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Abstract— We study the average consensus problem of multi-
agent systems for general network topologies with unidirection-
al information flow. We propose a linear distributed algorithm
which guarantees state averaging on arbitrary strongly connect-
ed digraphs. In particular, this graphical condition does not
require that the network be balanced or symmetric, thereby
extending the previous results in the literature. The novelty
of our approach is the augmentation of an additional variable
for each agent, called “surplus”, whose function is to locally
record individual state updates. For convergence analysis, we
employ graph-theoretic and nonnegative matrix tools, with the
eigenvalue perturbation theory playing a crucial role.

I. INTRODUCTION

This paper presents a novel approach to the design of

distributed algorithms for average consensus: That is, a

system of networked agents reaches an agreement on the

average value of their initial states, through merely local

interaction among peers. The approach enables multi-agent

systems to achieve average consensus on arbitrary strongly

connected network topologies with unidirectional informa-

tion flow, where the state sum of agents need not be time-

invariant.

There has been an extensive literature addressing multi-

agent consensus problems. Many fundamental distributed al-

gorithms (developed in, e.g., [1]–[5]) are of the synchronous

type: At an arbitrary specified time, individual agents are

assumed to sense and/or communicate with all the neighbors,

and then simultaneously execute their local protocols. In

particular, Olfati-Saber and Murray [3] studied algorithms

of such type to achieve average consensus on digraphs, and

justified that a balanced and strongly connected topology is

necessary and sufficient to guarantee convergence.

In this paper, we propose a novel extension of the algo-

rithm in [3], and prove that it guarantees state averaging

on general strongly connected digraphs. In particular, the

balanced topological requirement in [3] is dropped, and

hence individual agents need not maintain identical amounts

of flow-in and flow-out information. The primary challenge

of average consensus on arbitrary strongly connected di-

graphs lies in that the state sum of the agents cannot be

preserved in general, thereby causing shifts in the average

value. To handle this problem, the novelty of our approach

is to augment an additional variable for each agent, which we

call “surplus”, whose function is to record every state change
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of the associated agent; thus in effect, these variables locally

maintain the information of the average shift amount.

The idea of adding surplus variables is indeed a con-

tinuation of our own previous work in [6], [7], where

the original surplus-based approach is proposed to tackle

quantized average consensus on general digraphs. There we

developed a quantized (thus nonlinear) averaging algorithm,

and the convergence analysis is based on finite Markov

chains. By contrast, the algorithm designed in this paper

is linear, and hence the convergence can be characterized

by the spectral properties of the associated matrices. On the

other hand, our averaging algorithms differ also from those

basic ones [1]–[5] in that the associated matrices contain

negative entries. Consequently for our analysis tools, besides

nonnegative matrix theory and algebraic graph theory, it

is found that the matrix eigenvalue perturbation theory is

instrumental. Finally, we note in [8], [9] that the approach

of using auxiliary variables also to achieve averaging on

general digraphs has been independently exploited. In [8],

a mechanism similar to surplus is proposed for a broadcast

gossip algorithm; however, the convergence of that algorithm

is not proved, and is remarked to be difficult. In [9], a

nonlinear (division involved) algorithm is designed whose

idea is based on computing the stationary distribution for the

Markov chain characterized by the agent network, and is thus

quite different from consensus-type algorithms [1]–[5]. In

contrast with [8], [9], the algorithm we design is linear, and

we provide a rigorous justification for convergence which is

based on the matrix perturbation theory.

The paper is organized as follows. In Section II we formu-

late the distributed average consensus problem. In Section III

we present our novel solution algorithm, and justify that

it guarantees state averaging on general strongly connected

digraphs. Further, in Section IV we explore certain special

graph topologies and in Section V we provide a numerical

example for demonstration. Finally, in Section VI we state

our conclusions.

Notation. Let 1 := [1 · · · 1]T ∈ R
n be the vector of all

ones. For a complex number λ, denote its real part by Re(λ),
imaginary part by Im(λ), conjugate by λ̄, and modulus

by |λ|. Given a matrix M , |M | denotes its determinant;

||M ||2 and ||M ||∞ denote its 2-norm and infinity-norm

respectively; the spectrum σ(M) is the set of its eigenvalues;

and the spectral radius ρ(M) is the maximum modulus of

its eigenvalues.

II. PROBLEM FORMULATION

Given a network of n (> 1) agents, we model its inter-

connection structure by a digraph G = (V , E): Each node in
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V = {1, ..., n} stands for an agent, and each directed edge

(j, i) in E ⊆ V × V denotes that agent j communicates to

agent i (namely, the information flow is from j to i). Selfloop

edges are not allowed, i.e., (i, i) /∈ E . In G a node i is

reachable from a node j if there exists a sequence of directed

edges from j to i. We say that G is strongly connected if

every node is reachable from every other node.

At time k ∈ Z+ (nonnegative integers) each node i ∈ V
has a scalar state xi(k) ∈ R; the aggregate state is denoted

by x(k) = [x1(k) · · ·xn(k)]
T ∈ R

n. The average consensus

problem aims at designing distributed algorithms, where

individual nodes update their states using only the local

information of their neighboring nodes in the digraph G such

that every xi(k) eventually converges to the initial average

xa := 1Tx(0)/n.

To achieve state averaging on general digraphs, the main

difficulty is that the state sum 1Tx need not remain invariant,

which can result in losing track of the initial average xa.

To deal with this problem, we propose associating to each

node i an additional variable si(k) ∈ R, called surplus;

write s(k) = [s1(k) · · · sn(k)]T ∈ R
n and set s(0) = 0.

The function of surplus is to locally record the state changes

of individual nodes such that 1T (x(k) + s(k)) = 1Tx(0)
for all time k; in other words, surplus keeps the quantity

1T (x + s) constant over time. The rules of how to utilize

and communicate surplus mark the distinctive feature of our

averaging algorithms compared to those in the literature [1]–

[5], as we will see in detail in Section III.

Definition 1: A network of agents achieves average con-

sensus if for every initial condition (x(0), 0), (x(k), s(k)) →
(xa1, 0) as k → ∞.

Problem. Design a distributed algorithm such that the

agents achieve average consensus on general (strongly con-

nected) digraphs.

To solve this problem, we will propose in Section III a

surplus-based distributed algorithm, under which we will jus-

tify that average consensus is achieved for general digraphs.

III. AVERAGING ON GENERAL NETWORKS

In this section, we first propose a linear distributed algo-

rithm based on surplus, which may be seen as an extension

of the standard consensus algorithms in the literature [1]–[5].

Then we prove that the proposed algorithm ensures average

consensus for arbitrary strongly connected digraphs.

A. Algorithm Description

Consider a system of n agents represented by a digraph

G = (V , E). For each node i ∈ V , let N+
i := {j ∈ V :

(j, i) ∈ E} denote the set of its “in-neighbors”, and N−
i :=

{h ∈ V : (i, h) ∈ E} the set of its “out-neighbors”. Note

that N+
i 6= N−

i in general; and i /∈ N+
i or N−

i , for selfloop

edges are excluded. There are three operations that every

node i performs at time k ∈ Z+. First, node i sends its state

information xi(k) and weighted surplus bihsi(k) to each out-

neighbor h ∈ N−
i ; here the sending weight bih is assumed

to satisfy that bih ∈ (0, 1) if h ∈ N−
i , bih = 0 if h ∈

V−N−
i , and

∑

h∈N
−

i

bih < 1. Second, node i receives state

information xj(k) and weighted surplus bjisj(k) from each

in-neighbor j ∈ N+
i . Third, node i updates its own state

xi(k) and surplus si(k) as follows:

xi(k + 1) = xi(k) +
∑

j∈N
+

i

aij(xj(k)− xi(k)) + ǫsi(k),

(1)

si(k + 1) = (1−
∑

h∈N
−

i

bih)si(k) +
∑

j∈N
+

i

bjisj(k)

−
(

xi(k + 1)− xi(k)
)

,

(2)

where the updating weight aij is assumed to satisfy that

aij ∈ (0, 1) if j ∈ N+
i , aij = 0 if j ∈ V − N+

i ,

and
∑

j∈N
+

i

aij < 1; in addition, the parameter ǫ is a

positive number which specifies the amount of surplus used

to update the state. It is well to note that, for sending surplus

information, each agent is required to know the number of

its out-neighbors.

Let the adjacency matrix A of the digraph G be given

by A := [aij ] ∈ R
n×n, where the entries are the updating

weights. Then the Laplacian matrix L is defined as L :=
D − A, where D = diag(d1, . . . , dn) with di =

∑n
j=1 aij .

Thus L has nonnegative diagonal entries, nonpositive off-

diagonal entries, and zero row sums. Then the matrix I −L
is nonnegative (by

∑

j∈N
+

i

aij < 1), and every row sums

up to one; namely I − L is row stochastic. Also let B :=
[bih]

T ∈ R
n×n, where the entries are the sending weights

(note that the transpose in the notation is needed because

h ∈ N−
i for bih). Define the matrix S := (I − D̃) + B,

where D̃ = diag(d̃1, . . . , d̃n) with d̃i =
∑n

h=1 bih. Then S
is nonnegative (by

∑

h∈N
−

i

bih < 1), and every column sums

up to one; i.e., S is column stochastic. As can be observed

from (2), the matrix S captures the part of update induced

by sending and receiving surplus.

With the above matrices, the iteration of states (1) and

surpluses (2) can be written in a matrix form as
[

x(k + 1)
s(k + 1)

]

= M

[

x(k)
s(k)

]

, where M :=

[

I − L ǫI
L S − ǫI

]

.

(3)

Notice that (i) the matrix M has negative entries due to the

presence of the Laplacian matrix L in the (2, 1)-block; (ii)

the column sums of M are equal to one, which implies that

the quantity x(k)+ s(k) is a constant for all k ≥ 0; and (iii)

the state evolution specified by the (1, 1)-block of M , i.e.,

x(k + 1) = (I − L)x(k), (4)

is that of the standard consensus algorithm studied in [1]–

[5]. For an illustration of the distributed algorithm (3) see

Fig. 1. We will analyze its convergence properties in the

next subsection.

B. Convergence Result

We present the main result of this section.
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Fig. 1. Example of distributed algorithm (3): four agents in a strongly connected but unbalanced digraph. For i ∈ [1, 4] let the updating weights be

aij = 1/(|N+

i |+ 1), j ∈ N+

i and the sending weights bih = 1/(|N−

i |+ 1), h ∈ N−

i . Observe that the matrix M has some negative entries.

Theorem 1: Using the distributed algorithm (3) with the

parameter ǫ > 0 sufficiently small, the agents achieve

average consensus if and only if the digraph G is strongly

connected.

Without augmenting surplus variables, it is well known [3]

that a necessary and sufficient graphical condition for state

averaging is that the digraph G is both strongly connected

and balanced (i.e., the adjacency matrix A is such that
∑n

j=1 aij =
∑n

j=1 aji for all i). A balanced structure can be

restrictive, especially when all the weights aij are identical, it

requires the number of incoming and outgoing edges at each

node in the digraph to be the same. By contrast, the algorithm

(3), with surplus augmented, ensures average consensus for

arbitrary strongly connected digraphs including the ones that

are unbalanced.

A surplus-based averaging algorithm was initially pro-

posed in [6], [7] for a quantized consensus problem. It

guarantees that the integer-valued states converge to either

the floor ⌊xa⌋ or the ceiling ⌈xa⌉ on general digraphs;

however, the steady-state surpluses are nonzero in general.

There, the set of states and surpluses is finite, and thus

arguments of finite Markov chain type are employed to prove

the convergence. Distinct from [6], [7], with the algorithm (3)

the states converge to the exact average xa and the steady-

state surpluses are zero. Moreover, since (3) is linear, its

convergence can be analyzed using tools from matrix theory,

as detailed below.

The choice of the parameter ǫ depends on the graph

structure and the number of agents. We will obtain bounds

on ǫ for general networks in Subsection III-C and for some

specific graphs in Section IV.

We now proceed to the proof of Theorem 1. For the

necessity argument see [6, Theorem 2]; indeed, the class of

strongly connected digraphs characterizes the existence of

any distributed algorithm that can solve average consensus.

For the sufficiency part, we need the following necessary

and sufficient condition for average consensus in terms of

the spectrum of the matrix M .

Proposition 1: The distributed algorithm (3) achieves av-

erage consensus if and only if 1 is a simple eigenvalue of

M , and the other eigenvalues have moduli smaller than one.

For the proof, see [10]. Now let

M0 :=

[

I − L 0
L S

]

and E :=

[

0 I
0 −I

]

. (5)

Then M = M0 + ǫE, and we view M as being obtained by

“perturbing” M0 via the term ǫE. Concretely, we show that

the eigenvalues λi of the unperturbed matrix M0 satisfy

1 = λ1 = λ2 > |λ3| ≥ · · · ≥ |λ2n|; (6)

and that after a small perturbation ǫE, the obtained matrix M
has only a simple eigenvalue 1 and all the other eigenvalues

have moduli smaller than one. Hence by Proposition 1,

average consensus is achieved. We point out that, unlike the

standard consensus algorithm (4), the tools from nonnegative

matrix theory cannot be directly used to analyze the spectrum

of M due to the existence of some negative entries.

Sufficiency proof of Theorem 1. First, we prove the asser-

tion (6). Since M0 is block (lower) triangular, its spectrum

is σ(M0) = σ(I −L)∪σ(S). Recall that the matrices I−L
and S are row and column stochastic, respectively; so their

spectral radii satisfy ρ(I − L) = ρ(S) = 1. Now owing to

that G is strongly connected, I−L and S are both irreducible

[11]; thus by the Perron-Frobenius Theorem (see, e.g., [11,

Chapter 8]) ρ(I − L) (resp. ρ(S)) is a simple eigenvalue of

I−L (resp. S). This implies (6). Moreover, for λ1 = λ2 = 1,

one derives that the corresponding geometric multiplicity

equals two by verifying rank(M0 − I) = 2n − 2. Hence

the eigenvalue 1 has linearly independent right eigenvectors

y1 and y2 and left eigenvectors z1 and z2 as

Y :=
[

y1 y2
]

=

[

0 1

v2 −nv2

]

, Z :=

[

zT1
zT2

]

=

[

1T 1T

vT1 0

]

.

Here v1 ∈ R
n is a left eigenvector of I − L with respect to

ρ(I−L) such that it is positive and scaled to satisfy vT1 1 = 1;

and v2 ∈ R
n is a right eigenvector of S corresponding to

ρ(S) such that it is positive and scaled to satisfy 1T v2 = 1.

The fact that positive eigenvectors v1 and v2 exist follows
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again from the Perron-Frobenius Theorem. In addition, one

may check that ZY = I .

Next, we will qualify the changes of the two eigenvalues

λ1 = λ2 = 1 of M0 under a small perturbation ǫE. We do

this by computing the derivatives dλ1(ǫ)/dǫ and dλ2(ǫ)/dǫ,
both evaluated when ǫ is set zero; here λ1(ǫ) and λ2(ǫ) are

the eigenvalues of M corresponding respectively to λ1 and

λ2. By [12, Sections 2.8] we know that when ǫ > 0 is

small, the above two derivatives exist, and they are the two

eigenvalues of the following matrix:
[

zT1 Ey1 zT1 Ey2
zT2 Ey1 zT2 Ey2

]

=

[

0 0
vT1 v2 −nvT1 v2

]

.

Therefore, dλ1(ǫ)/dǫ = 0, and dλ2(ǫ)/dǫ = −nvT1 v2 < 0.

This implies that when ǫ > 0 is small, λ1(ǫ) stays put

while λ2(ǫ) moves to the left along the real axis. Then by

continuity, there must exist a positive δ1 such that λ1(δ1) = 1
and λ2(δ1) < 1. On the other hand, since eigenvalues are

continuous functions of matrix entries (e.g., [13], [14]), there

must exist a positive δ2 such that |λi(δ2)| < 1 for all i ∈
[3, 2n]. Thus for any sufficiently small ǫ ∈ (0,min{δ1, δ2}),
the matrix M has a simple eigenvalue 1 and all other

eigenvalues have moduli smaller than one. Therefore, from

Proposition 1, the conclusion that average consensus is

achieved follows. �

Remark 1: Assuming that with the algorithm (3), states

converge to the initial average and surpluses converge to

zero, the speed of convergence is governed by the second

largest (in modulus) eigenvalue of the matrix M . We denote

this particular eigenvalue by λ∗
2, and refer to it as the

convergence factor of algorithm (3) (cf. [4]). Note that λ∗
2

depends not only on the graph topology but also on the

parameter ǫ; and λ∗
2 < 1 is equivalent to average consensus.

C. Bound on Parameter ǫ

Having shown that the distributed algorithm (3) solves

average consensus for sufficiently small parameter ǫ, we

present in this subsection an upper bound on ǫ. For this,

we borrow a fact from matrix perturbation theory (e.g., [13],

[14]) which relates the size of ǫ to the distance between

perturbed and unperturbed eigenvalues. Below is the main

result of this investigation.

Proposition 2: Suppose that the digraph G is strongly

connected. The distributed algorithm (3) achieves average

consensus if the parameter ǫ satisfies ǫ ∈ (0, ǭ), where

ǭ :=
1

(20 + 8n)n
(1− |λ3|)n, with λ3 in (6). (7)

We stress that the above bound ǭ ensures average con-

sensus for arbitrary strongly connected topologies. Due to

the power n, however, the bound is rather conservative in

general. This power is in fact unavoidable for any pertur-

bation bound result with respect to general matrices, as

is well known in matrix perturbation literature [13], [14].

In Section IV, we will exploit structures of some special

topologies, which yield less conservative bounds on ǫ.
Some preliminaries will be presented first, based on

which Proposition 2 follows immediately. Henceforth in

this subsection, the digraph G is assumed to be strongly

connected. We begin by introducing a metric for the distance

between the spectrums of M0 and M ; here M = M0 + ǫE,

with M0 and E in (5). Let σ(M0) := {λ1, . . . , λ2n}
(where the numbering is the same as that in (6)) and

σ(M) := {λ1(ǫ), . . . , λ2n(ǫ)}. The optimal matching dis-

tance d (σ(M0), σ(M)) [13], [14] is defined by

d (σ(M0), σ(M)) := min
π

max
i∈[1,2n]

|λi − λπ(i)(ǫ)|, (8)

where π is taken over all permutations of {1, . . . , 2n}. This

means that if we draw 2n identical circles centered respec-

tively at λ1, . . . , λ2n, then d (σ(M0), σ(M)) is the smallest

radius such that these circles include all λ1(ǫ), . . . , λ2n(ǫ).
Here is an upper bound on the optimal matching distance

[13, Theorem VIII.1.5].

Lemma 1: An upper bound on d (σ(M0), σ(M)) is

d (σ(M0), σ(M)) ≤ 4 (||M0||∞ + ||M ||∞)1−1/n ||ǫE||1/n∞ .

Next, we consider the eigenvalues λ3(ǫ), . . . , λ2n(ǫ) of M ,

whose corresponding unperturbed counterparts λ3, . . . , λ2n

of M0 lie strictly inside the unit circle (see Theorem 1).

Lemma 2: If the parameter ǫ ∈ (0, ǭ) with ǭ in (7), then

|λ3(ǫ)|, . . . , |λ2n(ǫ)| < 1.

Proof. Since L = D − A and S = (I − D̃) + B, one can

compute ||L||∞ = 2maxi∈[1,n] di < 2 and ||S||∞ < n. Then

||M0||∞ ≤ ||L||∞ + ||S||∞ < 2 + n and ||E||∞ ≤ 1. By

Lemma 1,

d (σ(M0), σ(M)) ≤ 4 (2||M0||∞ + ǫ||E||∞)1−
1
n (ǫ||E||∞)

1
n

< 4 (4 + 2n+ ǫ)1−
1
n ǫ

1
n

< 4 (4 + 2n+ ǫ) ǫ
1
n < 1− |λ3|.

The last inequality is due to ǫ < ǭ in (7). Now recall from

the proof of Theorem 1 that the unperturbed eigenvalues

λ3, . . . , λ2n of M0 lie strictly inside the unit circle. There-

fore, perturbing the eigenvalues λ3, . . . , λ2n by an amount

less than ǭ, the resulting eigenvalues λ3(ǫ), . . . , λ2n(ǫ) will

remain inside the unit circle. �

It is left to consider the eigenvalues λ1(ǫ) and λ2(ǫ) of M .

Since every column sum of M equals one for an arbitrary ǫ,
we obtain that 1 is always an eigenvalue of M . Hence λ1(ǫ)
must be equal to 1 for any ǫ. On the other hand, for λ2(ǫ)
the following is true.

Lemma 3: If the parameter ǫ ∈ (0, ǭ) with ǭ in (7), then

|λ2(ǫ)| < 1.

For the proof, see [10]. Now summarizing Lemmas 2 and

3, we obtain that if the parameter ǫ ∈ (0, ǭ) with ǭ in (7),

then λ1(ǫ) = 1 and |λ2(ǫ)|, |λ3(ǫ)|, . . ., |λ2n(ǫ)| < 1.

Therefore, by Proposition 1 the distributed algorithm (3)

achieves average consensus; this establishes Proposition 2.

IV. SPECIAL TOPOLOGIES

We turn now to a special class of topologies – strongly

connected and balanced digraphs – and investigate the re-

quired upper bound on the parameter ǫ. Given a digraph G =
(V , E), its degree d is defined by d := maxi∈V card(N+

i ),
where card(·) denotes set cardinality. In the algorithm (3)

1959
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Fig. 2. Upper bounds on parameter ǫ such that the distributed algorithm (3)
achieves average consensus on general strongly connected regular digraphs
(solid and dashed curves) and cyclic digraphs (dotted curve).

choose the updating and sending weights to be respectively

aij = 1/(2dn) and bij = 1/(dn), for every (j, i) ∈ E .

Proposition 3: Suppose that the parameter ǫ satisfies ǫ ∈
(0, 2), and the zeros of the following polynomial for every

µ 6= 0 with |µ− 1/(2n)| ≤ 1/(2n) lie inside the unit circle:

p(λ) := λ2 + α1λ+ α0, (9)

where α0 := 2µ2 − 3µ − ǫ + 1, α1 := 3µ + ǫ − 2. Then

the distributed algorithm (3) achieves average consensus on

strongly connected and balanced digraphs.

For the proof, see [10]. Now we investigate the values of

ǫ that ensure the zeros of the polynomial p(λ) in (9) inside

the unit circle, which in turn guarantee average consensus on

strongly connected regular digraphs. For this, we view the

polynomial p(λ) as interval polynomials [15] by letting µ
take any value in the square: 0 ≤ Re(µ) ≤ 1/n, −1/(2n) ≤
Im(µ) ≤ 1/(2n). Applying the bilinear transformation we

obtain a new family of interval polynomials:

p̃(γ) := (γ − 1)2p

(

γ + 1

γ − 1

)

= (1 + α0 + α1)γ
2 + (2− 2α0)γ + (1 + α0 − α1).

Then by Kharitonov’s result for the complex-coefficient case,

the stability of p̃(γ) (its zeros have negative real parts) is

equivalent to the stability of eight extreme polynomials [15,

Section 6.9], which in turn suffices to guarantee that the

zeros of p(λ) lie strictly inside the unit circle. Checking

the stability of eight extreme polynomials results in upper

bounds on ǫ in terms of n. This is displayed in Fig. 2 as the

solid curve. We see that the bounds grow linearly, which is in

contrast with the general bound ǭ in Proposition 2 that decays

exponentially and is known to be conservative. This is due

to that, from the robust control viewpoint, the uncertainty

of µ in the polynomial coefficients becomes smaller as n
increases.

Alternatively, we employ the Jury stability test [16] to

derive that the zeros of the polynomial p(λ) are strictly inside

the unit circle if and only if
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ᾱ0 1

∣

∣

∣

∣

> 0,

β1 : =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 α0
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(10)

Here β0 and β1 turn out to be polynomials in ǫ of second and

fourth order, respectively; the corresponding coefficients are

functions of µ and n. Thus selecting µ such that µ 6= 0 and

|µ−1/(2n)| ≤ 1/(2n), we can solve the inequalities in (10)

for ǫ in terms of n. Thereby we obtain the dashed curve in

Fig. 2, each plotted point being the minimum value of ǫ over

1000 random samples such that the inequalities in (10) hold.

This simulation confirms that the true bound on ǫ for the

zeros of p(λ) to be inside the unit circle is between the solid

and dashed curves. It is suggested that our previous analysis

based on Kharitonov’s result may not be very conservative.

Finally, we obtain two results by further specializing the

balanced digraph G to be symmetric or cyclic, respectively,

and provide analytic ǫ bounds less conservative than (7) for

the general case. In particular, the exponent n is not involved.

For the proofs, see [10].

A digraph G = (V , E) is symmetric if (j, i) ∈ E implies

(i, j) ∈ E . That is, G is undirected.

Proposition 4: Consider a general connected undirected

graph G. Then the algorithm (3) achieves average consensus

if the parameter ǫ satisfies ǫ ∈ (0, (1− (1/n))(2− (1/n)).

It is noted that for connected undirected graphs, the upper

bound on ǫ ensuring average consensus grows as n increases.

This characteristic is in agreement with that of the bounds for

the more general class of balanced digraphs as we observed

in Fig. 2.

A digraph G = (V , E) is cyclic if V = {1, . . . , n} and E =
{(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}. So a cyclic digraph is

strongly connected.

Proposition 5: Suppose that the digraph G is cyclic. Then

the algorithm (3) achieves average consensus if the parameter

ǫ satisfies

ǫ ∈
(

0,

√
2

3 +
√
5
(1− |λ3|)

)

, with λ3 as in (6). (11)

Further, in this case |λ3| =
√

1− (1/n) + (1/(2n2)) + (1/n)(1− 1/(2n)) cos 2π/n.

The proof of Proposition 5 is based on the Bauer-Fike

perturbation result (e.g., [11, Section 6.3]). In Fig. 2 we

plot the upper bound on ǫ in (11) for the class of cyclic

digraphs. We see that this bound decays as the number n of

nodes increases, which contrasts with the bound character-

istic of the more general class of balanced digraphs. This

may indicate the conservativeness of our approach based

on perturbation theory. Nevertheless, since the Bauer-Fike

Theorem is specific only to diagonalizable matrices, the

derived upper bound in (11) is less conservative than the

general one in (7).

1960
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Fig. 3. Three examples of strongly connected but unbalanced digraphs.

TABLE I

CONVERGENCE FACTOR λ∗

2 WITH RESPECT TO THREE DIFFERENT

VALUES OF PARAMETER ǫ.

ǫ = 0.2 ǫ = 0.7 ǫ = 2.15

Ga 0.9963 0.9993 1.0003

Gb 0.9951 0.9969 0.9985

Gc 0.9883 0.9930 0.9966
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Fig. 4. Convergence paths of states and surpluses: obtained by applying
the distributed algorithm (3) with parameter ǫ = 0.7 on digraph Ga.

V. NUMERICAL EXAMPLE

We provide a numerical example to illustrate the conver-

gence properties of the distributed algorithm (3). Consider

the three digraphs displayed in Fig. 3, with 10 nodes and

respectively 17, 29, and 38 edges. Note that all the digraphs

are strongly connected, and in the case of uniform weights

they are unbalanced (indeed, no single node is balanced).

We apply the distributed algorithm (3) with uniform weights

a = 1/(2card(E)) and b = 1/card(E).
The convergence factor λ∗

2 (see Remark 1) for three

different values of the parameter ǫ are summarized in Table I.

We see that small ǫ ensures convergence of the algorithm (3)

(λ∗
2 < 1), whereas large ǫ can lead to instability. Moreover, in

those converging cases the factor λ∗
2 decreases as the number

of edges increases from Ga to Gc, which indicates faster

convergence when there are more communication channels

available for information exchange. We also see that the

algorithm (3) is more robust on digraphs with more edges,

in the sense that a larger range of values of ǫ is allowed.

For a random initial state x(0) with the average xa = 0
and the initial surplus s(0) = 0, we display in Fig. 4 the

trajectories of both states and surpluses when the distributed

algorithm (3) is applied on digraph Ga with parameter ǫ =
0.7. Observe that asymptotically, state averaging is achieved

and surplus vanishes.

VI. CONCLUSIONS

We have proposed a new distributed algorithm which

enables networks of agents to achieve average consensus

on arbitrary strongly connected digraphs. To emphasize,

the derived graphical condition is more general than those

previously reported in the literature, in the sense that it does

not require balanced network structure. Moreover, special

topologies have been investigated to give less conservative

bounds on the parameter ǫ, and a numerical example has been

provided to illustrate the convergence results. One interesting

future direction would be to extend the current results to

general time-varying topologies.
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