
On the Performance Limit of Sensor Localization

Baoqi Huang, Tao Li, Brian D.O. Anderson, Changbin Yu

Abstract— In this paper, we analyze the performance limit
of sensor localization from a novel perspective. We consider
distance-based single-hop sensor localization with noisy distance
measurements by Received Signal Strength (RSS). Differently
from the existing studies, the anchors are assumed to be ran-
domly deployed, with the result that the trace of the associated
Cramér-Rao Lower Bound (CRLB) matrix becomes a random
variable. We adopt this random variable as a scalar metric for
the performance limit and then focus on its statistical attributes.
By the Central Limit Theorems for U -statistics, we show that
as the number of anchors goes to infinity, this scalar metric is
asymptotically normal. In addition, we provide the quantitative
relationship among the mean, the standard deviation, the
number of anchors, parameters of communication channels
and the distribution of the anchors. Extensive simulations are
carried out to confirm the theoretical results. On the one
hand, our study reveals some fundamental features of sensor
localization; on the other hand, the conclusions we draw can
in turn guide us in the design of wireless sensor networks.

I. INTRODUCTION

Location information plays a vital role in the applications

of sensor networks, for it is useful to report the geographic

origin of events, to assist in target tracking, to achieve

geographic aware routing, to manage sensor networks, to

evaluate their coverage, and so on. A sensor network gen-

erally consists of two kinds of nodes: anchors and sensors.

Anchor positions are known a priori (e.g., through GPS or

manual configurations), while sensor positions are unknown

and need to be determined through certain procedures of

localization. Up to now, considerable efforts have been

invested in developing sensor localization algorithms.

Apart from designing sensor localization algorithms, the

analysis of localization performance also gains much at-

tention. Performance studies specific to sensor localization

algorithms are realized to evaluate and compare different

sensor localization algorithms. More importantly, the perfor-

mance limit of sensor localization, namely the lower bound

for location estimate errors produced by all localization

algorithms, provides a theoretically optimal performance no
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matter what sensor localization algorithm is applied, and thus

reflects fundamental impacts of various factors on sensor

localization in an algorithm-independent manner. Due to the

essence of Cramér-Rao Lower Bound (CRLB), it has been

widely used to characterize the performance limit of sensor

localization [1].

Most of the existing CRLB analysis is based on given

sensor-anchor geometries. In this paper, we analyze the

performance limit of single-hop sensor localization from

a novel perspective. As commonly used in the literature,

we adopt the trace of the associated CRLB matrix as a

scalar metric for the performance limit of sensor localization

[1]. However, differently from existing CRLB studies which

require exact sensor-anchor geometries to compute the deter-

ministic CRLB, we assume that a fixed number of sensors

and anchors are randomly deployed in a two-dimensional

plane with distance measurements from Received Signal

Strength (RSS). Consequently, the trace of the associated

CRLB matrix becomes a random variable with respect to

the sensor-anchor geometries, and we focus on the statistical

attributes of the trace of the CRLB.

The motivations of our study are as follows. In a mobile

environment, such as ad-hoc networks, target tracking, Si-

multaneous Localization and Mapping (SLAM) [2], mobile

anchors assisting in sensor localization [3] and so on, it is

trivial to concentrate on the localization performance in one

particular time instant, whereas it is attractive to grasp the av-

erage localization performance over a period of time and in a

wide region. Hopefully, this can be solved by our statistically

modeling method. Furthermore, the advantages of our study

include: (i) it provides some knowledge about how the scalar

metric, equivalently the minimal mean square estimation

error (MSE), is distributed over all possible sensor-anchor

geometries; (ii) the mean of the scalar metric reveals how

the average minimal MSE with respect to all possible sensor-

anchor geometries evolves with the number of anchors, the

parameters of communication channels and the measurement

noises; (iii) the ratio of the standard deviation to the mean

indicates the sensitivity of the minimal MSE to sensor-anchor

geometries; (iv) it not only provides insights into single-

hop sensor localization including source localization and

target tracking as specific cases, but also as a prototype

paves the way for dealing with more complicated scenarios

of sensor localization. In summary, statistical sensor-anchor

geometry modeling is a powerful method for investigating

the performance limit of sensor localization, which is an

essential problem for sensor networks. To the best of our

knowledge, this method has never been considered.

Essentially, this scalar metric is a function of U -statistics.
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In statistical theory, U -statistics introduced by the seminal

paper [4] are a class of important statistics, and are of great

significance in estimation theory in that asymptotic properties

of both estimators and test statistics have been derived by

using the Central Limit Theorems for U -statistics. Based on

the theory of U -statistics, we show that as the number of

anchors goes to infinity, this scalar metric is asymptotically

normal. We provide the quantitative relationship among

the mean, the standard deviation, the number of anchors,

parameters of communication channels and the distribution

of the anchors. Since our results are based on an asymptotic

analysis, the conditions under which our results approximate

the real situations well are identified.

The remainder of this paper is organized as follows. The

next section introduces the problem formulation. Section

III presents the main results about statistical attributes of

performance limits. Finally, we conclude this paper and shed

light on future work in Section V.

II. PROBLEM FORMULATION

In this section, we formulate the scalar metric of the

performance of single-hop sensor localization using RSS

measurements and define a random sensor-anchor geometry

model. Throughout this paper, we shall use the following

mathematical notations: (·)T denotes transpose of a matrix

or a vector; Tr(·) denotes the trace of a square matrix;

Pr{·} denotes the probability of an event; E(·) denotes the

expected value of a random variable; V ar(·) denotes the

variance; Std(·) denotes the standard deviation.

A. One-hop Sensor Localization Using RSS Measurements

In a two-dimensional plane, consider a single sensor (or

source, target) located at the origin and N distance (or angle)

measurements made to this sensor at N known locations,

as illustrated in Figure 1. Here, the N known locations are

abstracted as anchors and are labeled 1, · · · , N with the i-

th anchor’s location denoted by si = [xi, yi]
T . The true

distance between the sensor and the i-th anchor is denoted

by di = ‖si‖. The true angle subtended at the sensor by the

i-th anchor and the positive x-axis is denoted θi.

For a specific localization problem, the precise locations of

the N anchors, i.e. [xi, yi]
T , are given in advance; pair-wise

distance measurements {d̂i, i = 1, · · · , N} between the sen-

sor and the anchors are made and obey certain error models.

Then, the aim of single-hop sensor localization is finding an

estimate of the true sensor position using the observable set

of distance measurements {d̂i, i = 1, · · · , N}. In this paper,

we consider the performance limit of sensor localization over

a family of random anchor locations other than a specific

localization problem with given anchor locations.

Let the sensor be a transmitter and the N anchors be

receivers. Define {Pi, i = 1, · · · , N} to be the measured

received signal powers at the N anchors transmitted by the

sensor. We make the following assumptions:

Assumption 1: The wireless channel satisfies the log-

normal (shadowing) model and the received powers {Pi, i =
1, · · · , N} at the N anchors are statistically independent.

Fig. 1. Localizing a sensor using N anchors.

Remark 1: Assumption 1 is the basis for converting the

RSS measurements (i.e. received powers) to distance esti-

mates [5], and is commonly made in studies on RSS-based

sensor localization (e.g. [1], [6]). It follows that Pi(dBm) =
10 log10 Pi are Gaussian

Pi(dBm) = P0(dBm) − 10α log10

di

R0
+ Z, (1)

where P0(dBm) is the mean received power in dBm at a

reference distance R0, α is the path-loss exponent, and Z is a

random variable representing the shadowing effect, normally

distributed with mean zero and variance σ2
dB (in dBm).

As pointed out in [7], due to the fact that the log-normal

model does not hold for di = 0, the close-in distance R0

is introduced as the known received power reference point,

and is virtually the lower bound on practical distances used

in the wireless communication system. Further, P0(dBm) is

computed from the free space path loss formula (see, e.g.

[7]).

B. A Random Sensor-Anchor Geometry Model

Assumption 2: The N anchors are randomly and uni-

formly distributed inside the annulus centered at the sensor

and defined by radii R0 and R (R > R0 > 0).

Remark 2: In Assumption 2, R is the upper bound on

practical distances which is normally restricted by the factors

determining path loss attenuations; R0, though representing

the lower bound, is mainly devised to avoid the incon-

venience in calculations, and theoretically speaking, any

arbitrarily small positive number can be the lower bound.

By Assumption 2, each possible sensor-anchor geometry is

as probable as another, in the sense that the sensor-anchor

geometry follows a “uniform” distribution. Furthermore, it is

easy to show that {di, i = 1, · · · , N} and {θi, i = 1, · · · , N}
are mutually independent.

C. The Scalar Metric

The probability density function (pdf) of Pi can be for-

mulated as follows

fP (Pi) =
10

(ln 10)
√

2πσdBPi

exp

{

− b

2

(

ln
di

d̃i

)2
}

, (2)

where b =
(

10α
σdB ln 10

)2

and d̃i = d0

(

P0

Pi

)
1

α

.
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For the purpose of computing the CRLB for sensor lo-

calization using the RSS measurements, we formulate the

Fisher information matrix (FIM) FRSS as

FRSS = b

(
∑N

i=1
cos2 θi

d2

i

∑N

i=1
cos θi sin θi

d2

i
∑N

i=1
cos θi sin θi

d2

i

∑N

i=1
sin2 θi

d2

i

)

. (3)

A detailed derivation can be found in [1]. If FRSS is non-

singular, the CRLB, denoted CRSS , is just the inverse of

FRSS . Then, we define Tr(CRSS) to be a metric for the

performance limit of localizing the sensor and have

Tr(CRSS) =
1

b





∑N

i=1
1
d2

i

∑

1≤i<j≤N

sin2(θi−θj)

d2

i
d2

j



 . (4)

Since {di, i = 1, · · · , N} and {θi, i = 1, · · · , N} are

random variables, Tr(CRSS) is obviously a random variable.

D. U -statistics

U -statistics are very natural in statistical work, particularly

in the context of independent and identically distributed

(i.i.d.) random variables, or more generally for exchangeable

sequences, such as in simple random sampling from a finite

population. The origins of the U -statistics theory are trace-

able to the seminal paper [4], which proved the Central Limit

Theorems for U -statistics. Following the publication of this

seminal paper, the interest in this class of statistics steadily

increased, crystallizing into a well-defined and vigorously

developing line of research in probability theory. Its formal

definition is presented as follows:

Definition 1: Let {Xi, i = 1, · · · , N} be i.i.d. p-

dimensional random vectors. Let h(x1, · · · , xr) be a Borel

function on R
r×p for a given positive integer r (≤ N ) and

be symmetric in its arguments. A U -statistic UN is

UN =
r!(N − r)!

N !

∑

1≤i1<···<ir≤N

h(Xi1 , · · · , Xir
) (5)

and h(x1, · · · , xr) is called the kernel of UN .

It is obvious that Tr(CRSS) involves the ratio of two

U -statistics according to (4), which motivates us to study

Tr(CRSS) through an asymptotic analysis based on the

theory of U -statistics.

III. MAIN RESULTS

Due to the complexity of Tr(CRSS), it is very difficult to

give its accurate distribution directly. As such, we endeavor

to present an asymptotic analysis at first. Due to the space

limit, proofs are omitted.

A. Theories

According to (4), a key property of Tr(CRSS) is that it

is the ratio of two sums of random variables, which can be

processed by using the following lemma.

Lemma 1: Given {X(1)
i , i = 1, · · · , N} and {X(2)

i , i =
1, · · · , N} where

• {X(1)
i , i = 1, · · · , N} are i.i.d. random variables with

bounded values;

• {X(2)
i , i = 1, · · · , N} are i.i.d. random variables with

bounded values;

• {X(1)
i , i = 1, · · · , N} and {X(2)

i , i = 1, · · · , N} are

mutually independent,

define vectors Xi = [ X
(1)
i X

(2)
i

]T (i = 1, · · · , N ) and

two sequences of random variables

TN =
1

N

N
∑

i=1

X
(1)
i , (6)

SN =
2

N(N − 1)

∑

1≤i<j≤N

[

X
(1)
i X

(1)
j

× sin2(X
(2)
i − X

(2)
j )
]

. (7)

Then, as N → ∞,

TN

SN

=
1

m1m2
+

2σ2
1

Nm3
1m2

+ MN + RN (8)

where m1 = E(X
(1)
1 ), σ1 = Std(X

(1)
1 ), m2 =

E(sin2(X
(2)
1 − X

(2)
2 )),

MN =
2

N

N
∑

i=1

g1(Xi)

+
2

N(N − 1)

∑

1≤i<j≤N

g2(Xi, Xj), (9)

g1(Xi) =
m1 − X

(1)
i

2m2
1m2

, (10)

g2(Xi, Xj) =
1

m1m2
−

X
(1)
i + X

(1)
j

m2
1m2

+
2X

(1)
i X

(1)
j

m3
1m2

−
X

(1)
i X

(1)
j sin2(X

(2)
i − X

(2)
j )

m3
1m

2
2

, (11)

and RN is the remainder term. For any ε > 0, RN satisfies

Pr {|NRN | ≥ ε} = O(N−1), (12)

Pr {|N(lnN)RN | ≥ ε} = o(1), (13)

In Lemma 1, by letting X
(1)
i = 1

d2

i

and X
(2)
i = θi, we

have m2 = 0.5, and

m1 = 2

(

ln R
R0

R2 − R2
0

)

, (14)

σ1 =

√

√

√

√

1

R2
0R

2
−
(

2 ln R
R0

R2 − R2
0

)2

, (15)

and our main result is further summarized as follows.

Theorem 1: Let m1 and σ1 be defined by (14) and (15).

Define a sequence of random variables

WN =

(√
N(N − 1)bm2

1

4σ1

)

Tr(CRSS)−
√

Nm1

σ1
− 2σ1√

Nm1

.

(16)

Then, as N → ∞, WN converges in distribution to a

standard normal random variable.

Remark 3: In view of the linear relationship between WN

and Tr(CRSS), it is clear that Tr(CRSS) is asymptotically
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normal. Therefore, for a sufficiently large N , the distribution

of Tr(CRSS) can be approximated by the normal distribution

N





4

(N − 1)bm1

(

1 +
2σ2

1

Nm2
1

)

,

(

4σ1√
N(N − 1)bm2

1

)2


 .

(17)

Most importantly, the above normal random variable makes

it possible for us to analytically study the performance

limit, i.e. Tr(CRSS). Firstly, we can obtain a comprehensive

knowledge about how Tr(CRSS) is statistically distributed

and how Tr(CRSS) is affected by N . Secondly, using the

normal distribution function from (17), we can compute the

probability that Tr(CRSS) is below a given threshold for a

known value of N ; in turn, we can determine a threshold

such that Tr(CRSS) is below the threshold with a certain

confidence level, say 0.99; in addition, we can find the

minimum N such that Tr(CRSS) is below a given threshold

with a certain confidence level. Such analysis is undoubtedly

helpful for the design and deployment of sensor networks.

Thirdly, the moments of Tr(CRSS) can be approximated by

the corresponding moments of the normal variable defined

by (17), namely,

E(Tr(CRSS)) ≈ 4

(N − 1)bm1
+

8σ2
1

N(N − 1)bm3
1

,(18)

Std(Tr(CRSS)) ≈ 4σ1√
N(N − 1)bm2

1

, (19)

which characterize the relationship among the mean and

standard deviation of Tr(CRSS), the number of anchors,

noise statistics of the RSS measurements and the spatial

distributions of the anchors.

A natural question arises as to how large N should

be to obtain a good approximation; this gives rise to the

convergence rate study. In the literature of U -statistics, the

Berry-Esseen bound was developed for characterizing the

convergence rates of U -statistics [8], [9]. Because WN is

affine to a U -statistic (i.e. MN ), we propose the following

theorem describing the convergence rate of WN in the way

similar to the Berry-Esseen bound.

Theorem 2: Use the notations in Theorem 1 and define

ν3 = E

(

(

1

d2
1

− m1

)3
)

. (20)

Then, as N → ∞,

sup
x

|FN (x) − Φ(x)| ≤
∣

∣

∣

∣

∣

∣





ν3 +
2σ4

1

m1

6σ3
1





(x2 − 1)e−
x2

2√
2π

∣

∣

∣

∣

∣

∣

N− 1

2 + O(N−1) (21)

where FN (x) is the distribution function of WN and Φ(x)
is the standard normal distribution function.

Remark 4: Theorem 2 shows that as N → ∞, the

density of WN converges to standard normality with the rate

O(N− 1

2 ). Additionally, it can be verified that the coefficient

associated with N− 1

2 is a function of the ratio R
R0

; that is

to say, the convergence rate of the density of WN is not
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Fig. 2. The distribution functions and pdfs of Tr(CRSS) with R0 =
1m, R = 10m, α = 2.3 and σdB = 3.92.

determined by the individual values of R0 and R, but by the

ratio R
R0

.

IV. SIMULATIONS

In this subsection, we would like to carry out simulations

to verify Theorem 1 and the approximations given in (18) and

(19). The parameters α, σdB and R0 describing the wireless

channel are set as 2.3, 3.92 and 1 m, respectively, which are

measured in a practical environment [1].

Firstly, we plot in Fig. 2(a) the actual distribution functions

of Tr(CRSS) (with the legend “Simulation”) and the normal

distribution function (17) (with the legend “Formula”) for

N = 5, 10, 15, 20. As can be seen, when N = 5, the

discrepancy between them is quite obvious; when N = 10,

the discrepancy becomes very small; when N = 15 or 20,

the discrepancy is negligible. The discrepancy reduces with

N increasing as illustrated in Fig. 2(a), and arises for two

reasons: the intrinsic error in approximating a U -statistic

by normality, and the existence of the remainder term RN

which obeys Pr
{

|RN | ≥ ε
N

}

= O(N−1), see (12), and

though nonzero is neglected in the calculation. Furthermore,

we plot the corresponding pdfs in Fig. 2(b). It can be seen

that the overall shapes of the actual pdfs (with the legend
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“Simulation”) are quite similar to those of normality, and the

discrepancy in between reduces with N increasing. These

observations are consistent with and in turn demonstrate

Theorem 1.

Secondly, we plot the means and the standard deviations

of Tr(CRSS) from both simulations and the formulas (18)

and (19) in Figs. 3(a), 3(c), 3(b) and 3(d). It is evident that

the larger is N , the more precise are the formulas. When

N = 5, the standard deviation attains comparatively large

values, and the associated surface in Fig. 3(b) is non-smooth;

the most probable reason is that the actual standard deviation

is infinite for a N as small as 5.

For better comparison, we define the relative error to be

the ratio of the difference between the quantity from the

simulations and that from the corresponding formula to the

former one, and plot them in Fig. 3(e) and 3(f). It can be

seen that: (i) the mean is underestimated by (18) when R is

small, say R = 2m, but is overestimated by (18) when R is

large, say R = 10m, while the associated absolute value of

the relative error decreases with N increasing in most cases;

(ii) the standard deviation of Tr(CRSS) is underestimated

by (19) and the associated absolute value of the relative

error decreases with increasing N and R; (iii) suppose the

absolute value of the relative error below 10% is acceptable:

when R = 2m, (18) is applicable if N ≥ 6, but (19) is not

applicable even if N = 20; when R = 10m, both (18) and

(19) are applicable if N ≥ 11.

In what follows, we present some useful remarks on the

properties of sensor localization provided that (18) and (19)

are applicable. It is notable that in (18) and (19), the mean

and standard deviation of Tr(CRSS) normalized by R2 (or

R2
0) are dependent upon the ratio R

R0

; hence, we simplify

the discussion involving R0 and R by letting R0 = 1 m and

only concentrating on R.

Remark 5: Equation (18) quantitatively characterizes the

average performance limit over all possible sensor-anchor

geometries and is indicative for evaluating the average local-

ization performance over a period of time and/or in a wide

region. In addition, because the mean is in inverse proportion

to N , a critical value N∗ differing from the parameters

R0, R, σdB and α can be determined, such that having more

anchors than N∗ contributes little to the quality of sensor

localization.

Remark 6: It can be easily deduced that both (18) and

(19) monotonically decrease with R decreasing, as illustrated

in Fig. 3(c) and 3(d); the reason is that long distance mea-

surements from RSS suffer greater errors, and thus produce

worse localization performance. Therefore, given a fixed N ,

distance measurements from a sensor are better made at

locations as close to the sensor as possible. Moreover, it turns

out that using more distance measurements spread over a

wide range is not necessarily better than using fewer distance

measurements but spread in a narrow range in terms of the

average performance limit. For instance, E(Tr(CRSS)) is

approximately 0.52431 m2 given N = 15 and R = 6 m,

while a smaller mean which is approximately 0.43174 m2

can be achieved given N = 10 and R = 4 m. Thus, tradeoff

should be made between the number of anchors (i.e. N ) and

their spreading (i.e. R0 and R) in sensor localization.

Remark 7: Though we discuss the impacts of N and R

separately, the variables are correlated in some situations,

and so the impacts are related. Normally, increasing all the

transmission powers in a wireless sensor network enlarges

the communication coverage of every node, and both N and

R for localizing one sensor tend to rise, but Tr(CRSS) and

its mean will definitely decrease according to [1].

Remark 8: The dispersion of Tr(CRSS) reflects its sensi-

tivity to sensor-anchor geometries. Specifically, with a large

dispersion, the chance of having two different sensor-anchor

geometries to lead to a big difference in the resulting values

of Tr(CRSS) is large, implying a large sensitivity, and

we should be careful about sensor-anchor geometries; by

contrast, with a small dispersion, the chance is certainly

small, so is the sensitivity, and there is less reason to

worry about sensor-anchor geometries even if the anchors are

randomly deployed. Given a random variable, the coefficient

of variation, defined to be the ratio of its standard deviation

to its mean, is a normalized measure of dispersion of

its distribution. Therefore, the coefficient associated with

Tr(CRSS) has the order of O(N− 1

2 ) and the less is the

coefficient, the smaller is the sensitivity. In particular, if the

coefficient equals its minimum, i.e. 0, all the sensor-anchor

geometries will result in one unique value of Tr(CRSS),
so that the minimum sensitivity is attained. Alternatively,

we can observe the sensitivity from Fig. 2(b): the range of

Tr(CRSS) with a non-trivial probability becomes narrower

and narrower with N increasing, implying that the sensitivity

is reducing.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated the performance limit of

single-hop sensor localization with the RSS measurements

by statistically sensor-anchor geometry modeling. That is,

the positions of anchors are assumed to be random and

the statistical attributes of the trace of the CRLB matrix

embodies essential features of sensor localization. With strict

mathematical proofs, we showed that the trace of the CRLB

matrix is asymptotically normal. Based on this study, we

analyzed the features of sensor localization and carried out

extensive simulations.

In future work, we would like to take into account other

distributions of anchor positions other than the uniform

distributions, as well as considering other types of measuring

techniques, including Time of Arrival (TOA), Time Differ-

ence of Arrival (TDOA), etc. In addition, it is more attractive,

but of course extremely difficult, to conduct similar studies

for multi-hop sensor localization.
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(a) Simulation Mean

2

4

6

8

10

5

10

15

20

0

5

10

R
N

S
td

{ 
T

r(
C

R
S

S
) 

}

(b) Simulation Standard Deviation
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(c) Analytical Mean
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(d) Analytical Standard Deviation
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(e) Mean
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(f) Standard deviation

Fig. 3. The means and the standard deviations of Tr(CRSS) from the simulations and the formulas, and the corresponding relative errors with
R0 = 1m, α = 2.3 and σdB = 3.92.
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