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Abstract— Selection of an efficient model parametrization
(model order, delay, etc.) has crucial importance in parametric
system identification. It navigates a trade-off between repre-
sentation capabilities of the model (structural bias) and effects
of over-parametrization (variance increase of the estimates).
There exists many approaches to this widely studied problem
in terms of statistical regularization methods and information
criteria. In this paper, an alternative ℓ1 regularization scheme
is proposed for estimation of sparse linear-regression models
based on recent results in compressive sensing. It is shown
that the proposed scheme provides consistent estimation of
sparse models in terms of the so-called oracle property, it is
computationally attractive for large-scale over-parameterized
models and it is applicable in case of small data sets, i.e.,
underdetermined estimation problems. The performance of the
approach w.r.t. other regularization schemes is demonstrated
in an extensive Monte Carlo study.

Index Terms— Compressive Sensing; System Identification;
Linear Time-Invariant Systems.

I. INTRODUCTION

A common problem in parametric system identification is

to choose an efficient model parameterization, i.e., model

structure, in terms of model order, delays, parameterized

coefficients, etc., which is rich enough to represent the

relevant dynamical behavior of the data-generating system,

but it contains only a minimal set of unknown parameters

to be estimated. The latter is important to achieve minimal

variance of the parameter estimates. The underlying trade-

off between under- and over-parametrization, i.e., structural

bias and variance, has significant impact on the result of the

identification cycle and an optimal choice in this trade-off is

one of the primary goals of system identification [1].

Order selection and regularization of parametrizations

w.r.t. linear regression models is a widely studied subject in

identification (see [1], [2]) originating from the classical re-

sults in statistics in terms of the Akaike Information Criterion

(AIC) [3] and the Bayesian Information Criterion (BIC) [4].

More recently, statistical regularization (shrinkage) methods

have been developed like the Non-Negative Garrote (NNG)

or the Least Absolute Shrinkage and Selection Operator

(LASSO) [5]–[7], or the Ridge Regression and the Elastic
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Net methods [8]. The NNG was applied in the context of

identification of Linear Time-Invariant (LTI) Auto Regressive

with eXogenous input (ARX) models in [9].

The AIC and the BIC approaches can have a significant

computational load as they are based on a combinatorial

search scheme, while the LASSO and the NNG utilize

convex optimization. However, for the latter approaches, a

search over a weighting (regularization) parameter may still

be required. In addition, theory for predicting the finite data

performance of the LASSO and the NNG in the context of

ARX models still appears to be underdeveloped.

The trade-off problem of parametrization significantly

increases in difficulty when the data-generating system has

a sparse representation, e.g. in discrete time it is described

by a difference equation with only a few difference terms

with nonzero coefficients, or in case of Multiple-Input-

Multiple-Output (MIMO) models where certain Input-Output

(IO) directions have much lower order than others. This

commonly results in polynomial IO models with only a

(relatively) few nonzero terms. In general, large-scale over-

parametrization increases computational load and sensitivity

for the choice of the regularization parameter in the above

presented shrinkage methods [7].

Another problem arises when only a few data points are

available compared to the size of the parameterization. This

is often the case for slow sampling rates or when the input is

exciting over only a limited time interval like in the case of

step responses of process systems. Traditional identification

and model structure selection has proven to be unreliable

in these cases and commonly estimates tend to be biased or

have large variance. Most theoretical results on the stochastic

properties of the parameter estimates concentrate on the

asymptotic case, with only a few results concerning the finite-

data set case. It appears that classical LTI identification has

severe restrictions w.r.t. these scenarios with little work done

on non-well-posed or underdetermined problems.

In this paper, we aim to explore model parameter esti-

mation assisted by parameter regularization with particular

emphasis on the case when the number of data points

is on the same order as the model structure parameters.

In fact, we investigate the usefulness of recent results of

the Compressive Sensing (CS) field in this context. CS

is an emerging framework for optimization/estimation of

sparse parameter representations, however only with some

preliminary results in system ID. Our objective is to propose

an efficient Compressive System Identification (CSI) of LTI

dynamical systems in the Prediction Error Minimization

(PEM) framework and to demonstrate its usefulness for:
1) Optimal selection of polynomial IO model structures.
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2) Delivering optimal parameter estimates in case of

underdetermined identification scenarios.

The paper is organized as follows: In Sec. II, basic results

of CS are introduced and an ℓ1 sparse (CSI) estimator is

derived which is studied in the context of PEM identification

of linear regression models in Sec. III. Next, the consistency

properties of the introduced approach are analyzed. Connec-

tion of the CSI method with the LASSO and the NNG sparse

estimators is explored in Sec. IV and fruitful insights are

established. In Sec. V, performance of the CSI is compared

to other regularization schemes in a Monte Carlo study.

II. COMPRESSIVE SENSING

As a first step, the core problem setting of CS is introduced

from the perspective of linear regression models and the main

results of this framework, which will be used in the rest of

the paper, are presented.

Consider the discrete-time signal y : Z → R
m given as

y(k) =

n
∑

i=1

θo,iψi(k), (1)

where {ψi(k)}ni=1 is a set of normalized (orthogonal) basis

functions in an appropriate dot product space over (Rm)Z,

with inner product 〈·, ·〉, and the constant expansion coeffi-

cients θo = [ θo,1 . . . θo,n ]⊤ ∈ R
n satisfying θo,i =

〈y(k), ψi(k)〉. Note that this is a classical definition of

linear regression models where each θo,i corresponds to a

parameter to be estimated while ψi(k) are the regressor terms

that can, but not restricted to, contain lagged versions of the

IO signals of the model.

Assume that {ψi(k)}ni=1 is an over-complete basis set

w.r.t. y(k), yielding that θo is sparse. A vector x ∈ R
n is

called sparse if ‖x‖ℓ0 ≪ n where ‖ � ‖ℓ0 returns the number

of nonzero elements of x. For a given T ⊂ In , {1, . . . , n}
with τ elements, let xT denote the τ -sparse projection of x,

where [xT ]i = [x]i if i ∈ T and 0 otherwise. We can relax the

previous definition of sparsity by calling x to be compressible

if ∃T ⊂ In with Card(T) = τ s.t. ‖x− xT‖ℓ1 ≈ 0.

Assume that y(k) is available for a time interval 1 ≤ k ≤
N and define Y = [ y(1)⊤ . . . y(N)⊤ ]⊤ with

Ψ ,







ψ1(1) . . . ψn(1)
...

. . .
...

ψ1(N) . . . ψn(N)






,







ϕ⊤
1
...

ϕ⊤
N






. (2)

Note that Y = Ψθo. The basic objective in CS is to represent

the signal y(k) by computing a θ with maximal sparsity. This

corresponds to minimizing the ℓ0 pseudo-norm of θ under the

constraint that Y = Ψθ. As this so-called sparse optimization

problem is non-convex and NP hard, a fruitful alternative is

a convex relaxation based on the ℓ1 norm [10]:

minimize
θ∈Rn

‖θ‖ℓ1 , (3a)

s.t. y(k) = ϕ⊤
k θ, ∀k ∈ {1, . . . , N}. (3b)

Note that (3a-b) is a classical linear programing problem

which is efficiently solvable, even in case of n ≫ N , by

greedy algorithms like Matching Pursuit (MP) [11] or by

standard optimization techniques [12] using interior-point

methods based solvers like SeDuMi [13] or more efficient

algorithms tuned to this problem: l1 ls [14] or ℓ1-magic [15].

Now consider that measurement of y is effected by noise,

i.e., ỹ(k)= y(k)+e(k), where e(k) is an arbitrary bounded

noise process, e.g. white and e(k) ∈ N (0, Im×mσ
2
e ) for all

k ∈ IN . This corresponds to Y = Ψθo + E where E =
[ e(1)⊤ . . . e(N)⊤ ]⊤. Then (3a-b) is modified as

minimize
θ∈Rn

‖θ‖ℓ1 , (4a)

s.t. ‖ỹ(k)− ϕ⊤
k θ‖ℓ2 < ε, ∀k ∈ {1, . . . , N}. (4b)

where ε > 0 is a priori chosen. This estimator, what we will

call the CSI method, is again a convex problem (a second-

order cone program) and can be solved efficiently [16], e.g.

by the above mentioned solvers or MP. Algorithms also exist

to optimize the value of ε and avoid cases of noise over-

fitting or under-fitting [17].

By establishing conditions on Ψ, like the Restricted Isom-

etry Property (RIP) 1, reconstruction of a compressible (τ -

sparse) θo can be guaranteed [19]. However, if the regression

matrix Ψ contains columns that are the inputs and outputs of

a dynamical system, then the RIP conditions are much more

difficult to verify (due to the correlation between input and

output measurements). Thus, we will consider an alternative

result in CS to address the recovery condition. We will

see that this is essential to prove consistency of the sparse

estimator (4a-b) in an identification setting.

Theorem 1 (Recovery, [20], [21]): Consider Y ∈ R
N

generated by Y = Ψθo + E with Ψ ∈ R
N×n, θo ∈ R

n and

E ∈ R
N being a stochastic noise sequence with ‖E‖ℓ2 = εo

bounded. Assume w.l.o.g. that each column of Ψ: ψi, i ∈
{1, . . . , n} is nonzero and Ψ is normalized in the sense that

ψ⊤
i ψi = 1. Let 0 < ‖θo‖ℓ0 = τ < n with Sup(θo) = T and

denote ΨT the matrix formed from the columns of Ψ listed in

T. Let Ψ+
T
= (Ψ⊤

T
ΨT)

−1Ψ⊤
T

be the Moore-Penrose pseudo-

inverse of ΨT and ‖ � ‖p,q the p, q-matrix-operator norm.

Sufficient conditions that the solution θ̂ of (4a-b) obeys

‖θo − θ̂‖ℓ2 ≤ ε‖Ψ+
T
‖2,2, (5a)

Sup(θ̂) ⊆ T, (5b)
are

ERC(Ψ,T) , 1− max
i∈In\T

‖Ψ+
T
ψi‖ℓ1 > 0, (6a)

ε ≥ εo

√

1 +

( ‖Ψ+
T
‖2,1

ERC(Ψ,T)
·max
i∈In

|E⊤ψi|
εo

)2

. (6b)

Condition (6a) can be interpreted as the largest absolute

value of the cosine between different columns of Ψ while

(6b) is based on the correlation between the noise e and

ψi. As in practice the sparsity-structure of θo is unknown,

computable bounds of (6a) in terms of cumulative coherence

are commonly applied [21]. In conclusion, the estimation

scheme (4a-b) has the following advantages:

• Applicable even in case of serious over-parametrization.

• Computationally attractive.

• Recovery of θo in the sense of Th. 1 is guaranteed.

1If Ψ contains iid sub-Gaussian elements and N ∼ ‖θo‖ℓ0 log(n), then
Ψ satisfies the RIP condition with high probability [18].
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III. COMPRESSIVE SYSTEM IDENTIFICATION

In this section the estimation problem (4a-b) is formulated

in the classical LTI prediction-error setting and consistency

conditions are established. Due to space restrictions, the

discussion is restricted to polynomial ARX models in the

Single-Input Single-Output (SISO) case, however most of the

results generalizes to the MIMO case.

A. Prediction error approach: the ARX case

In PEM approaches of LTI system identification, the data-

generating system Mo and the model structure is often

considered in a polynomial IO representation [1]. In the ARX

case, Mo is defined as

Ao(q
−1)y(k) = Bo(q

−1)u(k) + eo(k), (7)

where u, y : Z → R are the input and output signals

respectively, q−1 is the backward time-shift operator, i.e.,

q−1u(k) = u(k − 1), eo(k) is a zero mean white noise

process, Ao, Bo are polynomials with na = deg(Ao), nb =
deg(Bo) ≥ 0 and for all roots λ of ξnaAo(ξ

−1), |λ| < 1
(stable noise model).

To capture/approximate (7) based on a measured data

sequence DN = {y(k), u(k)}Nk=1 with N > 0, the model

structure is also defined in the form of (7) with the same

conditions and parameterized polynomials:

A(q−1, θ)=1+

na
∑

i=1

aiq
−i, B(q−1, θ)=

nb
∑

j=0

bjq
−j, (8)

with parameters

θ = [ a1 . . . ana
b0 . . . bnb

] ∈ R
na+nb+1.

The parameterized model in this form is given as Mθ :
(A(q−1, θ), B(q−1, θ)). It is possible to show (see [1]) that

w.r.t. (7), the conditional expectation of y(k) in the ℓ2 sense

under the information set of Dk−1 ∪ {u(k)} is equal to

y(k|k − 1) = (1 −Ao(q
−1))y(k) +Bo(q

−1)u(k). (9)

The basic philosophy of PEM based identification is that

w.r.t. a given model set M = {Mθ | θ ∈ R
nθ} and a data

set DN , find θ such that the one-step-ahead predictor

ŷθ(k|k − 1) = (1−A(q−1, θ))y(k) +B(q−1, θ)u(k), (10)

associated with Mθ provides a prediction error

eθ(k) = y(k)− ŷθ(k|k − 1), (11)

which resembles a zero mean white noise “as much as possi-

ble”. In this sense, the estimation problem of θ w.r.t. a given

DN is commonly formulated in terms of the minimization

of the mean-squared prediction error criterion:

W (θ,DN ) =
1

N

N
∑

k=0

e2θ(k) =
1

N
‖eθ‖2ℓ2 (12)

resulting in the least-squares (LS) parameter estimate:

θ̂ = arg min
θ∈R

nθ

W (θ,DN ). (13)

By introducing the regressor

ϕ⊤
k = [ −y(k − 1) . . . −y(k − na)

u(k) . . . u(k − nb) ], (14)

(10) corresponds to a linear regression

ŷθ(k|k − 1) = ϕ⊤
k θ. (15)

Under the ℓ2 cost function (12), (13) is a quadratic-

optimization problem with an analytical solution.

It is a well known that the ℓ2 optimization (13) in case

of over-parametrization, i.e., sparsity of θo, distributes power

of θ̂ to superfluous parameters (governed by the Tykhonov

regularization theory). This means that θ̂ in (13) is almost

never sparse [22]. Sensitivity for this property scales with

the power of eo and 1/N . This phenomenon is responsible

for an increased variance of the estimate. Thus in these

situations, minimization of the support of θ, i.e., the ‖θ‖ℓ0
norm becomes important.

B. Compressive identification for ARX models

Next, we investigate how the possible sparsity of θo can

be exploited/enforced during the optimization (13) and in

this way increase the accuracy of the estimate. Here we

investigate only the convex optimization based solution of

(4a-b) in this context. A block orthogonal-MP based solution

is explored in [23].

To formulate this estimation problem in the CS set-

ting, introduce Y = [ y⊤(1) . . . y⊤(N) ]⊤ and Ψ =
[ ϕ⊤

1 . . . ϕ⊤
N ] based on a given DN and denote the

columns of Ψ with ψi. Based on (15), we can write

Y = Ψθ + Eθ, (16)

where Eθ = [ eθ(1) . . . eθ(N) ]⊤ is the prediction error.

According to the PEM philosophy, our aim is to find the best

sparse θ such that Eθ is a sequence of iid samples from a zero

mean distribution. Assume that this distribution is Gaussian,

i.e., eo(k) ∈ N (0, σ2
e ) yielding that ‖Eθ‖ℓ2 ≈

√
Nσe. Based

on the CS setting, estimation of a sparse θo w.r.t. (16) can

be efficiently achieved via the convex problem (4a-b).

To establish results about consistency of the proposed

sparse estimator, assume that for a given data record DN , the

true underlying noise bound εo = ‖Eθo‖ℓ2 > 0 is known.

Then the following theorem holds:

Theorem 2 (ARX recovery): Let DN be generated by an

ARX model (7) with a sparse parameter vector θo ∈ R
nθ

with support T. Let Mo ∈ M and Ψ be constructed from

DN according to (14). Assume that in DN , u is white with

u(k) ∈ N (0, σ2
u), σu > 0 giving that Ψ⊤

T
ΨT ≻ 0 with

probability 1, then the expected value of the normalized form

of Ψ satisfies (6a) for large enough N and hence in terms

of Th. 1, with ε ≥ εo chosen according to (6b), recovery of

θo holds.

For a proof see the Appendix. This concludes that it is pos-

sible to design u, i.e., DN , such that the recovery condition

of Th. 1 is satisfied. In particular, the proof of Th. 2 reveals

that a necessary condition for N is

max
i∈In\T

‖Qi‖2ℓ1 +
2

π

(

trace
(

P
1/2
i

))2

< N, (17)

where Qi and Pi are defined by (36a-b), which, if θo is

sparse, can be significantly smaller than nθ . Note that the

whiteness and Gaussian distribution of u is a technical

necessity, but it is expected that these conditions can be

further relaxed.
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IV. COMPARISON TO OTHER SPARSE ESTIMATORS

Next we investigate how the introduced sparse estimation

scheme compares to other sparse estimators or model struc-

ture selection approaches in the PEM framework.

A. AIC & BIC criterion

The AIC criterion is defined as

AIC = 2
nθ

N
+ log

(

‖eθ‖
2
ℓ2

N

)

, (18)

while the BIC criterion (in case of ARX, where eo has a

normal distribution) is:

BIC =
nθ log(N)

N
+ log

(

‖eθ‖
2
ℓ2

N

)

. (19)

In practice, these criteria are evaluated for LS parameter

estimates generated by all possible selection of at most nθ

columns of the regressor matrix Ψ. This correspond to ex-

ploring all possible sparse solutions by solving
∑nθ

k=1

(

nθ

k

)

=
2nθ − 1 linear regression problems. Then by evaluating

the BIC or AIC on the estimation or validation data w.r.t.

each estimate, the most likely model structure of the system

follows at the minimum of these criteria. This means that the

computational load exponentially grows with the number of

regression terms (NP-hard problem). In practice, these types

of methods are implemented in a stepwise fashion, through

forward selection or backward elimination. Because of the

myopic nature of the stepwise algorithm, these implementa-

tions are known to be suboptimal [24].

B. Sparse estimators: LASSO and NNG

To avoid the computational explosion and to provide a

compact estimator, it is attractive to combine minimization

of (12) with the minimization of the support of θ, i.e.,

‖θ‖ℓ0 . However, (12) and ‖θ‖ℓ0 can not be minimized

simultaneously (same target variable) and the ℓ0 problem is

NP hard. Thus using the same motivation as in CS, a convex

relaxation can be introduced in terms of

minimize ‖θ‖ℓ1 , (20)

which can still guarantee sparsity in a computationally more

attractive setting. The idea is to combine the optimization

problems (20) and (13) by using (20) as a constraint: ‖θ‖ℓ1 <
ε, where ε is given, or by using the weighted sum of (12) and

‖θ‖ℓ1 resulting in a set of regressor regularization/shrinkage

methods like the NNG and the LASSO.

The LASSO method w.r.t. a linear regression model (16)

is formulated as

minimize
θ∈Rn

‖ỹ(k)− ϕ⊤
k θ‖ℓ2 , ∀k ∈ {1, . . . , N}, (21a)

s.t. ‖θ‖ℓ1 ≤ ε, (21b)

corresponding to a quadratic programing problem where

ε is usually obtained by lowering it iteratively based on

cross-validation. In practice, this approach is usually imple-

mented by using greedy algorithms [6], but more advanced

piecewise-linear solution path based methods also exist [25].

The NNG approach, instead of affecting the estimation of

θ directly, penalizes the LS solution by attaching weights to

it, which in turn are regularized. Thus, given the least-squares

estimate θ̂N of (16), the NNG problem is formulated as

min
w

N
∑

k=1

(

y(k)−
nθ
∑

i=1

wiψi(k)θ̂i

)2

+λ

nθ
∑

i=1

wi, (22a)

s.t. w � 0, (22b)

where λ is the model complexity parameter, ψi(k) is the

i-th element of ϕk and w , [ w1 . . . wnθ
]⊤ are the

weights. For a given λ, (22a-b) is a convex optimization

problem in w, and the delivered estimate is θ̃ = w ⊙ θ with

⊙ being the Hadamard product. As λ increases, the weights

of the less important regressors will shrink, and finally end

up exactly at zero. This results in less and less complex

model estimates, as long as the overall fit of the estimate

on the available (validation) data is still acceptable. The fit

itself can be calculated in terms of any error measure or the

BIC or AIC criterion. An efficient way to implement this

strategy is to use a path following parametric estimation,

which calculates a piecewise affine solution path for λ [9].

The NNG is reported to be more effective in recovering

the sparsity structure of θo than the LASSO. However a

particular drawback of this approach is that it can not be

applied when N < nθ . To overcome this drawback, in [7],

the Ridge regression is suggested to be used as an initial

estimate.

These sparse estimators have the following property:

Property 1 (Oracle): If N → ∞ and the data-record is

persistently exciting w.r.t. the considered M, where Mo ∈
M corresponding to θo with support T, then the parameter

estimate θ̂ satisfies that the probability P (r(θo) = r(θ̂)) = 1,

where [r(θ)]i = 1 if θi 6= 0 while [r(θ)]i = 0 if θi = 0, and

θ̂i = θo,i +O(σe) for i ∈ T.

The oracle property implies that asymptotically, the correct

support is estimated with probability one. This would appear

to be a very desirable property, yet the same property

also implies that the worst-case asymptotic squared error

decreases more slowly than of the LS solution:

Property 2 ([26]): Suppose a sparse estimator fulfills the

oracle property. If N → ∞, then P (r(θo) = r(θ̂)) = 1,

however the maximal risk associated with the identification

criterion diverges

sup
θo∈R

nθ

E{N(θ̂ − θo)
⊤(θ̂ − θo)} → ∞, (23)

while in case of the LS solution

sup
θo∈R

nθ

E{N(θ̂ − θo)
⊤(θ̂ − θo)} → Trace(Q−1), (24)

where Q = 1
N

∑N
k=1 ϕ

⊤
k ϕk.

Although these results are asymptotic, and thus cannot be

truly translated to the finite data case, they suggest that the

performance of sparse estimators is not uniform w.r.t. θo, and

that an inherent bias always exists when the oracle property

holds. Nevertheless, in the finite data case there can be

significant advantages to use sparsity enhancing estimators.

C. Comparison to the CSI approach

AIC and BIC have significant computational load com-

pared to the convex minimization problem of (4a-b) for large

nθ. However, AIC and BIC are expected to deliver more

accurate selection as all possible combinations and hence all
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possible sparse LS solutions for the estimation of θ are tested.

In this respect (4a-b) presents a computationally attractive

solution just like the LASSO and the NNG.

In comparison with the LASSO approach, (4a-b) corre-

sponds to an alternative solution for the same sparse estima-

tion problem. Note that by solving (4a-b), the identification

criterion is

W (θ, λ,DN ) = ‖θ‖ℓ1 + λ(
1

N
‖eθ‖ℓ2 − ε), (25)

with both θ and λ ≥ 0 as optimization variables. This

provides a sum-of-norms type of criterion function where λ,

i.e., the regularization parameter is optimized. Contrary to

other type of sparse estimators, the ”optimal” regularization

parameter is directly delivered in this case via the choice of

ε, giving a straightforward interpretation of λ in terms of

the user chosen error bound. In terms of objectives, while

in (4a-b), the ℓ1 norm of the estimated parameter vector

is minimized to achieve the best sparsity level for a pre-

described prediction error controlled via ε, in the LASSO

case, the ℓ2 cost of the prediction error is minimized for a

given sparsity level. As the ℓ1 norm of the optimal estimate

for θ is unknown, it is hard in practice to guess a good

estimate for ε in the LASSO case, while in the CSI case

we know that the expected error is white and its variance is

much easier to estimate. This means that it is practically more

attractive to use (4a-b) as it is generally expected to be easier

to achieve recovery of the unknown sparse structure of θo.

However, if ε is optimally chosen, then the two optimization

problems are equivalent.

Comparison to the NNG shows that the re-weighting

approach is somewhere in between the LASSO provided

optimization problem and (4a-b). However, particular disad-

vantages of the NNG is its sensitivity for the undetermined

regression case and the non-trivial relationship between the

expected prediction error, sparsity level of the estimate and

the value of λ. Thus the solution needs to be explored for

all λ which is done via a sub-optimal piecewise solution

path. Depending on the size of the regression problem, the

Signal to Noise Ratio (SNR) and the sparsity level of θo,

this can result in varying computational time ranging form

a few seconds to hours. The CSI is empirically observed to

more efficiently recover the sparsity structure and it is also

applicable in the underdetermined case (see Sec. V).

Finally, to show that the CSI satisfies the oracle property,

like the NNG and the LASSO, consider consistency in terms

of Th. 1 when σe → 0 and ε is chosen as the minimal value

satisfying (6a). σe → 0 implies that εo = ‖Eθo‖ℓ2 → 0.

As a consequence, P (θ̂ = θo) → 1 as σe → 0 implies

that ε → 0. Now let σe > 0 and consider N → ∞. Then

in terms of the proof of Th. 2, ERC(Ψ,T) → 1 and the

minimum of ε converges to εo. This implies that Sup(θ̂) = T

which proves that the proposed sparse estimator satisfies the

oracle property. On the other hand, if N → ∞ then in (6b)

‖Eθo‖ℓ2 = εo → ∞ leaving (5a) unbounded. This yields

that even if P (θ̂i = 0) = 1 for i 6∈ T, at the same time

P (θ̂ = θo) = 0. This points out that sparse recovery has

got a price for CSI as well in terms of maximizing the loss

for N → ∞ (see Property 2). To decrease the effect of this

property, the following strategy can be used:

1) Wr.t. a given ARX model structure Mθ and data set

DN , estimate θ̂ according to (4a-b) where the regressor

matrix Ψ is generated according to (14).

2) Based on a threshold 0 < ε∗ ≪ 1 select a subset T of

the support of θ̂ such that ‖θ̂T − θ̂‖ℓ1 < ε∗‖θ̂‖ℓ1 .

3) Estimate θ̃ based on a LS estimate with ΨT .

This means that the oracle property of (4a-b) is exploited to

select the correct columns of Ψ. As recovery of the under-

lying support of θo holds with an overwhelming probability

under minor conditions on DN , thus the LS estimate w.r.t.

ΨT is consistent as N → ∞. However, this holds only

for infinite data. For N < ∞, there will of course remain

the possibility that the estimated support is incorrect, so re-

estimation does not fundamentally get around the problem

illustrated in Property 2. Yet practical advantages exist,

which are explored numerically in the example.

Another remark is that the consistency result has been

established based on the optimal choice of ε for (4a-b),

i.e., using condition (6b) with εo = ‖Eθo‖ℓ2 , which is not

available in practice. Different schemes can be applied to

approximate a reasonably good value of ε based on data like

an n-section based search starting from an upper bound of

εo calculated from the estimated noise w.r.t. an LS estimate.

For more on the appropriate choice of ε see the recent results

in [27].

Finally, it is well known in the LTI literature that ARX

models are globally identifiable, also in case of over-

parametrization, if eo has a nonzero variance, i.e., εo > 0
[28]. However in case eo = 0, the ARX model struc-

ture is not identifiable (locally at θo) if deg(A(q−1, θ) 6=
deg(A(q−1, θo) due to pole-zero cancelations. This means

that consistency requires this assumption if σe → 0.

V. EXAMPLE

Next the performance of the proposed CSI is compared to

the NNG via a representative Monte Carlo study. As the

LASSO is considered to be less effective than the NNG

and to avoid problems in choosing optimal regularization

parameters, comparison is restricted to the CSI and the NNG.

In each simulation, the true system is considered to be a

randomly generated stable ARX model with na = nb − 1 =
10, but with ‖θo‖ℓ0 = 6 (i.e., 3 nonzero parameters w.r.t.

A and 3 w.r.t. B). Furthermore, each model is generated

in the sense that the nonzero parameters are in the region

±[0.5, 1.5] to keep the relative importance of each parameter

close to the others. This means that θo associated with

each of the generated systems is rather sparse and over-

parameterization is likely to happen w.r.t. both the model

order and input delay. Using randomly generated systems, a

Monte Carlo simulation of 100 runs is executed for increas-

ing length of data records DN generated by these systems

with N ∈ [10, 80] for a white noise u with u(k) ∈ N (0, 1)
and σ2

e = 0.1 corresponding to an SNR of 55dB (other noise

scenarios are not presented due to space restrictions). This

means that in each of the 81 × 100 runs, a new randomly
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MSE BFR ℓ1 error

N Method mean std mean std mean std

35 LS-oracle 1.29 · 10−2 4.61 · 10−3 97.76 1.97 7.81 · 10−2 4.21 · 10−2

LS-full 2.48 · 10−2 1.52 · 10−2 96.27 3.16 2.97 2.23
CSI-I 3.19 · 10−2 2.58 · 10−2 96.05 2.64 1.43 1.85
CSI-I-opt 1.91 · 10−2 1.12 · 10−2 96.67 2.45 1.02 1.28
CSI-II-opt 1.39 · 10−2 5.26 · 10−3 97.64 2.15 4.54 · 10−1 1.05
NNG-BIC 4.49 · 10−2 8.77 · 10−2 95.06 8.47 9.11 · 10−1 1.69

80 LS-oracle 1.08 · 10−2 1.91 · 10−3 98.61 1.01 4.25 · 10−2 1.97 · 10−2

LS-full 1.32 · 10−2 2.55 · 10−3 97.82 1.24 1.37 9.58 · 10−1

CSI-I 1.44 · 10−2 3.79 · 10−3 97.26 1.91 6.79 · 10−1 1.03
CSI-I-opt 1.22 · 10−2 2.42 · 10−3 97.96 1.26 4.93 · 10−1 5.98 · 10−1

CSI-II-opt 1.09 · 10−2 2.08 · 10−3 98.59 1.07 1.02 · 10−1 3.90 · 10−1

NNG-BIC 1.22 · 10−2 6.92 · 10−3 98.20 2.02 1.14 · 10−1 2.78 · 10−1

TABLE I

MONTE CARLO SIMULATION RESULTS WITH SNR 55DB.

generated system, input and noise realizations are used. The

following methods are used to estimate θo:
• LS-oracle: LS estimate by using the optimal model

structure, i.e., ΨT. This approach is used as a baseline

estimate to show the best achievable performance by

any regression based estimator in the considered setting.

• LS-full: LS estimate using the full ARX(10,9) model

structure (MATLAB toolbox: arx method).

• NNG-BIC: NNG with a piecewise solution path and

BIC as a posterior selection of λ using validation data.

• CSI-I: The CSI approach (4a-b), using ε =
‖Eθ̂LS−full

‖ℓ2 , where θ̂LS−full is obtained by LS-full.

• CSI-I-opt: The CSI approach (4a-b), using an n-

section based search for optimizing ε based on valida-

tion data. For initialization, ε = ‖Y ‖ℓ2 is used.

• CSI-II-opt: The CSI-I-opt approach followed

by a re-estimation of θ with LS using only the columns

of Ψ for which |[θ̂CSI−I−opt]i| ≥ ǫ∗ = 0.1.

Note that LS-oracle can not be applied in practice as the

optimal model structure is unknown (part of the identification

problem itself). The results are compared in terms of

• The Mean Squared Error (MSE) of the prediction:

MSE = E{‖y(k)− ŷθ̂(k |k − 1)‖2ℓ2}. (26)

computed as an average over each 100 runs for a given

N and σe.

• The fit score or the Best Fit Rate (BFR) [29]:

BFR = 100%·max

(

1−
∥

∥y(k)− ŷθ̂(k)
∥

∥

ℓ2

‖y(k)− ȳ‖ℓ2
, 0

)

, (27)

where ȳ is the mean of y and ŷθ̂ is the simulated model

output.

• ‖θ̂ − θo‖ℓ1 .

The results w.r.t. the SNR= 55dB case are given in Table

I and in Figures 1 and 2. The LS-full is presented for

N ≥ nθ = 20 and the NNG-BIC is presented for cases

when N ≥ 1.5nθ = 35 which are built in lower bounds

of the used scripts in the identification toolbox. As we can

see, the LS-full has a huge bias around N = 20 which

slowly decreases as N grows, however compared to the

LS-oracle, it is still substantial when N = 80. On the

other hand the NNG-BIC shows worse behavior than the

LS-full in terms of MSE for small N , but with a fair

BFR and ℓ1 estimation error. The mean of all error measures

rapidly decreases as N -grows converging to the level of the

LS-oracle, however as we can see, the standard deviation

of these measures even for N = 80 is close to the variance

of the LS-full estimate which can be recognized as an

influence of the initial LS-full estimate.

As we can see the results of the CSI-I are not that

impressive compared to the NNG-BIC or to the LS-full,

even if it delivers reasonably good estimates for N <
nθ. However, the CSI-I-opt provides results with one

magnitude less in all error measures, which clearly indicates

that how important is to optimize the error bound ε. This is a

general property of any regularization based sparse estimator,

i.e., adequate choice of the regularization parameter is crucial

to deliver unbiased estimates. However in case of the CSI,

it is computationally attractive to optimize ε.

It is also an important observation that re-estimation, i.e.,

using the sparse estimator only as a model selection tool

as in CSI-II-opt, further refines the performance of the

estimation scheme. This delivers an estimator which gets the

closest to LS-oracle and has smaller bias and variance

than the NNG-BIC. In this respect, bias follows by mis-

selection of the optimal model structure. As N grows, the

gap between these methods decreases in terms of the mean

of the error measures, but not in terms of variance. The

CSI-II-opt has the advantage of delivering relatively

accurate estimates even if the data record is short compared

to the parameterization (see N = 35 in Table I). In case the

model is large scale (nθ > 1000), this property becomes a

serious advantage over other sparse estimation schemes.

The results for other noise cases are not presented here

due to space restrictions, but if σe decreases, then the relative

performance of CSI-II-opt improves w.r.t. NNG-BIC till

identifiability issues starts to play a significant role beyond

SNR> 180dB. If σe increases, then the performance of

CSI-II-opt and NNG-BIC becomes similar and under

SNR< 5dB no significant difference can be observed be-

tween them for N ≈ 80. Note that at SNR< 5dB, recovery

of the true sparsity structure θo less likely to follow and thus

threshold based re-estimation schemes like CSI-II-opt
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Fig. 1. Monte Carlo simulation results with SNR 55dB.

starts to diverge. If N is further increased, all approaches

converge to LS-oracle in the means of the error measures.

Convergence speed of CSI-II-opt and NNG-BIC seems

to be similar in this study.

VI. CONCLUSIONS

Inspired by promising advances in compressive sensing, a

new ℓ1 regularization scheme has been proposed in this paper

for the identification of sparse linear-regression models. Re-

covery and consistency properties of the resulting estimation

scheme has been investigated, establishing conditions for

finite data sets. Furthermore, it has been shown that the

estimator satisfies the oracle property and hence the maximal

risk of the estimates is unbounded. To practically overcome

this property, a re-estimation scheme has been proposed.

Furthermore, the introduced ℓ1 regularization scheme has

been compared to other sparse estimator approaches and it

has been shown that its advantages lie in its better accuracy

and computational trade-off with a practically sound choice

of the regularization parameter.
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VIII. APPENDIX

Proof: If Ψ is not normalized then Ψ̃ = ΨΣ−1 is where

Σ = In×n · [ ‖ψ1‖ℓ2 . . . ‖ψn‖ℓ2 ]⊤, (28)

and θ̃o = Σθo is the corresponding true parameter vector.

From this point, assume that Ψ is normalized, i.e., ‖ψi‖ℓ2 =
1 for all i ∈ In. Note that η̂i = Ψ+

T
ψi for each i ∈ In \ T

corresponds to the ℓ2 solution of

ψi = ΨTηi + V, (29)
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Fig. 2. Zoomed in Monte Carlo simulation results with SNR 55dB.

with V ∈ R
N . This means that ERC is basically a “measure”

of distance between each ψi column of Ψ that does not

belong to the true support T and the subspace spanned by the

columns of ΨT . To have condition (6a) satisfied, ‖η̂i‖ℓ1 < 1
must hold for each i ∈ In \ T.

Let R(T) = Ψ⊤
T
ΨT. The basic condition for (29) to have

a unique solution, i.e., Ψ+
T

to exist, is that R(T) ≻ 0, i.e.,

ΨT is full rank. Assume that the system is well excited in

the sense that R(T) ≻ 0, which is the classical persistency

of excitation condition 2 in the ARX case.

If na = 1, then ψi = q−j U
‖U‖ℓ2

with distinct j ∈ Z
+

for all i ∈ In where U , [ u(1) . . . u(N) ]⊤. W.l.o.g.

assume that u is white and u(k) ∈ N (0, σ2
u) yielding that

E{‖U‖ℓ2} =
√
Nσu. Let Ru,u(s) , E{u(k)u(k−s)} denote

the auto-correlation of u. As u(k) is white, ηi,o = 0 is the

underlying true solution of (29) with V = ψi and Ru,u(s) =
δ(s)σ2

u/‖U‖2ℓ2, where δ(�) is the Kronecker-delta function. If

N → ∞, then based on the central limit theorem it follows

(see [1]) that the ℓ2-solution of (29), i.e., η̂i = Ψ+
T
ψi is

consistent and √
Nη̂i → N (0, Pi), (30)

with probability 1, where Pi = Nσ2
u/E{‖U‖2ℓ2} · C−1 and

C is the correlation matrix of ΨT in this case being equal

to Nσ2
u/E{‖U‖2ℓ2} · Iτ×τ . This yields that Pi = Iτ×τ . As a

consequence, if N → ∞, then under some minor conditions

(see Appendix 9.B in [1]) satisfied by (29) in the considered

setting:

E{‖η̂i‖ℓ1} = lim
N→∞

τ

√

2

Nπ
= 0, (31)

based on the fact that E{|x|} =
√

2/πσ if x ∈ N (0, σ2).
This gives the necessary condition for recovery when N is

finite, i.e., to have (31) less than 1, that

2

π
τ2 < N. (32)

Now consider the case when Ψ⊤
T

is formed from the

shifted versions of u and y but ψi = q−iU . Denote

2Note that this excitation condition is not for the overall model structure,
as ΨT is associated with only the regression vectors of the optimal model
structure.
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Ry,u(s) , E{y(k)u(k − s)} the cross-correlation of y w.r.t.

u. Note that

Ry,u(s) = ho(s) ⋆ Ru,u(s) = ho(s)σ
2
u = Ru,y(−s), (33)

where ho(s) is the impulse response of Mθo and ⋆ de-

notes the discrete-time convolution. Furthermore, denote

Ry,y(s) , E{y(k)y(k − s)} satisfying:

Ry,y(s) =
(

ho(−s) ⋆ ho(s)
)

σ2
u + δ(s)σ2

e . (34)

Assume that the columns of ΨT are ordered such that

ΨT =
[

q−α1Y
‖Y ‖ℓ2

. . . q
−αny Y
‖Y ‖ℓ2

q−β1U
‖U‖ℓ2

. . . q−βnuU
‖U‖ℓ2

]

.

By using the central limit theorem (see [1]):
√
Nη̂i → N (Qi, Pi), (35)

with probability 1 if N → ∞, where

Qi = R−1
∗ (T) · F∗(T, i), (36a)

Pi = (R−1
∗ (T))⊤F⊤

∗ (T, i)F∗(T, i)R
−1
∗ (T), (36b)

R∗(T) , lim
N→∞

E{R(T)} = C, (36c)

F∗(T, i) , lim
N→∞

E{Ψ⊤
Tψi}, (36d)

and C is the correlation matrix of the signals in the columns

of ΨT , i.e., the normalized signals q−iu and q−jy, while

F∗(T, i) =
[

NRy,u(α1−i)
E{‖U‖ℓ2

}E{‖Y ‖ℓ2
} . . .

NRy,u(αny−i)

E{‖U‖ℓ2
}E{‖Y ‖ℓ2

}

NRu,u(β1−i)

E{‖U‖2
ℓ2

}
. . .

NRu,u(βnu−i)

E{‖U‖2
ℓ2

}

]⊤

.

Note that as i 6∈ T,

F∗(T, i) =
[

ho(α1−i)
‖ho‖ℓ2

. . .
ho(αny−i)

‖ho‖ℓ2

0
]⊤

.

Similarly, C is a diagonal dominant positive definite matrix

with 1 entries in the diagonal and off-diagonal elements that

represent a relative ratio between ho(�) and ‖ho‖ℓ2 . As a

consequence, if N → ∞, then

E{‖η̂i‖ℓ1} =
1√
N

(

‖Qi‖ℓ1+
√

2

π
trace

(

P
1/2
i

)

)

= 0. (37)

Note that in case ψ = q−iY , the same limits hold except

F∗(T, i) is more densely populated and hence E{‖η̂i‖ℓ1}
decays to zero slower. Eq. (31) also reveals that a necessary

condition for recovery when N is finite, i.e., to have (37)

less than 1, is

max
i∈In\T

‖Qi‖2ℓ1 +
2

π

(

trace
(

P
1/2
i

))2

< N. (38)

REFERENCES

[1] L. Ljung, System Identification, theory for the user, 2nd ed. Prentice-
Hall, 1999.
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