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Abstract— The unsteady Hamilton-Jacobi equation (HJE)
plays an important role in the analysis and control of nonlinear
systems and is very difficult to solve for general nonlinear
systems. In this paper, the unsteady HJE for a Hamiltonian
with coefficients belonging to meromorphic functions of time
and rational functions of the state is considered, and its
solutions with algebraic gradients are characterized in terms
of commutative algebra. It is shown that there exists a solution
with an algebraic gradient if and only if an H-invariant and
involutive maximal ideal exists in a polynomial ring over the
meromorphic functions of time and the rational functions of
the state. If such an ideal is found, an algebraic gradient can
be obtained by only solving a set of algebraic equations.

I. INTRODUCTION

The unsteady Hamilton-Jacobi equation (HJE) is one of

the most important equations in system control theory. For

example, the optimal regulator problem [1] and the H∞

control problem [2] lead to the HJE. However, it is difficult to

solve the HJE analytically and numerically. Some numerical

methods have been studied [3], but they suffer from rapid

growth in the number of parameters to be determined with

increasing dimension of the state space. Even the HJE for a

time-invariant Hamiltonian suffers from the so-called curse

of dimensionality.

On the other hand, Hamilton’s canonical equations are of-

ten related to the unsteady HJE. In nonlinear optimal control

problems, a stationary condition of optimality is described by

Hamilton’s canonical equations. A state feedback control law

satisfying the stationary condition can be constructed if the

costate can be obtained as a function of time and the state.

For example, a gradient of a solution to the unsteady HJE

satisfies the canonical equations and is a function of time and

the state. Hamilton’s canonical equations are also difficult to

solve analytically. In particular, in the case of finite-horizon,

nonlinear, time-varying optimal control problems, in solving

the canonical equations we encounter the nonlinear two-point

boundary-value problem, although some numerical solution

methods for this problem have been developed [4].

Recently, a new representation for solution to the HJE

has been proposed [5] in terms of commutative algebra [6],

[7], [8], which is a different viewpoint from the standard

differential geometric approach [9], [10] and the viscosity

solution [11]. In this approach, a set of algebraic equations
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that are satisfied by the gradient of a solution to the HJE,

is defined, and existence conditions for the set of algebraic

equations are clarified by restricting the Hamiltonian to be

a polynomial in the gradient of a solution with coefficients

consisting of rational functions of the state.

On the basis of this approach, in this paper, we aim to

find a set of algebraic equations that implicitly define the

gradient of a solution to the unsteady HJE by restricting

the Hamiltonian to be a polynomial in the gradient of the

solution with coefficients consisting of meromorphic func-

tions of time and rational functions of the state. Once a set

of algebraic equations is found, the gradient of the solution

at each time and the state can be numerically obtained by

various techniques for solving nonlinear equations. Thus,

there is no need to store a function over a domain in

time and the state space, and, consequently, the curse of

dimensionality is also avoided, which is similar to the case

of a time-invariant Hamilton [5]. Note that in this paper, we

consider the HJE with a time-varying Hamiltonian that is

not a rational function of time but a meromorphic function

of time. Therefore, our approach can deal with a large class

of the unsteady HJE with respect to time.

The remainder of this paper is organized as follows. In

Section II, the class of the unsteady HJE treated in this

paper is stated, and to characterize its solution, the class of

Hamilton’s canonical equations treated in this paper is also

stated. A solution to Hamilton’s canonical equations with an

algebraic function and a solution to the unsteady HJE with

an algebraic gradient are defined. In Section III, an existence

condition for a solution with an algebraic function is given

for the canonical equations, and using this condition, an

existence condition for a solution with an algebraic gradient

is also given for the unsteady HJE. Each condition guarantees

necessity and sufficiency, and the notions of H-invariant

maximal ideals and involutive maximal ideals characterize

each condition. In Section IV, a class of a nonlinear time-

varying optimal regulator problem is given such that explicit

solutions are obtained as algebraic functions, and an example

of an explicit solution is also presented.

Notation: Throughout the paper, x = [x1, x2, . . . , xn]
T

denotes the n-dimensional state vector of a dynamical sys-

tem. For a scalar-valued function V (t, x), we denote a row

vector consisting of the partial derivatives of V with respect

to xi (i = 1, 2, . . . , n) as ∂V/∂x, and the column vector

(∂V/∂x)T, which is the transpose of ∂V/∂x, as ∇V . Since

the set of all real-valued analytic functions with a variable t
is an integral domain [12], its quotient field is well-defined

and is denoted by Rt. That is, the set of all real-valued
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meromorphic functions with a variable t is denoted by Rt.

The field of rational functions with variable x over Rt is

denoted by Kt = Rt(x). The polynomial ring over Kt

with variables pi (i = 1, 2, . . . , n) is denoted by Kt[p] with

p = [p1, p2, . . . , pn]
T. Furthermore, the algebraic closure of

Kt is denoted by K̄t. The indeterminate of a single-variable

polynomial is denoted by X .

II. SETTING OF THE PROBLEM

For a scalar-valued function H(t, x, p), we consider the

following first-order partial differential equation for a scalar-

valued function V (t, x):
[

∇V (t, x)
∂V/∂t

]

=

[

p(t, x)
−H(t, x, p)

]

, (1)

which we call the unsteady Hamilton-Jacobi equation (HJE)

for the Hamiltonian H . The unsteady HJE plays an important

role in the analysis and control of time-varying nonlinear

systems.

Example 1 (Nonlinear optimal regulator): Consider

f, g : R × R
n → R

n, q : R × R
n → R, the following state

equation, and the performance index

dx

dt
(t) = f(x(t), t) + g(x(t), t)u(t), x(0) = x0,

J =
1

2

∫ ∞

t0

(

q(x(t), t) + u2(t)
)

dt,

where we assume that f(t, 0) = 0 for all t and that q is

positive definite with respect to x and uniformly bounded

with respect to t. The value function V (t0, x) = infu J
satisfies the unsteady HJE with the Hamiltonian

H(t, x, p) = pTf(t, x) +
1

2

(

−pTg(t, x)gT(t, x)p+ q(t, x)
)

.

The optimal regulator is given as uopt = −gTp. If the system

is affine in control and the performance index is quadratic

in control, then the Hamiltonian is always quadratic in p.

Remark 1: The unsteady HJE (1) is usually called the

HJE; however, to distinguish (1) from

H(x, p) = 0, p = ∇V,

we call (1) the unsteady HJE.

From the Poincaré lemma and its converse [13], on a

contractible domain in R × R
n, the right-hand side of the

unsteady HJE (1), which is [p(t, x) − H(t, x, p)]T, is the

partial derivative of V with respect to (t, x) if and only if

the Jacobian matrix
[

∂p
∂x

(t, x)

−∂H
∂x

(t, x, p)− ∂H
∂p

(t, x, p) ∂p
∂x

(t, x)

∂p
∂t
(t, x)

−∂H
∂t

(t, x, p)− ∂H
∂p

(t, x, p)∂p
∂t
(t, x)

]

is a symmetric matrix, that is, the following equations are

satisfied.

∂p

∂t
(t, x) =

(

−
∂H

∂x
(t, x, p)−

∂H

∂p
(t, x, p)

∂p

∂x
(t, x)

)T

, (2)

∂p

∂x
(t, x) =

(

∂p

∂x

)T

(t, x). (3)

From (3), (2) leads to the following equation:

∂p

∂t
(t, x) +

∂p

∂x
(t, x)

(

∂H

∂p

)T

(t, x, p)

= −

(

∂H

∂x

)T

(t, x, p). (4)

In summary, p(t, x) satisfying (3) and (4) is identical to

∇V (t, x) for some scalar-valued function V (t, x) on a

contractible domain in R× R
n.

On the other hand, Hamilton’s canonical equations,

dx

dt
(t) =

(

∂H

∂p

)T

(x(t), t, p(t)), (5)

dp

dt
(t) = −

(

∂H

∂x

)T

(x(t), t, p(t)), (6)

are often related to the unsteady HJE. In nonlinear optimal

control problems such as Example 1, an input satisfying

the stationary condition is obtained by solving Hamilton’s

canonical equations with suitable boundary conditions. Here,

we consider a particular problem in which p is a function of

x and t as p0(t, x) with the assumption that the canonical

equations (5) and (6) have solutions at all times for all

initial conditions. A state feedback control law satisfying the

stationary condition can be composed if p can be obtained as

a function of x and t. For example, p satisfies the canonical

equations (5) and (6) and is a function of x and t if p is a

gradient of a solution to the unsteady HJE. By substituting

p = p0(t, x) in (5), we obtain the following:

dx

dt
(t) =

∂H

∂p
(t, x, p0(t, x)). (7)

If we give an initial condition x0(t0) for (7), its solution

x0(t) can be determined. When substituting x0(t) into x
of p(t, x) in (6), (x0(t), p0(t, x0(t))) is a solution to the

canonical equations (5) and (6) if and only if

∂p0
∂t

(t, x0(t))

+
∂p0
∂x

(t, x0(t))

(

∂H

∂p

)T

(t, x0(t), p0(t, x0(t)))

= −

(

∂H

∂x

)T

(t, x0(t), p0(t, x0(t)))

is satisfied. If this equation holds at any initial time t0 ∈
R for any initial state x0(t0) ∈ R

n, then (4) holds. Thus,

p0(t, x) such that (x0(t), p0(t, x0(t))) is a solution to the

canonical equations satisfies (4). In addition, if p0(t, x) also

satisfies (3), then p0(t, x) is the gradient of a solution to the

unsteady HJE on a contractible domain in R× R
n.

In general, it is difficult to solve (3) and (4) for p(t, x). In

this paper, we characterize a solution of the unsteady HJE

with H ∈ Kt[p].
On the basis of the definition of algebraic functions, we

define an algebraic gradient and an algebraic costate as

follows.
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Definition 1: An analytic function ρ : U → C defined

on an open set U ⊂ R × R
n is said to be an algebraic

function with respect to x if there exists a nonzero irreducible

polynomial ψ ∈ Kt[X] such that

ψ(t, x, ρ(t, x)) = 0

holds for all (t, x) ∈ U . For a solution V (t, x) to (1),

∇V (t, x) is said to be an algebraic gradient if all of its

components ∂V (t, x)/∂xi (i = 1, . . . , n) are algebraic

functions with respect to x.

Definition 2: A vector-valued function p0(t, x) such that

(x0(t), p0(t, x0(t))) satisfies Hamilton’s canonical equations

is said to be an algebraic costate if all of its components pi
(i = 1, . . . , n) are algebraic functions with respect to x.

Remark 2: The argument of p0 is often omitted. If we

describe the argument of a function as (t, x, p0), then the

argument of p0 is (t, x), and if we describe the argument

of a function as (t, x0(t), p0), then the argument of p0 is

(t, x0(t)) with x0 a solution of (7).

III. ALGEBRAIC SOLUTION

A. Existence of a Solution

In this section, we give a necessary and sufficient condition

for the existence of a solution to the unsteady HJE with an

algebraic gradient. First, we show an existence condition for

an algebraic costate, then, on the basis of the condition, an

existence condition for an algebraic gradient is shown.

The Poisson bracket for two functions Ψ and Φ is defined

as

{Ψ,Φ} :=
n
∑

i=1

(

∂Ψ

∂xi

∂Φ

∂pi
−
∂Ψ

∂pi

∂Φ

∂xi

)

.

If the class of functions Ψ and Φ is restricted to the

polynomial ring Kt[p], the Poisson bracket can be viewed

as a mapping {·, ·} : Kt[p] ×Kt[p] → Kt[p] because Kt[p]
is closed under partial differentiation. We also define the

involutiveness and H-invariance of an ideal with respect to

the Poisson bracket as follows.

Definition 3: An ideal I of Kt[p] is involutive if

{Ψ,Φ} ∈ I, ∀Ψ ∈ I, ∀Φ ∈ I.

Definition 4: For a given H ∈ Kt[p], an ideal I of Kt[p]
is H-invariant if

∂Ψ

∂t
+ {Ψ, H} ∈ I, ∀Ψ ∈ I.

The existence of an algebraic costate is characterized in

terms of an H-invariant ideal as follows.

Theorem 1: Hamilton’s canonical equations (5) and (6)

have an algebraic costate if and only if there exists an H-

invariant maximal ideal.

Proof: (Necessity) If p0(t, x) is an algebraic costate,

then all elements of p0 are algebraic functions with respect

to x. Let ϕ : Kt[p] → Kt[p0] be a mapping that substitutes

p = p0(t, x) for an element of Kt[p], which is a surjective

ring homomorphism over Kt. Kerϕ is a maximal ideal and

generated by n elements [8], which we denote by I =

〈F1, F2, . . . , Fn〉. Since Fi ∈ Kerϕ, we have F (t, x, p0) = 0
for F = [F1, F2, . . . , Fn]

T. By substituting x = x0(t) for

an element of Kt, we also have F (t, x0(t), p0(t, x0(t))) =
0. By differentiating the equality with respect to t, since

(x0(t), p0(t, x0(t))) is a solution to the canonical equations,

we have

dF

dt
(t, x0(t), p0)

=
∂F

∂t
(t, x0(t), p0) +

∂F

∂x0
(t, x0(t), p0)

dx0
dt

(t)

+
∂F

∂p
(t, x0(t), p0)

(

∂p0
∂t

(t, x0(t)) +
∂p0
∂x

(t, x0(t))
dx0
dt

(t)

)

=
∂F

∂t
(t, x0(t), p0) +

∂F

∂x
(t, x0(t), p0)

∂H

∂p
(t, x0(t), p0)

−
∂F

∂p
(t, x0(t), p0)

∂H

∂x
(t, x0(t), p0) = 0, (8)

where the ith entry of the left-hand side is simply

∂Fi/∂t(t, x0(t), p0) + {Fi, H}(t, x0(t), p0). Equation (8)

holds at any initial time t0 ∈ R for any initial

state x0(t0) ∈ R
n. That is, ∂Fi/∂t(x0(t0), t0, p0) +

{Fi, H}(x0(t0), t0, p0) = 0 holds for all (x0(t0), t0) ∈
R × R

n. Since R is an infinite field, for (t, x) ∈ Kt ×Kn
t ,

we have

∂Fi

∂t
(t, x, p0) + {Fi, H}(t, x, p0) = 0 (i = 1, . . . , n),

which is equivalent to ∂Fi/∂t+{Fi, H} ∈ Ker φ = I . Since

any Ψ ∈ I can be expressed as Ψ =
∑n

i=1
siFi, si ∈ Kt[p],

we have

∂Ψ

∂t
+ {Ψ, H}

=

n
∑

i=1

si

(

∂Fi

∂t
+ {Fi, H}

)

+ Fi

(

∂si
∂t

+ {si, H}

)

.

Since ∂Fi/∂t+{Fi, H} and Fi belong to I , ∂Ψ/∂t+{Ψ, H}
also belongs to I , which implies that I is H-invariant.

(Sufficiency) Let I ⊂ Kt[p] be an H-invariant maximal

ideal. According to Hilbert’s Nullstellensatz [8], there exists

p0(t, x) ∈ V(I) ⊂ K̄t × K̄n
t . That is, all elements of an

affine algebraic variety V(I) ⊂ K̄t × K̄n
t are algebraic

functions with respect to x. In a similar manner to the proof

of necessity, we construct F from the basis of the ideal I . It

suffices to show if a maximal ideal I is H-invariant, then

p0 satisfies (4). Since F (t, x, p0) = 0, p0(t, x) ∈ V (I),
by substituting x = x0(t) for an element of Kn

t , we have

F (t, x0(t), p0(t, x0(t))) = 0. By differentiating the equality

with respect to t, we have

∂F

∂t
(t, x0(t), p0) +

∂F

∂x
(t, x0(t), p0)

∂H

∂p
(t, x0(t), p0)

+
∂F

∂p
(t, x0(t), p0)

(

∂p0
∂t

(t, x0(t))

+
∂p0
∂x

(t, x0(t))
∂H

∂p
(t, x0(t), p0)

)

= 0,

(9)
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because x0(t) satisfies (7) for all p0(t, x0). Since (9) holds

at any initial time t0 ∈ R for any initial state x0(t0) ∈ R
n,

for (t, x) ∈ Kt ×Kn
t , we have

∂F

∂t
(t, x, p0) +

∂F

∂x
(t, x, p0)

∂H

∂p
(t, x, p0)

+
∂F

∂p
(t, x, p0)

(

∂p0
∂t

(t, x)

+
∂p0
∂x

(t, x)
∂H

∂p
(t, x, p0)

)

= 0. (10)

On the other hand, the H-invariance of I leads to the

following equality:

∂F

∂t
(t, x, p0) +

∂F

∂x
(t, x, p0)

∂H

∂p
(t, x, p0)

−
∂F

∂p
(t, x, p0)

∂H

∂x
(t, x, p0) = 0. (11)

Since the right-hand sides of (10) and (11) are equivalent,

we have

∂F

∂p
(t, x, p0)

(

∂p0
∂t

(t, x) +
∂p0
∂x

(t, x)
∂H

∂p
(t, x, p0)

)

= −
∂F

∂p
(t, x, p0)

∂H

∂x
(t, x, p0).

From Lemma 2 in [5], ∂F/∂p(t, x, p0) is nonsingular at all

elements in V (I), which implies

∂p0
∂t

(t, x) +
∂p0
∂x

(t, x)
∂H

∂p
(t, x, p0) = −

∂H

∂x
(t, x, p0).

This is simply (4). Thus, for p0(t, x) ∈ V (I) and x0(t) satis-

fying (7), (x0(t), p0(t, x0(t))) satisfies Hamilton’s canonical

equations (5) and (6).

The existence of an algebraic gradient is characterized in

terms of an H-invariant and involutive ideal as follows.

Theorem 2: The unsteady HJE (1) has a solution V with

an algebraic gradient on a contractible domain in R × R
n

if and only if there exists an H-invariant and involutive

maximal ideal.

Proof: Since we assume that a solution to the unsteady

HJE is defined on a contractible domain in R × R
n, from

the Poincaré lemma and its converse [13], p(t, x) satisfying

(3) and (4) is the gradient of a solution to the unsteady HJE.

Therefore, a costate of Hamilton’s canonical equations that

satisfies (4) is the gradient of a solution to the unsteady HJE

if and only if the costate satisfies (3) and, consequently, an

algebraic costate is an algebraic gradient if and only if it

satisfies (3). From Theorem 1, the existence of an algebraic

costate and the existence of an H-invariant maximal ideal are

equivalent. Thus, it suffices to show that the algebraic costate

characterized by the H-invariant maximal ideal satisfies (3) if

and only if the H-invariant maximal ideal is involutive. This

can be proved in a similar manner to the proof of Theorem

1 in [5].

Remark 3: The maximality of an ideal implies that a

map p0i : U → C is defined as an implicit function

by a set of algebraic equations F (t, x, p) = 0. The H-

invariance of an ideal implies that (x0(t), p0(t, x0(t))) is a

solution of Hamilton’s canonical equations, and especially

that dp0/dt(t, x0(t)) = {p0, H}(t, x0(t), p). Moreover, the

involutiveness of an ideal implies that p0(t, x0(t)) satisfies

(3).

Remark 4: In analytical dynamics, functions Fi (i =
1, . . . , n) are said to be first integrals [14] if ∂Fi/∂t +
{Fi, H} = 0 holds identically over R × R

n × R
n. It is

readily shown that if the functions Fi (i = 1, . . . , n) are first

integrals, then the ideal I = 〈F1, . . . , Fn〉 is H-invariant.

However, the converse is not true in general, and the H-

invariance of an ideal is a weaker condition than the first in-

tegrability of functions. According to [5], the involutiveness

of an ideal is a weaker condition than the involutiveness of

functions in analytical dynamics. Therefore, even if there ex-

ists a solution with an algebraic gradient, Liouville’s theorem

[14] is not necessarily applicable to guarantee the existence

of a complete solution with n arbitrary constants. Similarly,

the existence of a solution with an algebraic gradient does

not necessarily imply algebraic complete integrability [15],

an algebraic expression of Liouville’ s theorem.

Remark 5: In a finite-horizon linear-quadratic regulator

problem for time-invariant systems, the numerator and de-

nominator of each element of a solution to the Riccati

differential equation (RDE) are exponential functions with

a variable t [1], which implies sij(t) ∈ Kt, where sij(t)
is the (i, j) element of S(t), which is a solution to the

RDE. In the RDE, a gradient p of a solution to the unsteady

HJE is expressed as p = S(t)x. In this case, the basis

of an H-invariant and involutive maximal ideal is given

by Fi = pi −
∑n

j=1
sijxj . In a linear-quadratic regulator

problem for time-varying systems, it is only guaranteed that

ṡij(t) and s̈ij(t) exist and are continuous [1]. However, it is

not always guaranteed that sij(t) are meromorphic functions

and, consequently, belong to K̄t.

It can be determined whether a maximal ideal I =
〈F1, . . . , Fn〉 is H-invariant or not by computing the Poisson

bracket for two functions H and Fi according to the proof of

Theorem 1, and a similar argument holds for involutiveness.

If an H-invariant maximal ideal I = 〈F1, . . . , Fn〉 can

be found for the unsteady HJE, then an algebraic gradient

p0(t, x) is obtained by only solving F (t, x, p) = 0 with

respect to p, where p0(t, x) is in V(I) ⊂ K̄t × K̄n
t .

Therefore, the gradient of a solution can be determined

by solving a set of algebraic equations pointwise without

storing the solution over a domain in time and the state

space. However, the H-invariance condition leads to a set

of partial differential equations for unknown meromorphic

functions in time t and rational functions in the state x,

and the involutiveness condition leads to a set of partial

differential equations for unknown rational functions in the

state x. These equations are still difficult to solve in general.

However, an example of a class of involutive maximal ideals

is given as follows.

Proposition 1: [5] Let Φi ∈ R(xi)[Xi] \ R[Xi] be a

monic irreducible polynomial, and assume ai ∈ K satisfies

∂ai/∂xj = ∂aj/∂xi. Then, for Fi(p) = Φi(pi − ai),
〈F1, . . . , Fn〉 is an involutive maximal ideal.
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It is straightforward to extend Proposition 1 as follows.

Proposition 2: Let Φi ∈ Rt(xi)[Xi] \ Rt[Xi] be a monic

irreducible polynomial, and assume ai ∈ Kt satisfies

∂ai/∂xj = ∂aj/∂xi. Then, for Fi(p) = Φi(pi − ai),
〈F1, . . . , Fn〉 is an involutive maximal ideal.

B. Stabilizing Solution

If an H-invariant and involutive maximal ideal can be

found for the unsteady HJE, then an algebraic gradient

is obtained by only solving a set of algebraic equations.

However, the solution to the set of equations is not unique.

For the analysis and design of control systems, the gradient

of the stabilizing solution is the most important branch.

We characterize the gradient of a stabilizing solution in the

following.

Definition 5: A solution V (t, x) to the unsteady HJE is

called a stabilizing solution if it is defined on an open set

containing the origin, if V (t, 0) = 0 and ∇V (t, 0) = 0 hold

for all t, and if the origin is an uniformly asymptotically

stable equilibrium of

dx

dt
=

(

∂H

∂p

)T

(t, x,∇V ). (12)

We define the following matrices:

A(t) :=
∂2H

∂p∂x
(t, 0, 0), B(t) :=

∂2H

∂p2
(t, 0, 0),

C(t) :=
∂2H

∂x2
(t, 0, 0), X(t) :=

∂2V

∂x2
(t, 0, 0).

Then, the linearized system of (12) at the origin is ex-

pressed as

dξ/dt = (A(t) +B(t)X(t))ξ. (13)

Moreover, it is readily shown by differentiating the unsteady

HJE that X(t) is a solution to the following RDE:

−dX/dt(t) = AT(t)X(t) +X(t)A(t)

+X(t)B(t)X(t) + C(t).

For the RDE, its solution X(t) is called a stabilizing solution

if the origin is an uniformly asymptotically stable equilibrium

of system (13).

The following proposition relates a stabilizing solution to

the unsteady HJE with a stabilizing solution to the RDE.

Proposition 3: [2] Let V be a solution to the unsteady

HJE with V (t, 0) = 0 and ∇V (t, 0) = 0 for all t. If X(t)(=
∂2V /∂x2(t, 0)) is a stabilizing solution to the RDE, then

V (t, x) is a stabilizing solution to the unsteady HJE.

This proposition was originally given for the unsteady HJE

and the RDE in the H∞ problem: however, it also holds in

the present problem setting.

An existence condition for a stabilizing solution to the

RDE is known to be as follows.

Proposition 4: [16] Suppose that B(t) = −B̂T(t)B̂(t)
for some matrix B̂(t) and that C(t) = −ĈT(t)Ĉ(t) for some

matrix Ĉ(t). An RDE has a stabilizing solution that is also

positive semidefinite and uniformly bounded if (A(t), B̂(t))
is stabilizable and (A(t), Ĉ(t)) is detectable.

If the assumptions in Proposition 4 hold, Proposition 3

implies that the stabilizing solution to the nonlinear optimal

regulator problem can be obtained by taking a branch of

the algebraic gradient such that p(t, 0) = 0 for all t and

∂p(t, 0)/∂x is positive semidefinite and uniformly bounded.

IV. EXAMPLES

In this section, we obtain an explicit solution to the

unsteady HJE as algebraic functions based on Proposition

2. Let be n = 2 and H ∈ Kt[p] be given by

H = f1p1 + f2p2 − (g1p1 + g2p2)
2/2 + (x2

1
+ x2

2
)/2.

If the state equation is defined in the neighborhood of the

origin, the denominators of the entries of f and g do not

vanish at the origin. Thus, f and g belong to Rt := Rt[x]〈x〉.
Furthermore, if the origin is an equilibrium, f(t, 0) = 0
holds, and therefore, the component of f = [f1, f2]

T belongs

to M := 〈x〉Rt. Rti ,Mi and R×
ti

denote intersections of

Rt(xi) (i = 1, 2), with Rt, M and the set of units (invertible

elements) of Rt, respectively.

On the basis of Proposition 2, we consider the involutive

ideal generated by the following polynomials:
{

F1 = p1 + b11(x1, t),
F2 = p2

2
+ b21(x2)p2 + b22(x2).

(14)

Proposition 5: Assume that g1 ∈ Rt, g2 ∈ R×
t2

and
√

b2
21

− 4b22 /∈ Kt. If for some b̂11 ∈ Rt and b21 ∈M2,

b11 = x1b̂11, b22 = −x2
2
/g2

2
6= 0, (15)

f1 =
x1
2

{

1

b̂11

(

1− ∂b̂11/∂t
)

− b̂11g
2

1

}

, (16)

f2 = −b11g1g2 − g2
2
b21/2 (17)

are satisfied, then f1(t, 0) = 0 and f2(t, 0) = 0 for all t,
and the unsteady HJE (1) has a solution with an algebraic

gradient p defined as a zero of (14).

Proof: We show that I = 〈F1, F2〉 is an H-invariant

and involutive maximal ideal if the assumptions of Proposi-

tion 5 hold. First, f1 ∈ x1Rt ⊂M and f2 ∈ 〈b11〉+ 〈b21〉 ⊂
〈x1b̂11〉 +M2 ⊂ M imply that f1(0) = 0 and f2(0) = 0.

From the definitions of b11 and b22, b11 and b22 belong to

Rt(x1)\Rt and Rt(x2)\Rt, respectively.
√

b2
21

− 4b22 /∈ Kt

implies that F2 is irreducible. Thus, I = 〈F1, F2〉 is an

involutive maximal ideal according to Proposition 2.

It suffices to show that the involutive maximal ideal I is

H-invariant. From the proof of Theorem 1, we only have

to verify that ∂Fi/∂t + {Fi, H} ∈ I (i = 1, 2), which are

satisfied if

∂

∂x1

(

f2 + b11g1g2 +
b21g

2

2

2

)

= 0

2
∂b11
∂t

+
∂

∂x1

(

2b11f1 + (b11g1)
2 − x2

1
− b22g

2

2

)

= 0

∂

∂x2

(

2b11f1 + (b11g1)
2 + b21

(

f2 + b11g1g2 +
b21g

2

2

2

)

−b22g
2

2
− x2

2

)

= 0
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b21
2

∂(2b11f1 + (g1b11)
2)

∂x2
+ 2b22

∂(f2 + b11g1g2 + b21g
2

2
/2)

∂x2

+

(

f2 + b11g1g2 +
b21g

2

2

2

)

∂b22
∂x2

−
b21
2

∂(b22g
2

2
+ x2

2
)

∂x2
= 0.

They hold if (15), (16) and (17) hold.

On the basis of Proposition 5, an example of an explicit

solution is given.

Example 2: Suppose a state equation and cost function

are given as follows:

ẋ =

[

−e−tx1/2
x1/(1 + e−t)− x3

2
/2

]

+

[

1
1

]

u,

J =
1

2

∫ ∞

t0

(x2
1
+ x2

2
+ u2)dt.

According to Proposition 5, the cost function has a value

function with an algebraic gradient p defined as a zero of

the following polynomials:
{

p1 − x1/(1 + e−t) = 0,
p2
2
+ x3

2
p2 − x2

2
= 0.

Because of Propositions 3 and 4, a branch of the algebraic

gradient p such that ∂p(t, 0)/∂x is positive semidefinite is

chosen as

p(x) =
[

x1/(1 + e−t)
(

−x3
2
+ x2

√

4 + x4
2

)

/2
]T

.

To show that the assumption of Proposition 4 holds, we only

need to verify the stabilizability of the linearized system at

the origin since the linearized system is obviously detectable.

In particular, we focus on showing that the linearized system

of the closed-loop system using the feedback law

u = −gTp = −
x1

1 + e−t
−

−x2
2
+ x2

√

4 + x2
2

2

is uniformly asymptotically stable at the origin. The lin-

earized closed-loop system is computed as

ξ̇ = (A(t) +B(t)X(t))ξ,

A(t) +B(t)X(t) =





−
e−t

2
−

1

1 + e−t
−1

0 −1



 ,

and A(t) + B(t)X(t) is continuous. By transforming the

RDE to the Lyapunov equation for time-varying linear sys-

tems, we have

dX

dt
(t) +X(t)(A(t) +B(t)X(t))

+(A(t) +B(t)X(t))TX(t) = −(C(t) +X(t)B(t)X(t)),

where

X(t) =
∂p

∂x
(t, 0) =





1

1 + e−t
0

0 1



 ,

which is continuously differentiable, positive definite and

uniformly bounded. Then C(t) +X(t)B(t)X(t) is continu-

ous, positive definite and uniformly bounded, where

B(t) =

[

1 1
1 1

]

, C(t) =

[

1 0
0 1

]

.

From the Lyapunov stability theorem for time-varying linear

systems [17], the linearized system is uniformly asymp-

totically stable at the origin. Thus, p is the gradient of a

stabilizing solution. The value function is expressed as

V (t, x) =

∫ x

0

∂V

∂ξ
(ξ)dξ =

∫

1

0

pT(sx)xds.

The line integral yields the explicit value function

V (t, x) =
1

8

(

4x2
1

1 + e−t
− x4

2
+ x2

2

√

4 + x4
2
+ 4 sinh−1 x

2

2

2

)

.

V. CONCLUSION

In this paper, the polynomial-type HJE for a Hamiltonian

with coefficients belonging to meromorphic functions of

time and rational functions of the state was considered.

A necessary and sufficient condition for the existence of

a solution with an algebraic gradient was characterized in

terms of an H-invariant and involutive maximal ideal. If

an H-invariant and involutive maximal ideal is found, an

algebraic gradient can be obtained by only solving a set of

algebraic equations. Although the algebraic gradient is not

unique, a method of choosing its branches using a stabilizing

solution is introduced. Finally, a class of nonlinear optimal

regulator problems has been given such that the gradients of

explicit solutions are obtained as algebraic functions, and an

example of an explicit solution was also presented.
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