
Input-Output Finite-Time Stability and Stabilization of

Stochastic Markovian Jump Systems

Hongji Ma and Yingmin Jia

Abstract— In this paper, we introduce a new concept named
input-output finite-time mean square stability (IO-FTMSS) for
stochastic Markovian jump systems. In contrast to the available
notions of stochastic stability, IO-FTMSS characterizes the
input-output behavior of dynamics on a finite time horizon.
Concerning a class of random input signals L

2

T , the problems of
input-output finite-time mean square stability and stabilization
are investigated for both linear and nonlinear stochastic systems
perturbed by Markovian processes. Sufficient conditions are
derived in terms of coupled linear matrix inequalities (LMIs)
and Hamilton-Jacobi inequalities (HJIs), respectively. In addi-
tion, a numerical example is supplied to illustrate the proposed
technique.

I. INTRODUCTION

As an important issue of stability theory, the study of

finite-time stability can be traced back at least to the 1950s;

see [1]. Compared with the classical Lyapunov stability,

finite-time stability is focussed on the performance of dynam-

ics over a finite time interval. More specifically, it describes

the phenomenon that the trajectory of system state is not

asymptotically stable, but stays within an acceptable bound

during a short period of time. In practice, some dynamics

such as missile systems and certain aircraft maneuvers, etc.,

are only required to perform satisfactorily on a fixed time

horizon. In these cases, the concept of finite-time stability

finds its theoretical significance and applications. Therefore,

many researchers have been attracted to this field. For

instance, Amato et al. discussed the finite-time stabilization

via state feedback and dynamic output feedback for the

deterministic linear systems (see [2] and [3]). In [4], a

finite-time disturbance attenuation problem was considered

for a class of nonlinear systems. Moreover, Yang et al.

[13] generalized the results of [2] to the stochastic hybrid

systems with impulse perturbation. Recently, a novel notion

called input-output finite-time stability is introduced for a

class of linear continuous-time systems [9]. Consistently with

the tradition of finite-time stability, this concept is used to

quantify the input-output behavior of the dynamics within a

prescribed finite time interval.
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Since a large number of applications in engineering and

finance, Markovian jump systems have received a growing

attention in the control community([5], [10], [20]). In [8]

and [14], the robust state and output feedback H∞ control

problems have been fully developed for Itô-type stochastic

Markovian jump systems. The robust H∞ filtering was also

explored for nonlinear time-delay systems with Markovian

jump parameters [19]. In [6], a finite time horizon H2/H∞

control problem was addressed for the discrete-time sto-

chastic Markovian jump systems. Particularly, the Lyapunov

asymptotic stability has been extensively investigated for

Itô-type stochastic systems and Markovian jump systems,

see [7], [11], [15], [16], [17], and the references therein. It

can be seen that the Lyapunov stability theory of stochastic

systems has reached a certain maturity. However, to our best

knowledge, the notion as well as its theoretical framework

of input-output finite-time stability have not been established

for stochastic Markovian jump systems up to now.

In this paper, our main objective is to extend the determin-

istic results of input-output finite-time stability to stochastic

Itô-type systems with Markovian jumps, which, to some

extent, may be viewed as a stochastic counterpart of [9].

Above all, the concept of IO-FTMSS is defined for a general

class of stochastic system with Markovian jump parameters

related to a set of random input signals L2
T . Based on which,

the stability analysis and control synthesis are tackled for two

special kinds of nonlinear and linear stochastic Markovian

jump systems, respectively. We note that in the considered

nonlinear dynamics, the control and input signal can not

be simultaneously involved in the diffusion term due to

some technical reasons; while the linear stochastic system

consists of (x, u, v)-dependent noise, which is not the trivial

specification of the nonlinear case.

The outline of this paper is as follows. Section 2 presents

the definition of IO-FTMSS and some preliminaries. By

means of a set of coupled HJIs, the first part of Section

3 deals with the input-output finite-time stability and stabi-

lization problems for nonlinear stochastic Markovian jump

systems. Then, the second part proceeds with the discussion

of the linear dynamics via some coupled LMIs. Finally, we

end this paper with a brief concluding remark in Section 4.

For convenience, the following notations are adopted

throughout this paper. Rn: n-dimensional Euclidean space

with the usual 2-norm ‖ · ‖; Rn×m: the space of all n × m
real matrices; Sn: the set of all n × n symmetric matrices;

M > 0 (M ≥ 0) means M is a positive (semi-)definite

matrix; Sn
+: the set of all n × n positive definite matrices;

M ′: the transpose of a matrix M ; I: the identity matrix of
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appropriate dimension; D = {1, 2, · · · , N}; C2(Rk): the

class of functions V (x) twice continuously differentiable

with respect to x ∈ Rk.

II. PROBLEM STATEMENT AND PRELIMINARIES

Given a filtered probability space (Ω,F , P ;Ft), where

there is a standard one-dimensional Brownian motion w(t)
on [0, T ] with w(0) = 0 and a Markovian jump process rt ∈
D with the generator Π = (λij), and Ft = σ(w(s), rs|0 ≤
s ≤ t). Moreover, rt is independent of w(t) in this paper. De-

note by L2
T (Rk) the space of all Borel measurable functions

φ(t, ω) ∈ Rk, which is adapted to Ft on [0,T] and satisfies

‖φ(·, ·)‖l2(0,T ;Rk) = (E
∫ T

0
‖φ(t, ω)‖2dt)(1/2) < ∞.

Consider the following stochastic system with Markovian

jumps:
{

dx(t) = α(x, v, rt)dt + β(x, v, rt)dw(t), x(0) = 0,
y(t) = γ(x, rt),

(1)

where x(t) ∈ Rn, v(t) ∈ Rnv and y(t) ∈ Rny are the system

state, exogenous input (disturbance) signal and measurement

output, respectively. The triple (rt, P, D) is a homogeneous

Markovian chain and its transition probability is given by

P [rt+h = j|rt = i] =

{

λijh + o(h), i 6= j,
1 + λiih + o(h), i = j,

where λij ≥ 0 is the transition rate from mode i to j

when i 6= j, λii = −
∑N

j=1,j 6=i λij and o(h) satisfies

that limh→0o(h)/h = 0. It is well known that for any

v(t) ∈ L2
T (Rnv ), the considered system admits a unique

strong solution on [0, T ] corresponding to any initial state

(x0, i) ∈ Rn ×D if both α and β are Borel measurable and

Lipschitz satisfying a linear growth condition, see [14].

In what follows, we will introduce the definition of IO-

FTMSS associated with the system (1) over a specified time

interval.

Definition 1: Given a set of input signals W ⊂ L2
T (Rnv ),

a prescribed time T > 0 and a positive definite weighting

matrix Q(rt), we say system (1) is input-output finite-time

mean square stable, or also IO-FTMSS without confusion,

with respect to (W, Q(rt), T ) if, for any v(·) ∈ W , there

holds E[y(t)T Q(rt)y(t)] ≤ 1, t ∈ (0, T ].
Compared with the notion of input-output finite-time sta-

bility for the deterministic system [9], mathematical expecta-

tion is introduced to evaluate the bound of the measurement

output in above definition, which partially reveals the essen-

tial difference between the deterministic and the stochastic

systems. In addition, we note that a concept named finite time

input-output stability, with a very different meaning, has also

been introduced in [12], where the authors are concerned

with a class of non-smooth systems whose state trajectory

approaches zero after a finite time.

In this paper, we are interested in the following mean

square integrable signals:

W = {v(·) ∈ L2
T (Rnv )|

E{

∫ T

0

[v(t)T R(rt)v(t)]dt|r0 = i} ≤ 1, i ∈ D},

where R(rt) denotes a positive definite matrix with appro-

priate dimension.

Below, we present a generalized Itô’s formula associated

with the diffusion processes with Markovian jumps ([14]),

which will play a key role in the subsequent discussions.

Lemma 1 (Generalized Itô’s formula): Assume that a(x, i)
and b(x, i) are Borel measurable and Lipschitz satisfying a

linear growth condition for all i ∈ D. Consider

dx(t) = a(x, rt)dt + b(x, rt)dw(t). (2)

For given φ(x, i) ∈ Rn ×D, i ∈ D, if there is a r > 0 such

that

‖φ(x, i)‖ + ‖φx(x, i)‖ + ‖φxx(x, i)‖ ≤ K(1 + |x|r),

where K > 0, then we have

E{φ(x(T ), rT ) − φ(x(s), rs)|rs = i}

= E{

∫ T

s

Γφ(x(t), rt)dt|rs = i}, (3)

where an infinitesimal generator operator Γφ : [0, T ]×Rn ×
D → R about the system (2) is given by

Γφ(x(t), i) = a(x, i)′φx(x, i)

+
1

2
b(x, i)′φxx(x, i)b(x, i) +

N
∑

j=1

λijφ(x, j).

III. STABILITY ANALYSIS AND DESIGN

PROBLEM

A. Nonlinear Dynamics

In this subsection, we will focus on the IO-FTMSS of the

following nonlinear stochastic systems with Markovian jump

parameters:







dx(t) = [f(x, rt) + g(x, rt)v(t)]dt
+[h(x, rt) + l(x, rt)v(t)]dw(t), x(0) = 0,

y(t) = m(x, rt),
(4)

where x(t) ∈ Rn, v(t) ∈ Rnv and y(t) ∈ Rny are the same

as those defined in (1). In the case rt = i ∈ D, f(x, i),
g(x, i), h(x, i), l(x, i) and m(x, i) are all Borel measurable

and Lipschitz satisfying a linear growth condition. For nota-

tions’ convenience, we denote f(x, i) by fi etc. in the sequel.

It is worth mentioning that, in engineering terminology,

the state equation of (4) can be written as (t is omitted):

ẋ = f(x, rt) + g(x, rt)v + [h(x, rt) + l(x, rt)v]W,

where W (t) is a stationary white noise, see [18].

About the set of input signals W , the following lemma

provides a sufficient condition for the IO-FTMSS of system

(4).
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Lemma 2: If the following N -coupled HJIs:














































∂V (x,i)′

∂x fi + 1
2h′

i
∂2V (x,i)

∂x2 hi +
N
∑

j=1

λijV (x, j)

+ 1
4 (g′i

∂V (x,i)
∂x + l′i

∂2V (x,i)
∂x2 hi)

′

·(Ri −
1
2 l′i

∂2V (x,i)
∂x2 li)

−1(g′i
∂V (x,i)

∂x

+l′i
∂2V (x,i)

∂x2 hi) < 0,

Ri −
1
2 l′i

∂2V (x,i)
∂x2 li > 0,

V (0, i) = 0, i ∈ D,

(5)

and

V (x, i) ≥ m′
iQimi, i ∈ D (6)

admit a set of positive solutions V (x(t), i) ∈ C2(Rn), i ∈ D,

then system (4) is IO-FTMSS with respect to (W, Q(rt), T ).
Proof: First of all, by applying the generalized Itô for-

mula to V (x(t), rt) associated with system (4), it will be

calculated that

E[V (x(s), rs)|r0 = i]

= E[V (x(s), rs) − V (x(0), r0)|r0 = i]

= E{

∫ s

0

{
∂V (x, rt)

′

∂x
[f(x, rt) + g(x, rt)v(t)]

+
N

∑

j=1

λrt,jV (x, j) +
1

2
[h(x, rt) + l(x, rt)v(t)]′

·
∂2V (x, i)

∂x2
[h(x, rt) + l(x, rt)v(t)]}dt|r0 = i}.

Taking into account that V (x, i) verifies the HJIs (5), we

may write the following inequality:

E[V (x(s), rs)|r0 = i]

< E{

∫ s

0

{
∂V (x, rt)

′

∂x
g(x, rt)v(t) + h(x, rt)

′ ∂
2V (x, i)

∂x2

·l(x, rt)v(t) −
1

4
[g(x, rt)

′ ∂V (x, rt)

∂x
+ l(x, rt)

′

·
∂2V (x, rt)

∂x2
h(x, rt)]

′[R(rt) −
1

2
l(x, rt)

′

·
∂2V (x, rt)

∂x2
l(x, rt)]

−1[g(x, rt)
′ ∂V (x, rt)

∂x

+l(x, rt)
′ ∂

2V (x, rt)

∂x2
h(x, rt)]}dt|r0 = i}.

By use of the technique of completing square, the above

inequality yields that

E[V (x(s), rs)|r0 = i]

< E{

∫ s

0

{v(t)′R(rt)v(t) − [v(t) − (R(rt) −
1

2
l(x, rt)

′

·
∂2V (x, rt)

∂x2
l(x, rt))

−1(g(x, rt)
′ ∂V (x, rt)

∂x

+l(x, rt)
′ ∂

2V (x, rt)

∂x2
h(x, rt))]

′[R(rt) −
1

2
l(x, rt)

′

·
∂2V (x, rt)

∂x2
l(x, rt)][v(t) − (R(rt) −

1

2
l(x, rt)

′

·
∂2V (x, rt)

∂x2
l(x, rt))

−1(g(x, rt)
′ ∂V (x, rt)

∂x

+l(x, rt)
′ ∂

2V (x, rt)

∂x2
h(x, rt))]}dt|r0 = i}.

Recalling that R(rt)−
1
2 l(x, rt)

′ ∂2V (x,rt)
∂x2 l(x, rt) > 0 for any

t ∈ (0, T ], we can easily deduce that

E[V (x(s), rs)|r0 = i] < E[

∫ s

0

v(t)′R(rt)v(t)dt|r0 = i]

≤ E[

∫ T

0

v(t)′R(rt)v(t)dt|r0 = i]

for any (s, i) ∈ (0, T ] × D. Further, due to the input signal

v(t) ∈ W , it follows that E[V (x(s), rs)|r0 = i] < 1 for any

(s, i) ∈ (0, T ] × D. Combining with the condition (6), we

will arrive at the desired result:

E[y(s)T Q(rs)y(s)]

=
N

∑

i=0

P (r0 = i)E[y(s)T Q(rs)y(s)|r0 = i]

=
N

∑

i=0

P (r0 = i)E[m(x, rs)
T Q(rs)m(x, rs)|r0 = i]

<
N

∑

i=0

P (r0 = i)E[V (x(s), rs)|r0 = i]

< 1, ∀s ∈ (0, T ],

which completes the proof.

Based on the preceding lemma, we begin to discuss

the control synthesis problem of the following nonlinear

stochastic Markovian jump systems:






dx(t) = [f(x, rt) + g(x, rt)v(t) + k(x, rt)u(t)]dt
+[h(x, rt) + l(x, rt)v(t)]dw(t), x(0) = 0,

y(t) = m(x, rt).
(7)

that is, how to seek a state feedback controller that guarantees

the closed-loop of system (7) to be IO-FTMSS with respect

to (W, Q(rt), T ).
The following theorem is the main result of this subsec-

tion, which supplies a sufficient condition for the aforemen-

tioned control synthesis problem.

Theorem 1: For system (7), if the following N -coupled

HJIs:






















































H1(V ) := ∂V (x,i)′

∂x fi + 1
2h′

i
∂2V (x,i)

∂x2 hi

+
N
∑

j=1

λijV (x, j) − 1
4

∂V (x,i)′

∂x kik
′
i
∂V (x,i)

∂x

+ 1
4 (g′i

∂V (x,i)
∂x + l′i

∂2V (x,i)
∂x2 hi)

′

·(Ri −
1
2 l′i

∂2V (x,i)
∂x2 li)

−1(g′i
∂V (x,i)

∂x

+l′i
∂2V (x,i)

∂x2 hi) < 0,

Ri −
1
2 l′i

∂2V (x,i)
∂x2 li > 0,

V (0, i) = 0, i ∈ D,

(8)

and

V (x, i) ≥ m′
iQimi, i ∈ D (9)

admit a set of positive solutions V (x(t), i) ∈ C2(Rn), i ∈

D, then u(t) = − 1
2k′

i
∂V (x,i)

∂x is a state feedback controller

guaranteeing the closed-loop of system (7) to be IO-FTMSS

with respect to (W, Q(rt), T ).
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Proof: Similar to the argument of Lemma 2, applying the

generalized Itô formula to V (x(t), rt) related with system

(7), we have that

E[V (x(s), rs)|r0 = i]

= E[V (x(s), rs) − V (x(0), r0)|r0 = i]

= E{

∫ s

0

{H1(V ) + v(t)′R(rt)v(t)

−u(t)′u(t) − [v(t) − (R(rt) −
1

2
l(x, rt)

′

·
∂2V (x, rt)

∂x2
l(x, rt))

−1(g(x, rt)
′ ∂V (x, rt)

∂x

+l(x, rt)
′ ∂

2V (x, rt)

∂x2
h(x, rt))]

′[R(rt) −
1

2
l(x, rt)

′

·
∂2V (x, rt)

∂x2
l(x, rt)][v(t) − (R(rt) −

1

2
l(x, rt)

′

·
∂2V (x, rt)

∂x2
l(x, rt))

−1(g(x, rt)
′ ∂V (x, rt)

∂x

+l(x, rt)
′ ∂

2V (x, rt)

∂x2
h(x, rt))] + [u(t)

+
1

2
k(x, rt)

′ ∂V (x, rt)

∂x
]′[u(t) +

1

2
k(x, rt)

′

·
∂V (x, rt)

∂x
]}dt|r0 = i}. (10)

Having in mind that V (x(t), rt) satisfies the coupled HJIs

(8), the above equality leads to that:

E[V (x(s), rs)|r0 = i]

< E{

∫ s

0

{v(t)′R(rt)v(t) + [u(t) +
1

2
k(x, rt)

′ ∂V (x, rt)

∂x
]′

·[u(t) +
1

2
k(x, rt)

′ ∂V (x, rt)

∂x
]}dt|r0 = i}.

Thus, if we impose the state feedback control u(t) =

− 1
2k′

i
∂V (x,i)

∂x on system (7), the above inequality gives that

E[V (x(s), rs)|r0 = i] < E[
∫ s

0
v(t)′R(rt)v(t)dt|r0 = i].

Then, by following the line of Lemma 2, it is easy to show

the remainder of the proof and hence the detail is omitted.

Remark 1: It should be pointed out that there has not

been a general approach to solve the HJIs like (8) to date.

However, in the special case that the diffusion term of system

(7) consists of only state-dependent noise, a Takagi-Sugeno

fuzzy approach can be applied to approximate the nonlinear

dynamics (7) via a set of linear subsystems [18], which

avoids the difficulty of solving (8).

B. Linear Dynamics

In what follows, we are concentrated on the analysis and

synthesis problems of IO-FTMSS for a very broad class of

linear stochastic systems with Markovian jump parameters:














dx(t) = [A(rt)x(t) + B(rt)u(t) + G(rt)v(t)]dt
+[Ā(rt)x(t) + B̄(rt)u(t) + Ḡ(rt)v(t)]dw(t),

x(0) = 0,
y(t) = C(rt)x(t).

(11)

Before dealing with the control synthesis problem, we

firstly present a sufficient condition guaranteeing system (12)

to be IO-FTMSS, which is actually a reduced form of Lemma

2.

Lemma 3: For the stochastic unforced linear system with

Markovian jump parameters:














dx(t) = [A(rt)x(t) + G(rt)v(t)]dt
+[Ā(rt)x(t) + Ḡ(rt)v(t)]dw(t),

x(0) = 0,
z(t) = C(rt)x(t),

(12)

if the following coupled LMIs:




Θ(i) P (i)G(i) Ψ(i)
G(i)′P (i) −R(i) Ξ(i)

Ψ(i)′ Ξ(i)′ Ω(i)



 < 0, i ∈ D, (13)

P (i) ≥ C(i)′Q(i)C(i), i ∈ D (14)

admit a set of positive solutions P (i), i ∈ D, then system

(12) is IO-FTMSS with respect to (W, Q(rt), T ), where in

(13),

Θ(i) = A(i)′P (i) + P (i)A(i) + λiiP (i)

Ψ(i) = [Ā(i)′P (i)
√

λi1P (i) · · ·
√

λi,i−1P (i)
√

λi,i+1P (i) · · ·
√

λiNP (i)],

Ξ(i) = [Ḡ(i)′P (i) 0 · · · 0],

Ω(i) = diag(−P (i), −P (1), · · · ,−P (i − 1),

−P (i + 1), · · · , −P (N)).

Proof: In Lemma 2, taking V (x, rt) = x(t)′P (rt)x(t) and

replacing fi with A(i), etc., we will derive the following

coupled algebraic Riccati inequalities:






























A(i)′P (i) + P (i)A(i) + Ā(i)′P (i)Ā(i) + [G(i)′P (i)
+Ḡ(i)′P (i)Ā(i)]′[R(i) − Ḡ(i)′P (i)Ḡ(i)]−1

·[G(i)′P (i) + Ḡ(i)′P (i)Ā(i)] +
N
∑

j=1

λijP (j) < 0,

R(i) − Ḡ(i)′P (i)Ḡ(i) > 0,
P (i) ≥ C(i)′Q(i)C(i), i ∈ D.

(15)

Via the well-known Schur’s complement, the desired result

is immediately yielded.

By means of Lemma 3, we are able to show the main result

of this subsection in the following theorem, which provides

a sufficient condition for the control synthesis problem of

IO-FTMSS associated with system (11).

Theorem 2: For system (11), if the following system of

LMIs:




M11 G(i) M13

G(i)′ −R(i) M23

M ′
13 M ′

23 M33



 < 0, i ∈ D, (16)

[

X(i) X(i)C(i)′

C(i)X(i) ∆(i)

]

≥ 0, i ∈ D (17)

admit a set of solutions (X(i), Y (i)) ∈ Sn
+×Rnu×n, i ∈ D,

then there exists a state feedback control u(t) = K(rt)x(t)
with K(rt) = Y (rt)X(rt)

−1, such that the closed-loop of
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system (11) is IO-FTMSS with respect to (W, Q(rt), T ),
where in (16) and (17),

M11 = A(i)X(i) + X(i)A(i)′ + B(i)Y (i)

+Y (i)′B(i)′ + λiiX(i),

M13 = [X(i)Ā(i)′ + Y (i)′B̄(i)′
√

λi1X(i) · · ·
√

λi,i−1X(i)
√

λi,i+1X(i) · · ·
√

λiNX(i)],

M23 = [Ḡ(i)′ 0 · · · 0],

M33 = diag(−X(i), −X(1), · · · ,−X(i − 1),

−X(i + 1) · · · , −X(N)),

∆(i) = Q(i)−1.

Proof: Substituting u(t) = K(rt)x(t) into system (11),

we will obtain the following closed-loop system:














dx(t) = [(A(rt) + B(rt)K(rt))x(t) + G(rt)v(t)]dt
+[(Ā(rt) + B̄(rt)K(rt))x(t) + Ḡ(rt)v(t)]dw(t),

x(0) = 0,
y(t) = C(rt)x(t).

(18)

By employing the similar argument of Lemma 3 associated

with system (18), it can be shown that if the following N -

coupled algebraic Riccati inequalities:














































[A(i) + B(i)K(i)]′P (i) + P (i)[A(i) + B(i)K(i)]
+[Ā(i) + B̄(i)K(i)]′P (i)[Ā(i) + B̄(i)K(i)]
+[G(i)′P (i) + Ḡ(i)′P (i)(Ā(i) + B̄(i)K(i))]′

·[R(i) − Ḡ(i)′P (i)Ḡ(i)]−1[G(i)′P (i)

+Ḡ(i)′P (i)(Ā(i) + B̄(i)K(i))] +
N
∑

j=1

λijP (j) < 0,

R(i) − Ḡ(i)′P (i)Ḡ(i) > 0,
P (i) ≥ C(i)′Q(i)C(i), i ∈ D

(19)

admit a set of solutions (P (i),K(i)) ∈ Sn
+ × Rnu×n, i ∈

D, then the state feedback control u(t) = K(rt)x(t) can

guarantee the closed-loop of system (11) to be IO-FTMSS

with respect to (W, Q(rt), T ).
To solve the above nonlinear inequalities, we make use of

Schur’s complement again, and will write that




M̄11 P (i)G(i) M̄13

G(i)P (i)′ −R(i) M̄23

M̄ ′
13 M̄ ′

23 M̄33



 < 0, (20)

[

P (i) C(i)′

C(i) Q(i)−1

]

≥ 0, (21)

where in (20),

M̄11 = [A(i) + B(i)K(i)]′P (i) + P (i)[A(i)

+B(i)K(i)] + λiiP (i),

M̄13 = [Ā(i)′P (i) + K(i)′B̄(i)′P (i)
√

λi1P (i) · · ·
√

λi,i−1P (i)
√

λi,i+1P (i) · · ·
√

λiNP (i)],

M̄23 = [Ḡ(i)′P (i) 0 · · · 0],

M̄33 = diag(−P (i), −P (1), · · · ,−P (i − 1),

−P (i + 1), · · · , −P (N)).

To proceed, we denote that X(i) = P (i)−1 and ∆(i) =
Q(i)−1. Then, pre- and post-multiplying (20) and (21) by

diag(X(i), I,M33) and diag(X(i), I), respectively, we can

get the following inequalities:





M̂11 G(i) M̂13

G(i)′ −R(i) M23

M̂ ′
13 M ′

23 M33



 < 0, (22)

[

X(i) X(i)C(i)′

C(i)X(i) ∆(i)

]

≥ 0, (23)

where in (22),

M̂11 = A(i)X(i) + X(i)A(i)′ + B(i)K(i)X(i)

+X(i)K(i)′B(i)′ + λiiX(i),

M̂13 = [X(i)Ā(i)′ + X(i)K(i)′B̄(i)′
√

λi1X(i) · · ·
√

λi,i−1X(i)
√

λi,i+1X(i) · · ·
√

λiNX(i)].

Without loss of generality, we may set Y (i) = K(i)X(i)
in (22) and then the desired result is directly obtained. The

proof is ended.

Remark 2: As opposed to the nonlinear case, the control

design for linear stochastic Markovian jump systems is based

on a set of coupled LMIs, which may be effectively solved

by means of the well-known software (LMI control toolbox).

Example 1: The coefficients of system (11) corresponding

to two modes are given as follows:

Table 1

Coefficients i = 1 i = 2

A(i)

[

−0.6 1
1 −0.3

] [

−0.6 2.7
1.7 −0.9

]

B(i)

[

1 0.3
0.9 −0.4

] [

0.1 1
1 −0.3

]

G(i)

[

0.9 0.8
0.5 1.2

] [

0.9 0.1
0.1 1

]

Ā(i)

[

−0.9 0.4
0.1 −0.7

] [

−0.4 1.2
1 0.6

]

B̄(i)

[

0.7 0
−1 0.9

] [

0.6 0.8
−0.8 1

]

Ḡ(i)

[

−0.8 0
1 −0.9

] [

−0.2 0
0 −0.1

]

C̄(i)
[

1 1
] [

0 1
]

Assume that R1 = diag(1.5, 1.9), R2 = diag(1.8, 1.2),
Q(1) = 2 and Q(2) = 1. Consider the exogenous input

signal v(t) = [e−tsint 0]′ ∈ L2
T (R2) with T = 2s and a

Markovian jump process with the state space D = {1, 2}
and the transition rate:

(λij)2×2 =

[

−0.9 0.9
0.4 −0.4

]

.

Thus, by use of Theorem 2, we can obtain the design of state

feedback controller via LMI control toolbox; see Table 2.
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Table 2

Solution i = 1 i = 2

X(i)

[

4.01 −4.10
−4.10 4.67

] [

2.41 −1.42
−1.42 0.94

]

Y (i)

[

−1.88 −1.92
1.85 −2.17

] [

−0.55 −2.09
−0.10 −0.64

]

K(i)

[

−8.85 −8.18
−0.13 −0.58

] [

−13.80 −23.02
−4.02 −6.75

]

Figs. 1-2 demonstrate the evolutions of E[y(t)′Q(rt)y(t)]
associated with the unforced system and the closed-loop

system with the state feedback control u(t) = K(rt)x(t),
respectively. The simulation results explicitly exhibit the

efficiency of Theorem 2.
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Fig. 1. y(t)′Q(rt)y(t) of the unforced system
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Fig. 2. y(t)′Q(rt)y(t) of the closed-loop system

IV. CONCLUSIONS

In this paper, the concept of input-output finite-time mean

square stability has been introduced. For which, the stability

analysis and control synthesis problems have been tackled

for nonlinear and linear stochastic systems with Markovian

jump parameters, respectively. Based on the solutions of

some coupled HJIs or LMIs, the state feedback controller

can be designed for the considered dynamics.

There are still some meaningful topics that remain open.

First, how to deal with the coupled HJIs still deserves further

studies. Besides, in the case that the information of system

state is not available directly, the problem of output feedback

control becomes important and necessary.
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