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Abstract— This paper considers the consensus problem of
double integrator multi-agent systems where each agent is
subject to input saturations, and the velocity (second state) of
each agent is not available for feedback. We present a unified
approach to the consensus algorithms design that extends
most of the existent consensus algorithms developed for double
integrator multi-agents in ideal situations to handel these two
problems simultaneously. To illustrate the effectiveness of the
proposed approach, we present solutions to three different sec-
ond order consensus problems and provide simulation results.

I. INTRODUCTION

In contrast to multi-agents with first order dynamics,
consensus algorithms for double integrators can be naturally
extended to design cooperative control strategies for complex
physical systems with applications to flocking [1], formation
control of unmanned vehicles [2]-[3], rigid body attitude syn-
chronization [4]-[5] and synchronization of networked Euler-
Lagrange systems [6]-[7]. The consensus problem of double
integrators involves the design of consensus algorithms such
that agents can reach an agreement on their states, or on a
common objective, using local information exchange. This
information exchange is generally restricted to be directed,
dynamically changing, and may be delayed.

In the related literature to the second order consensus
problem, tools from algebraic graph theory have been suc-
cessfully applied to establish conditions under which second
order consensus is reached. In directed networks, it has been
shown that second order consensus will be reached if and
only if the communication graph has a spanning tree and
the control gains are carefully selected [8], [9]. Within a
similar framework, several related problems to consensus
have been considered such as the formation control problem,
[10], consensus with group reference velocity, [11] and
leader-follower problems, [12]. Also, the case of dynamically
changing topologies have been discussed in [8] and [13]. The
effects of communication delays that are inherently present
in communication systems have also been considered in [14]-
[16] and references therein. However, the above consensus
algorithms are based on the assumption that the full state
vector is available for feedback.

In practice, it is sometimes desirable to design consensus
algorithms that do not require full states information. If we
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consider, for example, a group of point masse agents, an
important problem is to design consensus algorithms in the
case where the velocity information (the second state) is
not available for feedback, either because it is not precisely
measured or agents are not equipped with velocity sensors.
Another important problem arises when the input of each
agent is subject to input saturations. Unfortunately, the papers
dealing with these two problems are not numerous and
only the simple case of fixed and undirected communication
topology has been considered. The author in [11] proposed
consensus algorithms that account for input saturations in
the full state information case. In the same reference, the
author presents a second order consensus algorithm that re-
moves the requirement of velocity measurements. Consensus
algorithms that take into account the two above problems
simultaneously have been proposed in [17]. In this reference,
a new approach, based on auxiliary systems, has been
proposed to simplify the consensus algorithm design problem
in this case. However, it is difficult to show that the results
in [17] are applicable under more general communication
topologies, that may be directed, time-varying and/or subject
to communication delays.

The main contribution of this paper is to provide a
unified approach that extends most of the existent consensus
algorithms, developed for double integrator dynamics with
a certain communication topology, to account for input
saturations and remove the requirement of velocity mea-
surements. Instrumental to our approach is the introduction
of two second order auxiliary systems that simplify the
consensus algorithm design. The first auxiliary system is
used to generate an intermediate reference trajectory for
each agent, and its input is designed such that all agents
reach an agreement on their reference trajectories. The
input of the second auxiliary system is designed such that
each agent tracks its corresponding intermediate reference
trajectory without velocity measurements. With this setting,
the control input of each agent is constructed using only
the auxiliary states to account for input saturations. As a
result, the consensus algorithm design problem with the
above mentioned constraints is reduced to the design of
a consensus algorithm in ideal situations, i.e., in the full
state information case and without input saturations. To show
the effectiveness of the obtained results, we consider three
different problems related to second order consensus, and
extend some consensus algorithms developed for double
integrator dynamics to account for input saturations in the
partial state feedback case.
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II. PROBLEM DESCRIPTION AND PRELIMINARIES

Consider a group of n-identical autonomous agents mod-
eled by the following second-order dynamics

Σp : p̈i = ui, for i ∈ N , (1)

where N , {1, ..., n}, pi ∈ Rm and ṗi denote respectively
the position and velocity states of the ith agent, the vector
ui ∈ Rm is the control input and Σp is used to designate
the multi-agent system (1). The communication topology
between agents is represented by a weighted graph Gn =
(N , E ,K), where N is the set of nodes or vertices, describing
the set of vehicles in the team, E ⊆ N × N is the set of
pairs of nodes, called edges, and K = [kij ] is a weighted
adjacency matrix. An edge (i, j) ∈ E indicates that agent i
can receive information from agent j, which is designated as
its neighbor. The weighted adjacency matrix of a weighted
graph is defined such that kij > 0 if and only if (i, j) ∈ E
and kij = 0 if and only if (i, j) /∈ E . If the communication
topology is bidirectional, then Gn is undirected, the pairs of
nodes in E are unordered, (i, j) ∈ E ⇔ (j, i) ∈ E , and K
is symmetric. In the case of unidirectional communication
topology, Gn is a directed graph, E contains ordered pairs,
and K is not necessarily symmetric.

Definition 1: The second order consensus problem con-
sists of the design of a consensus algorithm ui, such that
the solution of (1) satisfies

(pi − pj) → 0, (ṗi − ṗj) → 0, (2)

for i, j ∈ N and for any initial conditions. In this case, multi-
agent system (1) is said to achieve second order consensus.

The above problem is generally referred to as the free-
consensus problem, and several related problems can be
discussed in a similar framework, including consensus with
reference trajectory, leader/follower, flocking, rendezvous,
and formation control problems.

We assume that all agents are subject to input saturations,
such that ∥ui∥∞ ≤ umax, for i ∈ N , and the velocity of
the agents are not available for feedback. Also, we assume
that there exists a consensus algorithm developed for the
multi-agent system (1), in the full state information case and
without input saturations, expressed as

ui = Ψi(Σp,Gn), (3)

where Ψi(Σp,Gn) is a protocol designed using the states of
the multi-agent system Σp under the communication topol-
ogy described by Gn. This protocol is generally constructed
based on the position and velocity states of the ith agent and
the states of its neighbors, as well as information on a global
objective if assigned to the team, and satisfies the following
assumptions.
A1. The multi-agent system

Σp : p̈i = Ψi(Σp,Gn), for i ∈ N , (4)

achieves second order consensus in the sense of Def-
inition 1, where Gn can be restricted to be directed,
time-varying, and/or subject to communication delays.

A2. The protocol Ψi(Σp,Gn) can be written as:
Ψi(Σp,Gn) := fd + Ψ̄i(Σp,Gn), with fd ∈ Rm
satisfying ∥fd∥∞ ≤ fmax, and the solutions of (4)
guarantee that Ψ̄i(Σp,Gn) is globally bounded and
converges asymptotically to zero when the multi-agent
system (4) achieves consensus.

It should be mentioned that several consensus algorithms,
written as in (3), have been proposed in the literature for the
multi-agent system (1) in the full state information case and
without input saturations. It has been shown that with an
appropriate design of this type of protocols, second order
consensus will be reached under some conditions on Gn
and/or the control parameters. In addition, the vector fd
in Assumption A2 can be considered as the only a priori
bounded term that may not converge to zero when the multi-
agent system (4) reaches consensus. This vector is generally
defined if a global objective is assigned to the team, such as
a desired trajectory.

With the above assumptions, our objective in this work
is to provide a unified approach to the consensus algorithm
design for multi-agent system (1), under a certain commu-
nication topology described by Gn, such that second order
consensus is achieved.

Before we proceed, we give some definitions and a pre-
liminary result that will be used to prove our results. We
define for any vector x = (x1, ..., xm)⊤ ∈ Rm the function

χ(x) = col[σ(xj)] ∈ Rm, for j = 1, ...,m, (5)

with σ : R → R, is a strictly increasing continuously
differentiable function satisfying the following properties:
P1. σ(0) = 0 and xσ(x) > 0 for x ̸= 0,
P2. |σ(x)| ≤ σb, for σb is a strictly positive constant.
P3. ∂σ(x)∂x is bounded.

Note that property P3 can be verified from P1 and P2.
Examples of the function σ(x) include: tanh(x) and x√

1+x2
.

We state in the following lemma a preliminary result that will
be used in the proof of our results.

Lemma 1: Consider the second order system

ζ̈i = −Lpiχ(ζi)− Ldiχ(ζ̇i) + εi, (6)

where ζi ∈ Rm, the function χ is defined in (5), and Lpi
and Ldi are positive scalars. If εi is bounded for all time and
εi → 0, then ζi and ζ̇i are bounded and ζi → ζ̇i → 0.

Proof: See [17] for a similar proof with σ(x) =
tanh(x).

III. VELOCITY-FREE CONSENSUS ALGORITHMS WITH
INPUT SATURATIONS

In this section, we present consensus algorithms for the
multi-agent system (1) that account for input saturations and
remove the requirement of velocity measurements. To this
end, we associate to each agent in the team the following
two second order auxiliary systems

Σζ : ζ̈i = ui − Γi, for i ∈ N , (7)

Σξ : ξ̈i = uvi , for i ∈ N , (8)
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where ζi ∈ Rm, ξi ∈ Rm, ui is the control input of (1), Γi
and uvi are auxiliary input vectors to be designed. The initial
states of (7)-(8), i.e., ζi(0), ζ̇i(0), ξi(0), and ξ̇i(0), can be
selected arbitrarily. Also, define the vector ri = (pi − ζi),
which is governed, in view of (1) and (7), by the dynamics

Σr : r̈i = Γi, for i ∈ N . (9)

Under the assumption that each agent can transmit the
states of its auxiliary system (8), i.e., ξi and ξ̇i, the following
result holds.

Theorem 1: Consider the multi-agent system (1) with a
communication topology described by Gn. Suppose that there
exists a protocol Ψi(Σp,Gn) satisfying Assumption A1 and
Assumption A2, with fmax < umax. Let the input vectors
in (1), (7) and (8) be given as

ui = fd − Lpiχ(ζi)− Ldiχ(ζ̇i), (10)

Γi = uvi − kpi (ri − ξi)− kdi (ri − ξi −ψi), (11)
uvi = Ψi(Σξ,Gn), (12)

ψ̇i = kψi (ri − ξi −ψi), (13)

where ri = (pi − ζi), L
p
i , Ldi , kpi , kdi and kψi are positive

scalar gains, Σξ designates the system (8) with (12), and
the function χ is defined in (5). The vector ψi ∈ Rm is the
output of system (13) and can take arbitrary initial values. If
the control gains are selected such that

σb(L
p
i + Ldi ) ≤ umax − fmax, (14)

with σb being defined in P2, then the control input is
guaranteed to be bounded as: ∥ui∥∞ ≤ umax, for i ∈ N ,
and the multi-agent system (1) with the control input (10),
(7)-(8), and (11)-(13), achieves second order consensus.

Proof: First, from the definition of the function χ in
(5), we can verify that the input law in (10) can be upper
bounded independently from the states as:

∥ui∥∞ ≤ fmax + σb(L
p
i + Ldi ). (15)

Therefore, if the control gains satisfy (14), the upper bound
of the control input given in the theorem is obtained.

It can be seen that the auxiliary systems (8) with (12)
describes the dynamics of a second order multi-agent sys-
tem with available states, ξi and ξ̇i. Since Ψi(Σξ,Gn) is
designed using only these available states, the convergence
of ξi and ξ̇i is completely independent from the trajectories
of states of the agents in the team. Therefore, if there
exists a protocol Ψi(Σp,Gn) satisfying Assumptions A1 and
A2, we can conclude that the multi-agent system (8), with
(12), achieves second order consensus, i.e., (ξi − ξj) → 0

and (ξ̇i − ξ̇j) → 0, for all i, j ∈ N . In addition, we
know that Ψ̄i(Σξ,Gn) is globally bounded and converges
asymptotically to zero once this result is obtained (i.e., the
multi-agent (8) with (12) achieves consensus).

Define the error vector ei = ri − ξi, which is, in view of
(8), (9) and (11), governed by:

ëi = − kpi ei − kdi (ei −ψi), (16)

with ψ̇i = kψi (ei − ψi). Consider the Lyapunov function
candidate

V =
1

2

n∑
i=1

(
ėTi ėi + kpi e

T
i ei + kdi (ei −ψi)T (ei −ψi)

)
.

The time-derivative of V evaluated along the dynamics (16)
is obtained as: V̇ = −

∑n
i=1 k

d
i k
ψ
i (ei−ψi)T (ei−ψi), which

is negative semi-definite. Hence, we conclude that ei, ėi,
ψi and ψ̇i are bounded, which leads us to conclude that
V̈ is bounded. Invoking Barbălat Lemma, we conclude that
ψ̇i = kψi (ei − ψi) → 0. Furthermore, we can verify that
(ëi−ψ̈i) is bounded. Invoking barbălat Lemma, we conclude
that (ėi − ψ̇i) → 0, and hence we know that ėi → 0. In
addition, we can show that

...
e i is bounded. Invoking Barbălat

Lemma, we conclude that ëi → 0, which leads us using (16)
to the result ei → 0 for all i ∈ N . Therefore, we conclude
that (ri − ξi) → 0 and (ṙi − ξ̇i) → 0, for i ∈ N . This, and
since we have shown that (ξi − ξj) → 0 and (ξ̇i − ξ̇j) →
0, for all i, j ∈ N , we conclude that (ri − rj) → 0 and
(ṙi − ṙj) → 0, for all i, j ∈ N .

To this point, the dynamics of the auxiliary systems (7)
can be rewritten as

ζ̈i = −Lpiχ(ζi)− Ldiχ(ζ̇i) + εi, (17)

with εi =
(
−Ψ̄i(Σr,Gn) + kpi ei + kdi (ei −ψi)

)
, which is

guaranteed to be bounded and converges asymptotically to
zero in view of the above results. Invoking Lemma 1, we
conclude that ζi, ζ̇i are globally bounded and converge
asymptotically to zero. As a result, we conclude form the
definition of the vector ri that (pi − pj) → 0, and (ṗi −
ṗj) → 0, for all i, j ∈ N .

The main idea in the proposed approach is to associate to
each agent in the team the two second order systems given in
(7) and (8). The dynamic system (8) is introduced to generate
a first reference trajectory for each agent, defined by ξi.
The input of this system is designed using the states of (8),
without consideration of the input constraints, such that all
agents agree on their first reference trajectories. The dynamic
system (7) is implemented to generate the vector ζi, which
can be considered as the error between each agent position
and the time-varying vector ri, which is defined above for
analysis purposes. Note that ri can be seen as a second
reference trajectory defined for each agent, and ṙi = (ṗi−ζ̇i)
is not available for feedback. This way, the input Γi in (9) is
designed, without velocity measurements as in (11), such that
the error between the two reference trajectories converges to
zero. Once this is achieved, and all agents agree on their first
reference trajectories, the states of the auxiliary systems (7),
with (10)-(13), are driven to zero asymptotically, in view of
the result of Lemma 1. This indicates that each agent tracks
its second reference trajectory, guiding hence all agents to
achieve consensus on their states.

It should be noted that the input of each agent, ui, is
guaranteed to be a priori bounded, as in (15), independently
from the number of neighbors of each agent. Therefore,
an upper bound of the input of each agent can be set by
an appropriate choice of the control gains, according to
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(14), without an a priori knowledge on the communication
topology between agents. This introduces flexibility in the
tuning of the controller gains especially in the case where
umax is small and the number of neighbors of each agent
may be large. In addition, to use the result of Theorem 1,
one only needs to design a consensus algorithm for (1) in
ideal situations, i.e., in the full state information case without
input saturations, such that Assumptions A1 and A2 are
satisfied. If this algorithm exists, it can be used as input of
the auxiliary system (8) using the states ξi and ξ̇i, for i ∈ N .
Therefore, the proposed approach can be used to extend
existent consensus algorithms developed for the multi-agent
system (1) in ideal situations to account for input saturations
without velocity measurements. This will be illustrated in the
next section by some application examples.

IV. APPLICATION EXAMPLES

In this section, we propose solutions to three problems
related to second order consensus in the partial state infor-
mation case with input saturations.

A. Case I: Consensus with communication delays

The first example considered in this section involves the
design of consensus algorithms for the multi-agent system (1)
in the presence of time-varying communication delays. We
assume that the information exchange between agents is fixed
and undirected and is represented by Gn. Also, we assume
that the communication between the ith and jth agents is
delayed by τij(t), with τij(t) is not necessarily equal to
τji(t).

First, we consider the case where no input constraints are
imposed to the agents and the velocity states are available
for feedback, and propose the following result.

Proposition 1: Consider the multi-agent system (4) with

Ψi(Σp,Gn) = −kvi ṗi −
∑n
j=1 kijp̄ij ,

where p̄ij = (pi − pj(t − τij(t))), kvi is a strictly positive
scalar gain, kij is the (i, j)th entry of the adjacency matrix
of the undirected graph Gn. Assume that the time-varying
communication delays are bounded such that τij(t) ≤ τ ,
for (i, j) ∈ E , and the control gains satisfy kzi := kvi −
1
2

∑n
j=1 kij

(
ϵ+ τ2

ϵ

)
> 0, for some strictly positive ϵ. If the

communication graph Gn is connected, then ṗi and (pi−pj)
are bounded and ṗi → 0 for i ∈ N , (pi − pj) → 0 for all
i, j ∈ N .

Sketch of proof: The result of the proposition can be
shown using the Lyapunov-Krasovskii functional

V =
1

2

n∑
i=1

ṗ⊤
i ṗi +

1

4

n∑
i=1

n∑
j=1

kij(pi − pj)
⊤(pi − pj)

+

n∑
i=1

n∑
j=1

kijτ

2ϵ

∫ 0

−τ

∫ t

t+s

ṗ⊤
i (ϱ)ṗi(ϱ)dϱds, (18)

with τij(t) ≤ τ and ϵ > 0, leading to the negative semi-
definite time-derivative that can be upper bounded as: V̇ ≤
−
∑n
i=1 k

z
i ṗ

⊤
i ṗi, with kzi given above. This allows us to

conclude that ṗi and (pi−pj) are bounded. Then, with the
help of Berabălat Lemma, we show that ṗi → 0 and p̈i → 0,
which leads us to conclude that (pi−pj) → 0 for i, j ∈ N ,
if the communication graph is connected. A detailed proof
of the proposition can be obtained following the above lines
and the proof of Theorem 1 in [18]. �

Proposition 1 provides a consensus algorithm that satisfies
Assumptions A1 and A2, with fd = 0, under an undirected
communication topology with time-varying communication
delays. Therefore, under the same conditions reported in
Proposition 1, the velocity-free consensus algorithm pre-
sented in Theorem 1 with

Ψi(Σξ,Gn) = −kvi ξ̇i − kvi
∑n
j=1 kij ξ̄ij , (19)

with ξ̄ij = (ξi−ξj(t− τij(t))), guarantees that: ṗi → 0 for
i ∈ N , (pi − pj) → 0, for i, j ∈ N , under an undirected
interconnection topology and with time-varying delays. Also,
the control input for each agent is guaranteed to be a priori
bounded as in (15) with fmax = 0.

B. Case II: Free-consensus in directed networks

One of the fundamental algorithms developed for multi-
agent system (1) to solve the free-consensus problem can be
written as in (3) with

Ψi(Σp,Gn) = −
n∑
j=1

kij (α(pi − pj) + β(ṗi − ṗj)) , (20)

where α and β are positive scalar gains, kij is the (i, j)th en-
try of the adjacency matrix of the directed graph Gn describ-
ing the directed communication topology between agents.
The above consensus algorithm has been considered in [9],
where it has been shown that the multi-agent system (4) with
the above algorithm achieves second order consensus if and
only if the communication graph contains a directed spanning
tree and: β2

α > max2≤i≤n
ℑ2(µi)

ℜ(µi)[ℜ2(µi)+ℑ2(µi)]
,where ℜ(·)

and ℑ(·) denote respectively the real and imaginary parts of
a number, µi, for i = 2, ..., n, are the nonzero eigenvalues
of the Laplacian matrix L defined as L = [lij ] ∈ Rn×n,
with lij = −kij , for i ̸= j, and lii = −

∑n
j=1,j ̸=i lij . In

addition, (pi − pj) and (ṗi − ṗj) are globally bounded.
Furthermore, if second order consensus is reached, then
∥ṗi(t)−

∑n
j=1 qjṗj(0)∥ → 0 and ∥pi(t)−

∑n
j=1 qjpj(0)−∑n

j=1 qjṗj(0)t∥ → 0, with q = (q1, ..., qn)
⊤ is the non-

negative left eigenvector of L associated with eigenvalue 0
satisfying q⊤1n = 1, with 1n ∈ Rn is the vector of all ones
elements (See Theorem 1 and Lemma 2 in [9] for more
details).

Hence, the above consensus algorithm, which is developed
for (1) in ideal situations, satisfies Assumptions A1 and
A2, with fd = 0, under the conditions described above.
Therefore, we conclude that the multi-agent system (1) when
the consensus algorithm given in Theorem 1 is implemented
with

Ψi(Σξ,Gn) = −
n∑
j=1

kij
(
α(ξi − ξj) + β(ξ̇i − ξ̇j)

)
, (21)
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achieves second order consensus without velocity measure-
ments if the directed graph contains a directed spanning tree
and the gains α and β satisfy the above mentioned condition.
Furthermore, the upper bound of the control input of each
agent can be determined a priori and is given in (15) with
fmax set to zero.

Moreover, in view of the dynamics of the auxiliary systems
(8) with (21), we conclude that if consensus is reached, then
∥ξ̇i(t)−

∑n
j=1 qj ξ̇j(0)∥ → 0 and ∥ξi(t)−

∑n
j=1 qjξj(0)−∑n

j=1 qj ξ̇j(0)t∥ → 0. This specifies the consensus value of
all agents, since the states of each agent will converge to the
states of its corresponding auxiliary system (8). Note that
the initial states of multi-agent system (1) do not affect the
final consensus value, which presents an important advantage
since the velocities of agents are not measurable. As a result,
the consensus value of the multi-agent system (1) can be set
by setting the initial states of the dynamic systems (8).

C. Case III: Consensus with a group reference velocity

The control objective in this example is to design a con-
sensus algorithm such that multi-agent system (1) achieves
second order consensus and each member of the team
tracks a desired velocity given by ṗd(t), which satisfies:
∥p̈d(t)∥∞ ≤ amax < umax. In the full state information
case, a possible protocol that solves this problem in the case
of directed communication topology is given as [11]

Ψi(Σp,Gn) = p̈d − kvi (ṗi − ṗd)−
n∑
j=1

kij(pi − pj), (22)

where kvi is a positive scalar gain and kij is the (i, j)th entry
of the adjacency matrix of the directed graph Gn. It has been
shown in [11] that (ṗi − ṗd) and (pi − pj) are globally
bounded and converge asymptotically to zero if the directed
communication graph has a directed spanning tree and kvi >
k̄, with k̄ depends on the eigenvalues of the Laplacian matrix
of Gn (See Theorem 5.1 in [11] for more details).

Therefore, Assumptions A1 and A2 are satisfied, with
fd = p̈d, and the velocity-free consensus algorithm pro-
posed in Theorem 1 with

Ψi(Σξ,Gn) = fd − kvi (ξ̇i − ṗd)−
n∑
j=1

kij(ξi − ξj), (23)

and fd = p̈d, achieves second order consensus under the
condition that the digraph Gn has a directed spanning tree
and kvi > k̄. In addition, the control input for each agent is
guaranteed to be a priori bounded as in (15) with fmax :=
amax.

Remark 1: The proposed consensus algorithm in this ex-
ample can be considered as the extension of our work in [17]
to the case of directed interconnection between agents.

V. SIMULATION RESULTS

We provide in the following simulation results to demon-
strate the effectiveness of the proposed consensus algorithms
in the two first cases discussed in Section IV. For this
purpose, we consider a group of four agents modeled as

in (1), with m = 1, and with initial conditions: P(0) =
(1, 1.5, 2, 3)⊤ and Ṗ(0) = (0.1, 0.02,−0.08, 0.05)⊤, where
P(t) and Ṗ(t) are the vectors containing respectively the
positions and velocities of agents, pi(t) and ṗi(t) for i ∈
N := {1, 2, 3, 4}. We assume that all agents are constrained
such that umax = 2, and the information flow between agents
is represented by one of the communication graphs, given in
Fig.1, as will be specified in each case. The initial conditions
of the auxiliary systems (7), the virtual systems (8) and the
first-order system (13) are selected as: ζi(0) = ζ̇i(0) =
ξ̇i(0) = ψi(0) = 0 and ξi(0) = pi(0), for i ∈ N . In
addition, we consider the function χ defined in (5) with
σ = tanh and σb = 1.

Fig. 1: Interaction graphs

Case I: we consider the consensus problem with time-
varying communication delays under fixed and undirected
communication topologies. We implement the consensus
algorithm proposed in Theorem 1 with (19) and fd = 0,
where the bidirectional information exchange between agents
is described by the undirected graph G̃4 given in Fig.1. The
control gains are selected as: kij = 1, for (i, j) ∈ E ,
kvi = 2, and (kpi , k

d
i , k

ψ
i , L

p
i , L

d
i ) = (1, 15, 5, 0.5, 1.5), for

i ∈ N . The time-varying communication delays are assumed
to satisfy: τij(t) = τ̃ij | sin(0.5t)| sec, with τ̃12 = τ̃13 =
τ̃14 = 0.1, τ̃21 = τ̃23 = 0.15, τ̃31 = τ̃32 = 0.2, τ̃41 = 0.3, for
i ∈ N . Note that the choice of the gains satisfy the condition
in Proposition 1 with τ = 0.3 sec and ϵ = 1. The obtained
results are shown in Fig.2 where we can see that second
order consensus is achieved without velocity measurements
in the presence of time-varying communication delays, and
the control input for each agent satisfies |ui| ≤ umax.

Moreover, it should be mentioned that the proposed ap-
proach offers a flexibility in the tuning of the controller gains.
In fact, the weights in the adjacency matrix and kvi can be
selected independently from the input constraints such that
the all auxiliary systems (8) with (12) achieve consensus
along with communication delays, i.e., all agents reach an
agreement of their first reference states ξi and ξ̇i. The gains
(kpi , k

d
i , k

ψ
i ) are also selected independently such that the

signals (ri − ξi) and (ṙi − ξ̇i) converge to zero as fast
as possible without using the agents velocities. Finally, the
gains (Lpi , L

d
i ) are selected according to (14) to guarantee

the upper bounds of the control inputs. Also, note that the
transient response of agents presents no oscillations, which
indicates that sufficient dumping is introduced to the system
via the dynamics of the two auxiliary systems with the
missing velocity states of agents.

Case II: We implement the consensus algorithm proposed
in Theorem 1 with (21) to solve the free-consensus problem
in directed networks discussed in Section IV-B. To this end,
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Fig. 2: Case I, Theorem 1 with (19).

we consider that the communication topology between the
four agents is represented by G4 shown in Fig.1. The control
gains are selected as: kij = 5, for (i, j) ∈ E , (α, β) = (1, 1),
and (kpi , k

d
i , k

ψ
i , L

p
i , L

d
i ) = (1, 15, 5, 0.5, 1.5), for i ∈ N .

Note that the eigenvalues of the Laplacian matrix for the
graph G4 in view of the weights kij are: 0, 5, 7.5±4.3301ς ,
with ς2 = −1, and therefore, the conditions on the gains
β and α are satisfied. Fig.3 shows the obtained results in
this case, where we can see that second order consensus
is achieved without velocity measurements, and the control
input for each agent satisfies |ui| ≤ umax. Note that the
final position of all agents is constant and equal to 1.5. This
corresponds to the expected consensus value in this case in
view of the initial conditions ξi(0) and ξ̇i(0), and knowing
that the left eigenvector of the Laplacian matrix of the
directed graph G4 in Fig.1 is obtained as: q = 1

3 (1, 1, 1, 0)
⊤.

VI. CONCLUSION

We considered the consensus problem for double inte-
grator dynamics in the partial state information case with
input saturations. Based on dynamic extensions, we proposed
a new approach that effectively reduces the second order
consensus algorithms design in this case to the design of
consensus algorithms in ideal situations, i.e., in the full
state information case with no input constraints. With the
existence of many consensus algorithms designed in ideal
situations, the proposed approach can be applied in a straight-
forward manner to solve open problems related to the second
order consensus in the partial state feedback case and with
input saturations. This has been illustrated by three examples
and simulation results have been provided to validate our
theoretical results.
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