In addition to its practical relevance, it also serves
as a convenient starting point for theoretical investigations. In
particular, any piecewise-affine hybrid system can be viewed
as a feedback interconnection of a DTLSS with an event
generating device. Hence, identification of a piecewise-affine
system is related to the problem of closed-loop identification
of a DTLSS. For the latter, it is indispensable to have a good
notion of persistence of excitation for DTLSSs.

Related work Identification of hybrid systems is an active
research area, with several significant contributions [8], [14],
[15], [24], [11], (5], [12], [101, [8], [3], [2], [21], [6], [23],
[16], [1]. While progress has been made in finding identifi-
cation algorithms, the fundamental theoretical properties of
these algorithms are only partially understood. Persistence of
excitation of hybrid systems were already addressed in [25],
[24], [23], [9]. However, the conditions of those papers are
more method specific and their approach is quite different
from the one we propose. For linear systems, persistence of
excitation has thoroughly been investigated, see for example
[13], [26] and the references therein.

Outline of the paper §II presents the formal definition
of DTLSSs and it formulates the major system-theoretic
concepts for this system class. §III presents a brief overview
of realization theory for DTLSSs. §IV presents the main
contribution of the paper.

Notation Denote by N the set of natural numbers including
0. The notation described below is standard in automata
theory, see [4]. Consider a set X which will be called the
alphabet. Denote by X* the set of finite sequences of ele-
ments of X. Finite sequences of elements of X are referred
to as strings or words over X . Each non-empty word w is of
the form w = aqas - - - a for some aq,as9,...,ar € X. The
element a; is called the ith letter of w, fori =1,...,k and k
is called the length of w. We denote by e the empty sequence
(word). The length of word w is denoted by |w]|;note that
le| = 0. We denote by X the set of non-empty words, i.e.
XT = X*\ {e}. We denote by wv the concatenation of
word w € X* with v € X*. For each j = 1,...,m, ¢; is
the jth unit vector of R™, i.e. e; = (01,5,-..,0n,4), 0 is
the Kronecker symbol. For each z € R, n > 0 we denote
the Euclidean norm of x by ||z]|s.

II. LINEAR SWITCHED SYSTEMS

In this section we present the formal definition of DTLSSs
along with a number of relevant system-theoretic concepts
for DTLSSs. The presentation is based on [19], [17].

Definition 1: A discrete-time linear switched system (ab-
breviated by DTLSS), is a discrete-time control system of

the form

» { Ti+1 =
Yt =
Here Q = {1,..., D} is the finite set of discrete modes, D
is a positive integer, q; € () is the switching signal, u; € Ris
the continuous input, y; € R? is the output and 4, € R"*",
B, € R*™*™, C, € RP*"™ are the matrices of the linear
system in mode ¢ € Q.
Throughout the section, > denotes a DTLSS of the form (1).
The inputs of ¥ are the continuous inputs {u;}5°, and the
switching signal {q;}32,. The state of the system at time ¢
is xy. Note that any switching signal is admissible and that
the initial state is assumed to be zero. We use the following
notation for the inputs of 3.
Notation 1 (Hybrid inputs): Denote U = Q x R™.

We denote by U* (resp. UT) the set of all finite (resp. non-
empty and finite) sequences of elements of /. A sequence

Ag, x4 + Bg,uy and zp = 0
th.’Et.

(D

w = (quUO) e (Qt7ut) c Z/{+, t Z 0 (2)

describes the scenario, when the discrete mode ¢; and the
continuous input u; are fed to X at time ¢, for ¢ =0,...,t.

Definition 2 (State and output): Consider a state x;,;: €
R™. For any w € U of the form (2), denote by xs(Z;nis, w)
the state of ¥ at time ¢ + 1, and denote by ys (zini, w) the
output of ¥ at time t, if ¥ is started from x;,;; and the
inputs {u;}!_, and the discrete modes {¢;}!_, are fed to
the system.

Definition 3 (Input-output map): The map yx : UT —

RP, Vw € U : ys(w) = y(0,w), is called the input-output
map of X.
That is, the input-output map of X maps each sequence w €
UT to the output generated by X under the hybrid input w,
if started from the zero initial state. The definition above
implies that the input-output behavior of a DTLSS can be
formalized as a map

f:uUut —RP. 3)

The value f(w) for w of the form (2) represents the output of
the underlying black-box system at time ¢, if the continuous
inputs {u;}!_, and the switching sequence {q;}!_, are fed
to the system.

Definition 4 (Realization): The DTLSS X is a realization
of an input-output map f of the form (3), if f equals the
input-output map of ¥, i.e. if f = yx.

For the notions of observability, reachability and span-
reachability of DTLSSs we refer the reader to [19], [22].

Definition 5 (Dimension): The dimension of X, denoted
by dim ¥, is the dimension n of its state-space.

Definition 6 (Minimality): Let f be an input-output map.
Then X is a minimal realization of f, if ¥ is a realization
of f, and for any DTLSS 3} which is a realization of f,
dim¥ < dim 3.

III. OVERVIEW OF REALIZATION THEORY

Below we present an overview of those results on realiza-
tion theory of DTLSSs which are relevant for defining the
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notion of persistence of excitation. For more details on the
topic see [19].

In the sequel, ¥ denotes a DTLSS of the form (1), and
f denotes an input-output map f : Ut — RP. For our
purposes the most important result is the one which states
that a DTLSS realization of f can be computed from the
Markov-parameters of f. The reason why this is so important
is that we are going to use the notion of Markov-parameters
to define the concept of persistence of excitation.

In order to present this result, we need to define the
Markov-parameters of f formally.

Definition 7 (Markov-parameters): Denote Q** ={w e
Q* | |w| > 2}. Define the maps Sjj : Q¥ — RP,
Jj=1,...,m as follows; for any v = 01 ...0), € Q" with
01,...,0% € @, and for any ¢, g € Q,

F((a0:€5)(g,0)) if v =e

F((g0,€5)(1,0) ... (01, 0)(g, 0))if [v] > 1.
“4)

with e; € R™ is the vector with 1 as its jth entry and zero

everywhere else. For each w € Q*, define the matrix S¥ (w)

as follows

87 (w) = 5] (w)

S (qovq) = {

St (w)] € RP.

With the notation above, the Markov-parameter M7 (v) of
f indexed by the word v € Q* is the following pD x Dm
matrix

St (1v1), . ST(Dv1)
F(w2), -, S/(Dv2)

M (v) = : . : : ®)
St(1wD), ---, SH(DuD)

Note that the values of the Markov-parameters can be
obtained from the values of f. The matrices S/ (w) can be
viewed as impulse responses for the switching sequence w.
The Markov-parameter M7 (v) is then just the collection of
the impulse responses for the switching sequences of the
form gguvq for all the possible values of q,qy € Q. That is,
we vary the first and the last discrete mode, and we assume
that between the first and the last discrete modes the system
switches according to v.

The interpretation of S7/(w) will become more clear
after we define the concept of a generalized convolution
representation. For the latter, we need the following notation.

Notation 2 (Sub-word): Consider the sequence v =
G-q € QT q,....,q: € Q,t > 0. For each j, k ¢
{0,...,t}, define the word v;;, € Q" as follows; if j > k,
then v;, = ¢, if j = k, then v;; = ¢; and if j < K,
then v; 1, = q;qj41 - - qx. That is, vy is the sub-word of v
formed by the letters from the jth to the kth letter.

Definition 8 (Convolution representation): The input-
output map f has a generalized convolution representation
(abbreviated as GCR), if for all w € U™ of the form (2),
f(w) can be expressed as follows.

t—1

f(w) = Z Sf(Qk CVkg1fe—1 Gt Uk

k=0

Note that if f has a GCR, then the Markov-parameters of
f determine f uniquely. In fact, existence of a GCR means
that the response of f to an input is a linear combination
of the continuous inputs, and the Markov-parameters serve
as coefficients of this linear combination. The existence of a
GCR is a necessary condition for realizability by DTLSSs.

The concept of a GCR is a generalization of the known
fact that the response y; of a linear system to the inputs
ug, - . ., Uz is of the form

t
Yt = Z M _pup,
k=0

where M is the jth Markov-parameter of the system. Note
that in our case, M, is assumed to be zero, in order to
avoid excessive notation. Recall that if the linear input-output
map has a state-space representation (A, B, C'), then the jth
Markov-parameters satisfies M; = CA’~'B for all j > 1.

In the same way, if f is realizable by a DTLSS, then the
Markov-parameters of f can be expressed as products of the
matrices of its DTLSS realization. In order to formulate this
result more precisely, we need the following notation.

Notation 3: Consider the collection of n x n matrices A,
o € Q. For any w € Q*, the n X n matrix A,, is defined
as follows. If w = ¢, then A, is the identity matrix. If w =
01090 € Q*, 01, ,0r € Q, k> 0, then

Aw:AakAak_l"'Aay (6)
Lemma 1: The map f is realized by the DTLSS ¥ if and
only if f has a GCR and for all v € Q*, ¢,qo € Q,

S (qovq) = CyA, By, . 7
Next, we define the concept of a Hankel-matrix. Similarly
to the linear case, the entries of the Hankel-matrix are formed
by the Markov parameters, and the finiteness of the rank
of the Hankel-matrix will be the necessary and sufficient
criterion for the existence of a finite-dimensional state-space
representation.
For the definition of the Hankel-matrix of f, we will use
lexicographical ordering on the set of sequences Q*.
Remark 1 (Lexicographic ordering): Recall that @) =
{1,...,D}. We define a lexicographic ordering < on Q*
as follows. For any v,s € Q*, v < s if either |v| < |s]

or 0 < |v|] = |s|, v # s and for some | € {1,...,[s|},
v; < §; with the usual ordering of integers and v; = s; for
i =1,...,1 — 1. Here v; and s; denote the ith letter of v

and s respectively. Note that < is a complete ordering and
Q* = {v1,v2,...} with v < v2 < .... Note that v; = € and
foralli € N, g € Q, v; < vq.

Definition 9 (Hankel-matrix): Consider the lexicographic
ordering < of * from Remark 1. Define the Hankel-matrix
Hy of f as the following infinite matrix

MY (viv1) M (vavy) MY (vpvy)
Mf(ulvg) Mf(’l}gvg) Mf(vkvg)
Hf =

MY (vivs) M (vvs) M¥(vpvg) -+ >
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i.e. the pD x mD block of H in the block row ¢ and block
column j equals the Markov-parameter M7 (v;v;) of f. The
rank of Hy, denoted by rank Hy, is the dimension of the
linear span of its columns.

Recall from the definition of the Hankel-matrix for linear
systems that it is of the form H = (Mk;+l—1)ﬁ:1, where
M; is the jth Markov-parameter of the system. Hence, for
D =1, the definition above coincides with the linear case.
The main result on realization theory of DTLSSs can be
stated as follows.

Theorem 1 ([19]): 1) The map f has a realization by
a DTLSS if and only if f has a GCR and rank H; <
+o0.

2) A minimal DTLSS realization of f can be constructed
from Hy and any minimal DTLSS realization of f has
dimension rank Hy.

3) A DTLSS ¥ is a minimal realization of f if and only if
Y is span-reachable, observable and it is a realization
of f. Any two DTLSSs which are minimal realizations
of f are isomorphic 2.

Note that Theorem 1 shows that the knowledge of the
Markov-parameters is necessary and sufficient for finding
a state-space representation of f. In fact, similarly to the
continuous-time case [20], we can even show that the knowl-
edge of finitely many Markov-parameters is sufficient. This
will be done by formulating a realization algorithm for
DTLSSs, which computes a DTLSS realization of f based
on finitely many Markov-parameters of f.

In order to present the realization algorithm, we need the
following notation.

Notation 4: Consider the lexicographic ordering < of Q*
and recall that Q* = {vy,vs,...,} where v < wvg---.
Denote by N(L) the number of sequences from Q* of length
at most L. It then follows that |v;| < L if and only if
1 < N(L).

Definition 10 (Hy 1 pr sub-matrices of Hy): For L, K €
N define the integers I;, = N(L)pD and Jx = N(K)mD
Denote by H 1 x the following upper-left I;, x Jgx sub-
matrix of Hy,

MY (viv1) M (vavy) Mf(UN(K)Ul)
WEAOR™S M7 (vavg) Mf(UN(K)W)
MY (vione)) M7 (vavnr)) MY (vn(xyon(r))

Notice that the entries of Hy 1 r are Markov-parameters
indexed by words of length at most L + K, ie. Hy k
is uniquely determined by {M7 (v;)}EHO,

The promised realization algorithm is Algorithm 1, which
takes as input the matrix H ¢y n+1 and produces a DTLSS.
Note that the knowledge of Hy n w41 is equivalent to
the knowledge of the finite sequence {M/f (vl)}i(f NFD of
Markov-parameters. The Algorithm 1 is an extension of the
well-known Kalman-Ho algorithm. Its correctness is stated

below.

2see [19] for the definition of isomorphism between DTLSSs

Theorem 2: 1If rank Hy n n = rank Hy, then Algorithm
1 returns a minimal realization X of f. The condition
rank Hy n v = rank Hy holds for a given N, if there exists
a DTLSS realization ¥ of f such that dim>» < N + 1.
The proof of Theorem 2 is completely analogous to its
continuous-time counterpart [20]. Theorem 2 implies that if f
is realizable by a DTLSS, then a minimal DTLSS realization
of f is computable from finitely many Markov-parameters,
using Algorithm 1. In fact, if f is realizable by a DTLSS of
dimension n, then the first N(2n — 1) Markov-parameters
{Mm/ (vi)}i(lznfl) uniquely determine f.

Algorithm 1
Inputs: Hankel-matrix Hy v n1.
Output: DTLSS X

1: Let n = rank Hy n n4+1. Choose a tuple of integers
(41,...,%y) such that the columns of Hy n y1 indexed
by 41,...,%, form a basis of ImHy n n+1. Let O be
the Iy X n matrix formed by these linearly independent
columns, i.e. the rth column of O equals the 7,th column
of Hf yv+1. Let R € R™*/N+1 be the matrix, rth
column of which is formed by coordinates of the rth
column of Hy n n41 With respect to the basis consisting
of the columns iy,...,4i, of Hyn n41, fOr every r =
1,...,Jn41. It then follows that H¢ y y4+1 = OR and
rank R = rank O = n.

2: Define R € R"*’~ as the matrix formed by the first
Jn columns of R.

3: Foreach g € Q, let R, € R™*/N be such that for each
i =1,...Jn, the ith column of R, equals (¢)th column
of R. Here r(i) € {1,..., Jy4+1} is defined as follows.
Consider the decomposition i = (r — 1)mD + z for
some z = 1,...,mD and r = 1,... ,N(N). Consider
the word v,¢ and notice that |v,.q| < N + 1. Hence,
vpq = vq for some d = 1,...,N(N + 1). Then define
r(i) as r(i) = (d — 1)mD + z.

4: Construct X of the form (1) such that

[Bi....,Bp] =
the first mD columns of R
ct ¢ Cg]T = the first pD rows of O

VgeQ: A, =R,R"

where R is the Moore-Penrose pseudoinverse of R.
5: Return Xp

The intuition behind Algorithm 1 is the following. The
state-space of the DTLSS Xy returned by Algorithm 1 is
an isomorphic copy of the space spanned by the columns
of Hy n n. The isomorphism is determined by the matrix
R. The columns of By, ¢ € @ are formed by first Dm
columns of Hy y n. The rows of the matrices Cy, ¢ € Q are
formed by the first pD rows of Hy . Finally, the matrix
Ay, g € @ is the matrix of the shif(t—l)ike operator, which

N(L
i=1

maps a block-column { M7 (v;v;)}

block-column {Mf(vqui)}i(f) of Hf N.N+1-

of Hf,N,N to the

1843



IV. MAIN RESULTS OF THE PAPER

The main idea behind our definition of persistence of
excitation is as follows. The measured time series is persis-
tently exciting, if from this time-series we can reconstruct the
Markov-parameters of the underlying system. Note that by
Theorem 2, it is enough to reconstruct finitely many Markov-
parameters. This means that our definition of persistence of
excitation is also applicable to finite time series.

In order to present our main results, we will need some
terminology.

Definition 11 (Output time-series): For any input-output
map f and for any finite input sequence w € UT we denote
by O(f,w) the output time series induced by f and w, i.e.
if w is of the form (2), then O(f,w) = {y;}i_,, such that
yi = f((qo,uo) -+ (qi,u;)) forall i =0,1,...,t.

Definition 12 (Persistence of excitation): The finite se-
quence w € U is persistently exciting for the input-output
map f, if it is possible to compute the Markov-parameters
of f from the data (w, O(f,w)).

Remark 2 (Interpretation): The input w is persistently ex-
citing, if and only if there exists an algorithm which computes
a DTLSS realization of f from the time series (w,O(f,w)).

Indeed, assume that w is persistently exciting and that f
admits a DTLSS realization of dimension at most n. Then
the Markov-parameters {M ¥ (vi)}i(lz "1 can be computed
from the data (w,O(f,w)). By Theorem 2, one can use
Algorithm 1 to compute a DTLSS realization of f from
(M7 (i) 2T

Conversely, assume that there exists an algorithm which
can correctly find a DTLSS realization of f from
(w, O(f,w)). Then by (7) all the Markov-parameters of
f can be computed from that DTLSS realization. Hence,
according to our definition, w is persistently exciting.

Next, we define persistence of excitation for infinite se-
quence of inputs. To this end, we need the following notation.

Notation 5: We denote by U* the set of infinite sequences
of hybrid inputs. That is, any element w € U“ can be
interpreted as a time-series w = {(qi,u)},0g, @t € Q,
u € R™, t > 0. For each N € N, denote by wy
the sequence formed by the first N elements of w, i.e.
wy = (go, uo) -+ (N, uN).

Definition 13 (Asymptotic persistence of excitation): An
infinite sequence of inputs w € U* is called asymptotically
persistently exciting for the input-output map f, if the
following holds. For every sufficiently large N, we can
compute from (wpx, O(f, wy)) asymptotic estimates of the
Markov-parameters of f. More precisely, for every N € N,
we can compute from (wy,O(f,wy)) some matrices
{M(v)}peq- such that limy o, M1 (v) = M7 (v) for all
v € Q*. When clear from the context, we will use the term
persistently exciting instead of asymptotically persistently
exciting.

Remark 3 (Interpretation): The interpretation of asymp-
totic persistence of excitation is as follows. The infinite
input sequence w is asymptotically persistently exciting for
f, if and only if there exists an asymptotically consistent

algorithm for computing a DTLSS realization of f from
its response to w. By asymptotically consistent algorithm
we mean the following. For each integer N > 0, the
algorithm computes a DTLSS ¥y from the finite data
(wn, O(f,wn)), and the DTLSSs X5 converge to a true
DTLSS realization ¥ of f, as N — oo. By convergence of
¥ n to ¥ we mean convergence of the system matrices, i.e.
the state-space dimension of ¥ and ¥ are the same, and
it AY,BY.CY, q € Q are the matrices of ¥ and ¥ is of
the form (1), then A; = limy o0 Aév, By =limy_o0 B(JZV,
Cy =limy_o C’é\’.

Indeed, assume that w € U* is asymptotically persistently
exciting. Then for each NV we can compute from the time-
series (wy, O(f,wx)) an approximation {MI{[(’U)}UGQ* of
the Markov-parameters of f. Suppose that f is realizable by a
DTLSS of dimension n and we know the indices (i1, ..., ;)
of those columns of Hy,_1, which form a basis of the
column space of Hy,, 1. Let HfY, , , be the matrix which

is constructed in the same way as H¢ 1 », but with M{, (v)
instead of the Markov-parameters M/ (v). Then each entry of
H J{-\fn_l’n converges to the corresponding entry of Hy ,_1 .
Modify Algorithm 1 by fixing the choice of columns to
(i1,...,1y,) in the first step. It is easy to see that the modified
algorithm represents a continuous map from the input data
(finite Hankel-matrix) to the output data (matrices of a
DTLSS). For sufficiently large N, the columns of H}\fn_177l
indexed by (i1, .. .,%,) also represent a basis of the column
space of H }\,’nfl,n‘ If we apply the modified Algorithm 1
to the sequence of matrices }\_”n_l_’n, we obtain a sequence
of DTLSSs Y. Then the parameters of Xy converge to
the parameters of the DTLSS ¥ as N — oo, where X is
the DTLSS which we obtain by applying Algorithm 1 to
Hy 1. By Theorem 2, X is a realization of f.

Conversely, assume that there is an algorithm which

from the sequence (wy,O(wy, f)) computes a sequence
of DTLSSs ¥ such that ¥ converge to a true DTLSS re-
alization X of f, as N — oco. Then for each N, compute the
Markov-parameter M ]{[(U), v € Q* of the input-output map
of X, using (7). Notice that M J]:,(v) depends continuously
on the parameters of X, and the parameters of X converge
to those of X. Hence, using the fact that ¥ is a realization
of f and (7), we obtain limy_,o My (v) = M(v). Hence,
in this case w is asymptotically persistently exciting.
The discussion above implies that if w is a finite or infinite
input signal and w is persistently exciting for f, then
Algorithm 1 can serve as an identification algorithm for
computing a DTLSS realization of f.

We will show that for every reversible DTLSS there exists
some input which is persistently exciting. In addition, we
present a class of inputs which are persistently exciting for
any input-output map f realizable by a stable DTLSS.

A. Persistently exciting input for specific systems

Note that from (4) it follows that the Markov-parameters
of f can be obtained from finitely many input-output data.
However, the application of (4) implies evaluating the re-
sponse of the system to different inputs, while started from
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a fixed initial state. In order to simulate this by evaluating
the response of the system to one single input (which is then
necessarily persistently exciting), one has to provide means
to reset the system to its initial state. In order to be able to
do so, we restrict attention to reversible DTLSSs.

Definition 14: A DTLSS ¥ of the form (1) is reversible,
if for every discrete mode g € (), the matrix A, is invertible.
Reversible DTLSSs arise naturally when sampling
continuous-time linear switched systems.

Theorem 3: Consider an input-output map f. Assume that
f has a realization by a reversible DTLSS. Then there exists
an input w € U™ such that w is persistently exciting for f.

Proof: [Sketch of the proof] The main idea behind

the proof of Theorem 3 is as follows. If f admits a
DTLSS realization of dimension n, then the finite sequence
(M7 (0;)}NG"™Y of Markov-parameters determine all the
Markov-parameters of f uniquely. Hence, in order for a
finite input w to be persistently exciting for f, it is sufficient
that {Mf (vz)}i(f "1 can be computed from the response
(w, O(f,w)).

Note that (4) implies that {M7 (vl)}N(l2 "1 can be com-
puted from {f(s) | s € S}, where

S = {(qovej)(alvo) v (U\vi|70)(q’0)
Vi=071""" ;O—|v,;\€Q7
N(2n — 1)}

€u+ | qo,q € Q7
O'\v71|7017-'~

j=1,....mi=1,...,

Hence, if for each s € S there exists a prefix p of w such
that f(s) = f(p), then this w will be persistently exciting.

One way to construct such a w is to find for each s € S
an input s~ € U+ such that

YoeUt : f(ss

That is, the input s~! neutralizes the effect of the input s. We
defer the construction of the input s~ to the end of the proof.
Assume for the moment being that such inputs s~ exist. Let
S = {s1,...,84} be an enumeration of S. Then it is easy
to see that f(s1s; 's2) = f(s2), f(s157 's255 's3) = f(s3),
etc. Hence, if we define

-1 -1
W= 815] ---54-154_15d,

then each f(s), s € S can be obtained as a response of f to
a suitable prefix of w. Hence, w is persistently exciting.

It is left to show that s=! exists. Consider a reversible
realization ¥ of f. Then the controllable set and reachable
set of X coincide by [7]. Hence, from any reachable state
x of 3, there exists an input w(x) such that w(z) drives
¥ from z to zero, i.e. xx(x,w(x)) = 0. For each s € S,
let z(s) = zx(0,s) and define s™! = w(x(s)) as the input
which drives z(s) back to the initial zero state. ]

The construction of the persistently exciting w from The-
orem 3 requires the knowledge of a DTLSS realization of
f. Below we present a subclass of input-output maps, for
which the knowledge of a state-space representation is not
required to construct a persistently exciting input.

Definition 15: Fix amap .7 : U > a— a ' € U. A
input-output map f is said to be resettable with respect to
the map .~ 1, if for all a € U, s,w € U*, |sw| > 0,

f(saa ™ w) = f(sw).
Intuitively, f is resettable with respect to .~1, if the effect of
any input @ = (g, ) on the initial state can be neutralized
by the input o~
Theorem 4: If f is resettable with respect to .=, then a
persistently exciting input sequence w can be constructed for
f without the knowledge of a DTLSS realization of f.
Proof: [Proof of Theorem 4] The proof differs from that
of Theorem 3 only in the definition of s~! for each s € S.
More precisely, for each s = (qo,uo) - - (g1, ut) € S define

-1

S = (Qt,ut)_ -1

1((]t717Ut71)_1 - (qo, uo)

B. Universal persistently exciting inputs

Next, we discuss classes of inputs which are persis-
tently exciting for all input-output maps realizable by stable
DTLSSs.

Definition 16 (Persistence of excitation condition): An
infinite input w = {(g¢, ut) }72, € U* satisfies PE condition,
if for any word v € QT the limits below exist and satisfy
the following conditions,

N
]\/lgnoo N tz;utﬂ“t X(qeqe41 - “iylo|-1 = v) =0,

lim — Zut jUt X(Qt Gt—j+1 " Qe—jt|v|—1 = v) =0,

N—ooo N
=Jj

def
= lim — wul > 0,
N—oo N Z Kt
def
Ty = 1\}51100 *ZX QtGt+1 " Qeglo|—1 = v) > 0,
N
]\;E»noo ~ tz;utut X(Qtqt41 - Qg jo|—1 = V) = TR,

where x is the indicator function, i.e. x(A) =1 if A holds
and x(A) = 0 otherwise. Note that by R > 0 we mean that
‘R is a strictly positive definite m X m matrix.

Remark 4: Note that if w € U* satisfies the conditions
of Definition 16, then the switching signal is rich enough,
i.e. any sequence of discrete modes occurs in the switching
signal infinitely often. Relaxations of the requirement will
be discussed at the end of this section.

Remark 5 (Relationship with stochastic processes): Fix a
probability space (€2, F,P) and consider discrete-time
stochastic processes u; : 2 — R™ and q, : @ — @ with
values in R and @ respectively, such that the following
conditions hold.

o The process (u,q,) is stationary and ergodic.

o The processes u, and q, are independent (i.e. the o-

algebras generated by {u;}2, and by {q,}2, are
independent).
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o The stochastic process u; is zero-mean, u; and u, are
uncorrelated for s # ¢, and E[u;ul] = R > 0, with
E[] denoting the expectation operator.

o Foreach v € QF, m, = P(q; - Qi pp|—1 = v) > 0.

It then follows that almost all sample paths of (uy, q,) satisfy
the PE condition of Definition 16. That is, there exists a set
A € F, such that P(A) = 0 and for all w € Q\ A, the
sequence w = {(q,ur) = (q,(w),us(w))}52, satisfies the
PE condition.

Remark 6: If u; is a white-noise Gaussian process and if
the variables q, are uniformly distributed over Q (i.e. P(q, =
q) = ﬁ for all ¢ € Q) and are independent from each other
and from {u,}S2,, then w; and q, satisfy the conditions of
Remark 5 and hence almost any sample path of u; and q,
satisfies the PE condition of Definition 16.

We will show that input sequences which satisfy the
conditions of Definition 16 are asymptotically persistently
exciting for a large class of input-output maps. The main idea
behind the theorem is as follows. Consider a DTLSS X which
is realization of f, and suppose we feed a stochastic input
{q;,u;} into . Then the state x; and the output response
y, of £ will also be stochastic processes. Suppose that
{q,,u;} are stochastic processes which satisfy the conditions
of Remark 5. It is easy to see that

t—1

Y = E :thAqk+1"'qt—1quuk
k=0

where q;,, | - -+ q;_; is interpreted as the empty sequence for
k+1>1t—1.Hence for all r,q € Q, v € Q*, |rvg| =t +1,
withv =01+ 041, 01,...,0¢4_1 € Q, and op =T,

Ely,uix(qo---q, = rvg)] =

t—1

Z CqAU'k+1"'Ut—1Bo'kE[ukng<q0 B rvq)] =
k=0

CyAyB, Rty = Sf(rvq)’Rﬁmq.

Hence, if we know the expectations E[y,ul x(q,---q, =
rvq)] for all r,q € Q, v € Q*, |rvgl =t + 1, t > 0, then
we can find all the Markov-parameters of f by the following
formula

- 4 1
57 (rvg) = Ely,ug x(qo - 41 = 109)|R 17 9)
rvq
Hence, the problem of estimating the Markov-parameters
reduces to estimating the expectations

Ely,ul x(qo---q, = rvq)] (10)

For practical purposes, the expectations in (10) have to be
estimated from the time-series, and hence we obtain the
following formula for estimating the Markov-parameters,

N
1
§7(rvg) = Jim =% yiseu x(ai e =7vg) (1)
1=0

where y;, uy, g; denote the value at time ¢ of a sample-path
of y,, u; and q, respectively. Note that y; is in fact the output

of X at time ¢, if the input {u;}!_, and the switching signal
{qi}t_, are fed to the system.

The problem with (10) is that the limit on the right-
hand side of (11) may fail to converge to (10). A particular
case when the limit in (11) converges to (10) is when the
process (y,,u:,q,) is ergodic. In that case, we can choose
a sample-path (y, us, q) of (y;,u,q,) for which the limit
in (11) equals the expectation (10), in fact ‘almost all’
sample paths will have this property. This means that we
can choose a suitable deterministic input sequence {u:}2,
and a switching signal {q;}$2,, such that for the resulting
output {y;}$2,, the limit on the right-hand side of (11)
equals the expectation (10). That is, in that case the input
w = (qo,uo) - (qe,ut) -+ is asymptotically persistently
exciting. However, proving ergodicity of y, is not easy. In
addition, even if y, is ergodic, the particular choice of the
deterministic input w for which the right-hand side of (11)
equals (10) might depend on the DTLSS itself.

For this reason, instead of using the concepts of ergodicity
directly, we just show that for the input sequences w which
satisfy the conditions of Definition 16, the corresponding
output {y; }$2, has the property that the limit (11) exists and
it equals SY (rvq)Rm,.q, for any input-output map f which
is realizable by a l;-stable DTLSS. This strategy allows us
to use elementary techniques, while not compromising the
practical relevance of the result.

In order to present the main result of this section, we have
to define the notion of [;-stability of DTLSSs.

Definition 17 (Stability of DTLSSs): A DTLSS X of the
form (1) is called [;-stable, if for every x € R", the series
> veq- I[Avz||2 is convergent.

Remark 7 (Sufficient condition for stability): If for all
g € Q, ||44ll2 < ITl?I where ||A4||2 is the matrix norm
of A, induced by the standard Euclidean norm, then X is
[1-stable.

Remark 8 (Asymptotic stability): If ¥ is [;-stable, then it

is asymptotically stable, in the sense that if s; € Q*, ¢ > 0
is a sequence of words such that lim; ., |s;| = +oo, then
lim; o0 As,x = 0 for all x € R™.
Intuitively it is clear why we have to restrict attention to
stable systems. Recall that (4) allows us to compute the
Markov-parameters of f from the responses of f to finitely
many inputs. In order to obtain the response of f to several
inputs from the response of f to one input, one has to find
means to suppress the contribution of the current state of
the system to future outputs. By assuming stability, we can
make sure that the effect of the past state will asymptotically
diminish in time. Hence, by waiting long enough, we can
approximately recover the response of f to any input.

Theorem 5 (Main result): Assume that w satisfies the PE
conditions of Definition 16. Assume that f is an arbitrary
input-output map and assume that f admits an [;-stable
DTLSS realization. Then w is asymptotically persistently
exciting for f.

The proof of Theorem 5 relies on the following technical
result.

Theorem 6: Assume that > is a [{-stable DTLSS of the
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form (1), and assume that w satisfies the PE conditions. Let
{ye}:2, and {z:}2, be the output and state responses of
Y to w, ie. y+ = ys(wt) and z; = x5(0,w;). Then for all

v,E€Q, TqEQ

777*vq[3A1;BrR =
. N
My oo 3 Dopeo Tetol+1uf X (£, 70g0) (12)
erngquBrR =
BN oo & SO0 Yol ud x(,10gB)  (13)

Here we used the following notation: for all s € Q,

_ )1 i s=qqu Grgs-1
X(t:5) = { 0 otherwise .
Informally, Theorem 6 implies that if f is realizable by a
l1-stable DTLSS, then the limit (11) equals (10). The proof
of Theorem 6 can be found in [18].

Proof: [Proof of Theorem 5] For each ¢, denote by y;
the response of f to the first ¢ elements of w, i.e. y; =
f((qo,u0) - - - (g4, u)). For each integer N € N and for each
word v € Q*, define the matrix Sy (rvg) as

N
1 1

Sn(rvg) = (ﬁ E yt+|v\+1UtTX(ta7”UQ))R lr

t=0 rvq

and define the matrix My (v) by

Sn(1vl) Sn(Dvl)

Sx(1vD) Sx(DuD)

From Theorem 6 it follows that limy_.. Sny(rvg) =
Sf(rvg) and hence limy oo My(v) = Mf(v). Hence, w
is indeed asymptotically persistently exciting. [ ]

Remark 9 (Relaxation of PE condition): Assume that we
restrict attention to input-output maps which are realizable
by a [;-stable DTLSS of dimension at most n, and let f be
such an input-output map. In this case, one can replace the
assumption of Definition 16 that 7w, > 0 for all v € QT by
the condition that w5, > 0 for all |s| < 2n—1 and still obtain
asymptotically persistently exciting inputs for f.

Indeed, in this case Theorem 6 remains valid (the proof
remains literally the same) and from the proof of Theorem 5
we get that for all v € Q*, |v| < 2n — 1, (11) holds. Hence,
{Mm/1 (vi)}ili(f " can asymptotically be estimated from
(wn, O(f,wn)). Since the modified Algorithm 1 from Re-
mark 3 determines a continuous map from { M/ (v;) }11(12 n=1)
to the other Markov-parameters of f, w is asymptotically
persistently exciting for f.

V. CONCLUSIONS

We defined persistence of excitation for input signals of
linear switched systems. We showed existence of persistently
exciting input sequences and we identified several classes of
input signals which are persistently exciting.

Future work includes finding less restrictive conditions for
persistence of excitation and extending the obtained results
to other classes of hybrid systems.
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